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Abstract

The microorganisms in the gastrointestinal tract play a significant role in nutrient uptake, vitamin synthesis, energy
harvest, inflammatory modulation, and host immune response, collectively contributing to human health. Important
factors such as age, birth method, antibiotic use, and diet have been established as formative factors that shape the
gut microbiota. Yet, less described is the role that exercise plays, particularly how associated factors and stressors,
such as sport/exercise-specific diet, environment, and their interactions, may influence the gut microbiota. In
particular, high-level athletes offer remarkable physiology and metabolism (including muscular strength/power,
aerobic capacity, energy expenditure, and heat production) compared to sedentary individuals, and provide unique
insight in gut microbiota research. In addition, the gut microbiota with its ability to harvest energy, modulate the
immune system, and influence gastrointestinal health, likely plays an important role in athlete health, wellbeing,
and sports performance. Therefore, understanding the mechanisms in which the gut microbiota could play in the
role of influencing athletic performance is of considerable interest to athletes who work to improve their results in
competition as well as reduce recovery time during training. Ultimately this research is expected to extend beyond
athletics as understanding optimal fitness has applications for overall health and wellness in larger communities.
Therefore, the purpose of this narrative review is to summarize current knowledge of the athletic gut microbiota
and the factors that shape it. Exercise, associated dietary factors, and the athletic classification promote a more
“health-associated” gut microbiota. Such features include a higher abundance of health-promoting bacterial species,
increased microbial diversity, functional metabolic capacity, and microbial-associated metabolites, stimulation of
bacterial abundance that can modulate mucosal immunity, and improved gastrointestinal barrier function.
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Introduction
The human gut microbiota contains thousands of differ-
ent bacterial taxa as well as various archaea, eukaryotic
microbes and viruses, more than three million genes,
and harbors an enormous metabolic capacity [1, 2]. The
microorganisms in the gastrointestinal (GI) tract play a
role in nutrient uptake, vitamin synthesis, energy

harvest, inflammatory modulation, and host immune re-
sponse [3, 4]. In turn, numerous intrinsic and extrinsic
factors can affect the gut microbiota which results in a
complex gut ecosystem that is highly dynamic and indi-
vidual [5, 6]. Important factors such as age, birth delivery
route, antibiotic use, and diet can shape the gut micro-
biota [7–10]. The role that exercise plays, in particular
the associated factors and stressors, such as sport/exer-
cise-specific diet [11], environment [12], and their inter-
actions, on the gut microbiota have been less well
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described. Athletes, although diverse as a population
given the wide variety of different types of exercise/fit-
ness/athletic training, competition, dietary practices and
attributes, exemplify these factors on a generally consist-
ent and long-term basis.
High-level athletes possess remarkable physiological

and metabolic adaptations (including muscular strength/
power, aerobic capacity, energy expenditure, and heat
production) and provide unique insight in gut micro-
biome research. In addition, the gut microbiota with its
ability to harvest energy, modulate the immune system,
and influence mucosal and brain health, is likely to play
a significant role in athlete health, wellbeing, and sports
performance [13–15]. The microbiota has an indirect
influence on various indices of exercise performance, re-
covery, and patterns of illness, such as signaling through
myokines and other cytokines, modulating activation of
the hypothalamic–pituitary–adrenal axis, and affecting
performance-associated metabolic pathways [13, 16–18].
Understanding the various roles the gut microbiota plays
in relation to athletic performance is of great interest to
athletes seeking to improve competition outcomes as
well as reduce recovery time from training. Such know-
ledge may be of general benefit to further understanding
of microbial contributions to human health and disease.
Current research reports a higher abundance of health-
promoting bacterial species and increased microbial di-
versity in athletes [13, 18, 19].
Given the increasing interest in exercise, associated

dietary factors, and athletes as a population in relation
to the gut microbiota, the purpose of this narrative re-
view is to summarize current knowledge of the athletic
gut microbiota and the factors that shape it. While dif-
ferences likely exist among how the gut microbiota is af-
fected by the different types of sport/athlete/fitness
training regimens (e.g., resistance, interval, stretching/
flexibility, endurance/aerobic, etc.), the primary aim is to
provide a “state-of-the-art research” statement. Key
topics covered include:

� How the athletic/exercise-associated gut microbiota
differs in comparison to other populations.

� The effects of different types of exercise training on
the gut microbiota.

� The effects of an ‘athletic diet’ on the gut
microbiota.

Influencing factors that shape the gut microbiota
Numerous factors such as age, genetics, drug use, stress,
smoking, and diet can all affect the microbial compos-
ition of the gut, influencing a complex ecosystem that is
highly dynamic and individual [5–7, 20]. For example,
the manner in which we are born and raised can result
in substantial differences in the composition of the gut

microbiota. This outcome is related to the differences in
exposure (or non-exposure) of bacteria in the birth canal
during vaginal birth [10], being bottle fed or breastfed
[21], living with a dog, cat, or close to farm animals [22],
the number of antibiotic treatments administered [8],
and environmental toxin exposure [23]. From birth until
the age of about 3 years, an individual assembles their
core of resident microbiota primarily dominated by
gram-positive Firmicutes and gram-negative Bacteroi-
detes phyla, and this subsequent make-up is as unique as
a set of fingerprints [24–26]. The gut microbiota is also
essential for processing dietary components and appears
to have a major role in shaping the immune system [27].
Not surprisingly, the role of the gut microbiota in deter-
mining host health and development of disease has been
gaining clinical and community interest [9]. Altered gut
microbiota composition and/or function is linked to a
growing number of conditions from metabolic disorders
to some brain-related dysfunctions [28, 29]. Individuals
in a known disease state can have a significantly different
gut microbiota composition compared with healthy indi-
viduals [30]. A common observation is increased species
diversity and/or richness in the gut microbiota of healthy
individuals. Although new research suggests gene con-
tent/diversity in the gut may be a better predictor of
physiological states [31]. In addition, counterexamples
exist as recent work links high gut microbial diversity
with a longer colonic transit time and systemic circula-
tion of potentially harmful protein degradation products
[32]. On a compositional level, it could be that low di-
versity indicates poorer health, while high diversity does
not always guarantee improved health. Thus, informa-
tion about compositional diversity alone is not sufficient
to assess the health of the microbiota (and the host).
Although, from an ecological perspective, functional di-
versity may be a key factor in allowing an ecosystem to
continue operating properly [33]. Resilience to both ex-
ternal and internal changes (with the ability to rapidly
return to its baseline functional profile) is likely a key
feature of a healthy gut microbiota’s ability to maintain
itself [34].
In individuals without disease, “health-associated”

microbiota is preferred to the term “healthy microbiota”,
since gut microbial composition alone cannot predict
any state of health or disease according to currently
available research [30, 34]. It may turn out that many
possible states of microbial composition are associated
with health or indeed that a “health-associated” micro-
biota is more resilient and resistant to disruption [35]. It
is also important to keep in consideration that gut
microbiome composition is quite stable over time [36,
37]. For example, ~ 60% of microbiome composition was
found to be stable up to a 5-year period in US adults
[38]. In addition, while species composition varies
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tremendously from person to person, there is substantial
functional redundancy at the metabolic pathway level [1,
2, 39]. Therefore, looking at metagenomic functions ra-
ther than taxonomy alone may provide for a better ap-
preciation of the true gut microbiome metabolic activity
and the impact of microbial functions on human physi-
ology [40, 41]. Physical activity has been an area of
growing interest in gut microbiota research and appears
to promote a health-associated microbial community
and increased metabolic functional potential. This work
includes identifying the impact that varying and diverse
athletic and physical activity regimens exert on the gut
microbiota.
Physical activity focused gut microbiota research is

quite new and enabled by dramatic increases in scale
and scope due to advances in DNA-sequencing tech-
nologies coupled with computational methods needed
given the incredible information density of the micro-
biota [42–44]. Data are obtained predominantly from
next-generation sequencing in three forms: A) ribosomal
RNA (rRNA) gene sequence surveys that provide a view
of microbiome membership, B) metagenomic data used
to portray functional potential, and, C) metatranscrip-
tomic data to describe active gene expression (for a re-
view, readers are directed to [42]). Currently, 16 rRNA
gene surveys are the most commonly used as they are
substantially more economical and therefore scale to lar-
ger projects [44]. However, this technique is limited by
short read lengths obtained, sequencing errors, and dif-
ferences arising from the different regions chosen (e.g.,
hypervariable region V3 vs V4) [45]. 16 rRNA sequen-
cing also has limited resolution and lower sensitivity
compared to whole-community shotgun metagenomic
analysis, such as characterization down to the genus
level with minimal capability of species-level detection
[46]. Therefore, shotgun metagenomics is displacing 16S
rRNA amplicon analysis because of its expanded taxo-
nomic range and strain-level resolution [42].
Analyses used to interpret large data sets generated

from these high-throughput sequencing techniques com-
monly include measures of biological diversity. Many of
the studies included in this review measured alpha diver-
sity which represents diversity within a sample. In calcu-
lating alpha diversity, various metrics (e.g., Shannon
index, Chao1) consider the number of unique oper-
ational taxonomic units (OTUs), termed ‘richness’, and
their relative abundance, termed ‘evenness’. Also often
used is beta-diversity, a measurement of how different
the communities are between samples. Beta-diversity
metrics are quantitative (e.g., weighted UniFrac), when
considering samples phylogeny, and qualitative (e.g., uni-
weighted UniFrac) when only evaluating the presence/
absence of samples [47]. In addition, other ‘omic’ tech-
niques, such as metabolomics, are being integrated with

these data to provide deeper insights into host metabol-
ism and health. Metabolomics uses high throughput
techniques to characterize and quantify small molecules
in several biofluids (urine, serum, plasma, feces, saliva),
revealing a unique metabolic signature [48]. As a com-
plement to sequencing-based approaches, the use of
metabolomics (particularly from feces) is encouraged as
it offers a ‘functional’ readout of the microbiome provid-
ing data on the metabolic interplay between the host,
diet, exercise, and the gut microbiota [49, 50].
While the aforementioned techniques have allowed for

a rapid increase in gut microbiota research, the variation
in microbial analysis across different studies can make
comparing/contrasting study findings difficult. Indeed,
variation in profiling techniques (e.g., sequencing strat-
egy, platform, variable regions, sequencing depth, etc.)
may act as a confounding variable resulting in divergent
findings due entirely to laboratory techniques rather
than treatment [51]. Furthermore, many gut microbiota
studies may be underpowered, and scientists may not be
controlling for important confounding variables such as
diet, gender, ethnicity, GI problems, antibiotics, etc. As
the investigation of the athletic microbiota is a newer
field of research, the intention of this review is to pro-
vide a broad overview of the current state of the litera-
ture. For future, more specific reviews, deeper
discussions of methodological nuances are warranted.

The athlete/exercise-associated gut microbiota
Establishing consistent relationships across studies in
physically active groups, such as athletes has been prob-
lematic. Beyond the obvious methodological differences
such as sample preparation techniques, DNA sequen-
cing, bioinformatics tools, and reference databases [52–
55], there is also large variation across exercise/athletic
regimens. Moreover, confounding factors including
training history, level of physical fitness, training envir-
onment, and dietary intake all have the potential to
affect study outcomes substantially, and make detecting
differences due to exercise/athletic regimens on the gut
microbiota difficult to ascertain. Therefore, when com-
paring these individuals within or across various exer-
cise/athletic disciplines and classifications, these factors
should be accounted for and reported by investigators.
While the current body of this comparative-type re-
search is mixed and more limited (see Table 1), collect-
ively it provides important insight and highlights key
areas of future study.

Athletes/physically active individuals vs other populations
Several studies have investigated the difference in com-
positional gut microbiota between those physically active
(including athletes) and a range of populations. While
the above confounding factors are still relevant when
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Table 1 Athlete/exercise-associated gut microbiota in comparison to other populations or across athletic classification:
Characteristics of included articles (by publication date)

Authors,
year,
country

Subjects Sex and
age

Study design and
gut microbiome
analysis

Diet and/or exercise Key outcome(s)

1. Clarke
et al., 2014,
Ireland [19]

Professional male rugby
athletes (n = 40) and healthy
size, age and sex matched
controls (n = 46)

86
Males
23–35
years

Cross-sectional,
observational
16S rRNA gene
amplification of the
V4 region

Diet recorded by a 187-food item
FFQa.
Physical activity levels assessed
by EPICb-Norfolk questionnaire.

• Athletes had a higher GMc

diversity compared to controls.
• Athletes in low BMId (< 25 kg/m2)
group had higher proportions of
genus Akkermansia compared
with high BMI (> 28 kg/m2) group.

2. Bressa
et al., 2017,
Spain [56]

Healthy premenopausal
women; active defined by
WHOe (n = 19) and sedentary
(n = 21)

40
Females
18–40
years

Cross-sectional,
observational
16S rRNA gene
amplification of the
V3 and V4 regions

Acceleration, energy expenditure,
intensity of physical activity and
body position measured by Acti
-Sleep V.3.4.2 accelerometer.
Dietary pattern assessed by 97
food item FFQ.

• Physical activity associated with
increased the abundance of
health-promoting bacteria (Bifido-
bacterium species, Roseburia homi-
nis, A. muciniphila and
Faecalibacterium prausnitzii) in the
microbiota.

• Inverse association between
sedentary parameters and
microbiota richness (number of
species, and Shannon and
Simpson indices).

3. Mörkl
et al., 2017,
Austria [57]

Anorexia nervosa patients
(n = 18), athletes (n = 20),
normal weight (n = 26),
overweight (n = 22), and
obese women (n = 20).

106
Females
18–40
years

Cross-sectional,
observational
16S rRNA gene
amplification of the
V1 and V2 regions

24-h recall dietary intake
Activity level assessed by IPAQf

score & METg/min

• Lower microbial richness in obese
and anorexic individuals
compared to athletes.

4. Petersen
et al., 2017,
USA [18]

Professional (n = 22) and
amateur (n = 11) level
competitive cyclists

22
Males/
11
Females
19–49
years

Cross-sectional,
observational
Metagenomic whole
genome shotgun
sequencing and
RNA sequencing

Exercise load (hours/week): 6–10;
11–15; 16–20; and; 20 + .
Diet: equal protein, fat,
carbohydrate; vegetarian; high
complex carbohydrate; paleo;
gluten-free.

• No significant correlations
between taxonomic cluster and
professional or amateur level
cyclists.

• High relative abundance of
Prevotella in cyclists training > 11
h/week.

• Increased abundance of
Methanobrevibacter smithii
transcripts in professional cyclists.

5. Barton
et al., 2018,
Ireland [13]

Professional male rugby
athletes (n = 40) and healthy
size, age and gender
matched controls (n = 46)

86
Males
23–35
years

Cross-sectional,
observational
Metagenomic whole
genome shotgun
sequencing and
urine and fecal
metabolomics

Diet recorded by a 187-food item
FFQ.
Physical activity levels assessed
by EPIC-Norfolk questionnaire.
Serum creatine kinase levels were
used as a proxy for level of phys-
ical activity.

• The microbiota of athletes was
more diverse than both the low
and high BMI control groups at
the functional level.

• Athletes had an enriched profile
of SCFAsh and higher levels of the
metabolite TMAOi.

6. Jang
et al., 2019,
South
Korea [11]

Healthy sedentary men (as
controls; n = 15), bodybuilders
(n = 15), and elite distance
runners (n = 15)

45
Males
19–28
years

Cross-sectional,
observational
16S rRNA gene
amplification of the
V3 and V4 regions

Physical activity level was
assessed using the IPAQ.
Dietary intake was analyzed with
the computerized nutritional
evaluation program.

• Exercise type was associated with
athlete diet patterns
(bodybuilders: high-protein, high-
fat, low-carbohydrate, and low-
dietary fiber diet; distance runners:
low-carbohydrate and low dietary
fiber diet). Athlete type was sig-
nificantly associated with the rela-
tive abundance of gut microbiota
at the genus and species level.

• Increased abundance of
Faecalibacterium, Sutterella,
Clostridium, Haemophilus, and
Eisenbergiella in bodybuilders.

• Athlete type did not differ in gut
microbiota alpha and beta
diversity.

7.
O’Donovan
et al., 2019,
Ireland [58]

Elite athletes from 16
different sports (n = 37)

23
Males/
14
Females
27 ± 5

Cross-sectional,
observational
Metagenomic whole
genome shotgun
sequencing and

Diet recorded by FFQ. • Microbial diversity did not differ
between sport classification.

• Overall, samples dominated by
species from one or a
combination of five species:
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interpreting these studies, such research provides an im-
portant comparator to the gut microbiota of these indi-
viduals. In an observational study, the gut microbiotas of
sedentary and physically active premenopausal women
were compared [56]. Physical exercise was not related to
differences in the microbiota diversity or richness (the
total number of OTUs or species recorded); however,
sedentary parameters (i.e., sedentary time and breaks)
correlated negatively with microbiota richness. Further,
quantitative polymerase chain reaction analysis revealed
higher abundance of health-promoting bacterial species
in active women, including Faecalibacterium prausnitzii,
Roseburia hominis and Akkermansia muciniphila. In an-
other cross-sectional study in females, Mörkl et al. [57]
compared the gut microbiota of anorexia nervosa inpa-
tients to recreational athletes from a range of sports and
overweight, obese, and normal weight controls. Micro-
biota diversity was markedly lower in anorexia nervosa
patients and obese participants compared to other
groups, while athletes showed the highest alpha diversity
(species richness). Interestingly, total fat mass, serum
lipids, C-reactive protein, depression scales, and smoking
status were negatively associated (R2 = − 0.012 to −
0.256, P < 0.05) with microbiota diversity. It is important
to note that these associations are likely driven by life-
style. While caution should be used in interpreting this
data given the cross-sectional nature and inability to ac-
count for other potential influences, investigation of gut
microbiota composition, diversity, and function should

be useful in characterizing key elements of a healthy
lifestyle.
Clarke et al. [19] reported the gut microbiota of pro-

fessional male rugby players was more diverse than
healthy, non-athlete subjects matched for body mass
index (BMI), age, and gender. Given the physical size of
modern rugby players, two control groups were assessed;
one matched for athlete size with a comparable (ele-
vated) BMI (> 28 kg/m2) and a second reflecting the
background age-matched and sex-matched population
(lower BMI of < 25 kg/m2). Importantly, the alpha diver-
sity of the elite athlete’s microbiota was higher than that
of both control groups. Further, the athletes and those
in the low BMI control group had higher proportions of
the genus Akkermansia than the high BMI control
group. Moreover, protein consumption was correlated
positively (R = 0.24–0.43) with microbial diversity across
all groups, indicating that greater protein intake was
linked to higher levels of microbial diversity. There is a
possibility that the increased diversity of the athlete’s gut
microbiota was due, in part, to their higher protein in-
take. Barton et al. [13] re-examined the microbiota in
these participants using whole metagenome shotgun se-
quencing to provide deeper insight into taxonomic com-
position and metabolic potential. Differences in fecal
microbiota between athletes and sedentary controls
showed even greater separation at the metagenomic and
metabolomic level than at the gut microbiota compos-
itional level. Relative to controls athletes appear to have

Table 1 Athlete/exercise-associated gut microbiota in comparison to other populations or across athletic classification:
Characteristics of included articles (by publication date) (Continued)

Authors,
year,
country

Subjects Sex and
age

Study design and
gut microbiome
analysis

Diet and/or exercise Key outcome(s)

years urine and fecal
metabolomics

Eubacterium rectale,
Polynucleobacter necessarius,
Faecalibacterium prausnitzii,
Bacteroides vulgatus and
Gordonibacter massiliensis.

• Athletes with high dynamicj

component were associated with
greater abundance of
Bifidobacterium animalis,
Lactobacillus acidophilus, Prevotella
intermedia and F. prausnitzii.

• Athletes with both a high
dynamic and statick component
were associated with greater
abundance of Bacteroides caccae.

aFFQ Food frequency questionnaire
bEPIC European Prospective Investigation of Cancer
cGM Gut microbiota
dBMI Body mass index
eWHO World Health Organization
fIPAQ International Physical Activity Questionnaire
gMET Metabolic equivalent
hSCFA Short-chain fatty acid
iTMAO Trimethylamine N-oxide
jDynamic Classified by estimated VO2max
kStatic Classified by maximal voluntary contraction
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increases in metabolic pathways (e.g., amino acid and
antibiotic biosynthesis and carbohydrate metabolism)
and fecal metabolites (e.g., microbial produced short-
chain fatty acids (SCFAs) including acetate, propionate,
and butyrate) associated with enhanced fitness and over-
all health when compared to control groups [13].

Athletes across different classifications and disciplines
To explore possible differences between levels of ath-
letes, Petersen et al. [18] investigated the gut microbiotas
of 22 professional and 11 amateur competitive cyclists.
Using metagenomic whole genome shotgun sequencing,
no significant correlations were evident between the
taxonomic clusters in professional or amateur cycling
status. However, the amount of exercise (time reported
exercising during the average week) was correlated posi-
tively with a greater abundance of the genus Prevotella
(≥2.5%). Increased abundance of Prevotella, common in
non-Western populations and associated with plant/fiber
rich diets, was further positively correlated with several
amino acid and carbohydrate metabolism pathways, in-
cluding branched-chain amino acid (BCAA) metabolism.
Using metatranscriptomic sequencing, there was in-
creased abundance of Methanobrevibacter smithii tran-
scripts in a number of the professional cyclists in
comparison to amateur cyclists. Moreover, this archaeon
had upregulation of genes involved in the production of
methane and when methane metabolism was upregu-
lated, there was similar upregulation of energy and
carbohydrate metabolism pathways. Similar to Clarke
et al. [19], there was low abundance of Bacteroides in
the athletes. In addition, Akkermansia was present in 30
out of 33 cyclists, with seven cyclists having relative
abundances > 2% of this microbe in their metagenomic
community. These outcomes may have been a reflection
of higher fitness/metabolism of these athletes as in-
creased proportions of Akkermansia are generally associ-
ated with a healthier metabolic profile [59].
To examine the gut microbiota and metabolome across

sport classification, O’Donovan and colleagues [58] col-
lected fecal and urine samples from 37 elite Irish athletes
across 16 different sports (many of whom were participat-
ing in the 2016 Summer Olympics). To gain an under-
standing of the impact of dynamic (classified by estimated
VO2max) versus static (classified by maximal voluntary
contraction) components of exercise, each sport was clas-
sified into a broader sports classification group. Fecal sam-
ples were prepared for shotgun metagenomic sequencing
and fecal and urine samples underwent metabolomic pro-
filing. Athletes participating in sports with a high dynamic
component were the most distinct compositionally
(greater differences in proportions of species; see Table 1),
while athletes participating in sports with both a high dy-
namic and static component were the most functionally

distinct (greater differences in functional potential). Fecal
and urine derived metabolites also varied between classifi-
cation including increased lactate (urine) in sports with a
static component and creatinine (feces) in sports with a
high dynamic and low static component. While increased
lactate in the more static-based sports was not surprising,
increased creatinine in more dynamic-based sports was. It
may have been that the dynamic exercises in this athletic
cohort involved substantial muscle turnover, potentially
resulting in the increase in the production of creatinine. It
is unclear what the causative factors of this finding and
other reported differences in the gut microbiota and me-
tabolome were due to the sampling variation, sample size
and cross-sectional nature of this study. However, these
differences were observed despite no significant variation
in dietary intakes across athletes from different classifica-
tions; suggesting that variations in training loads and com-
petition requirements contributed to these microbiome
and metabolome-related patterns.
To investigate the long-term effects of a specific exercise

type and athletes’ diets on gut microbiota, Jang et al. [11]
compared fecal microbiota characteristics, dietary intake,
and body composition in 15 healthy sedentary men (as
controls), 15 bodybuilders, and 15 distance runners. Exer-
cise type was associated with athlete diet patterns (i.e.,
bodybuilders: high-protein, high-fat, and low-
carbohydrate/dietary fiber diet; distance runners: low-
carbohydrate and low-dietary fiber diet). While athlete
type did not differ regarding gut microbiota alpha and
beta diversity, it was significantly associated with the rela-
tive abundance of several bacteria. For instance, at the
genus level, Faecalibacterium, Sutterella, Clostridium,
Haemophilus, and Eisenbergiella were the highest, while
Bifidobacterium and Parasutterella were the lowest in
bodybuilders. At the species level, intestinal beneficial bac-
teria widely used as probiotics (Bifidobacterium adolescen-
tis, Bifidobacterium longum, Lactobacillus sakei) and
those producing short chain fatty acids (Blautia wexlerae,
Eubacterium hallii) were the lowest in bodybuilders and
the highest in controls. In distance runners, protein intake
was negatively correlated with diversity (Shannon index
R = − 0.63; P = 0.01) and in bodybuilders, fat intake was
negatively correlated with Bifidobacteria (R = − 0.52; P =
0.05). These differences may relate to the nutrition status
of athletes in the study (i.e. insufficient carbohydrate and
dietary fiber; higher fat).

Summary of the athlete/exercise-associated gut microbiota
From the limited evidence, it appears that athletes har-
bor an increased abundance of functional pathways
within the microbiome that are exploited by the host for
potential health benefits, as well as carbohydrate degrad-
ation and secondary metabolite metabolism compared to
control groups [60]. While difficult to isolate, the
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influence of dietary intake on many of these differences
is likely and needs to be considered in the context of this
research. Furthermore, athletes have an enriched profile
of SCFAs, previously associated with numerous health
benefits and a lean phenotype [61–63]. This profile
along with an increased number of detected SCFA path-
ways in athletes is conducive to an enhanced rate of
SCFA production [64]. While evidence is currently lim-
ited, results from Clarke et al. [19] and Petersen et al.
[18] suggest A. muciniphilia may be more present in
athletes than non-athletes. A. muciniphilia is a mucin-
degrading bacterium that resides in the nutrient-rich
mucus layer of the gut that appears to be associated with
positive metabolic function [59]. A. muciniphilia levels
are decreased in obese and type 2 diabetic mice, and
treatment with these bacteria reversed high-fat diet-
induced metabolic disorders, including fat mass gain,
metabolic endotoxemia, adipose tissue inflammation,
and insulin resistance [65]. A. muciniphilia can control
mucus production by the host and restore mucus layer
thickness in mice with high-fat diet-induced obesity,
thereby reducing gut permeability. This outcome led to
the hypothesis that A. muciniphilia engages in cross-talk
with the intestinal epithelium to control inflammation
and gut barrier function [65]. A. muciniphilia has also
been found to be enriched in mice fed a ketogenic diet,
exhibiting gut-brain functions including conferring seiz-
ure protection in two preclinical models for refractory
epilepsy [66]. While the role of A. muciniphila is less
certain in humans, it is depleted in individuals with sev-
eral metabolic and inflammatory disorders. For example,
of subjects undergoing dietary calorie restriction treat-
ment for obesity, those with higher levels of these bac-
teria exhibited the best metabolic status and clinical
outcomes [59]. Future research in athletes should con-
tinue to investigate the role A. muciniphilia plays in the
gut microbiota and its functional impact on metabolism.
In relation to obesity, some athletes who may be de-

fined as physically active may not necessarily be health-
ier based on BMI [67]. For example, Rugby or American
football players commonly have large amounts of lean
mass, and many will have relatively healthy percent body
fat levels, typically 12–20%, so BMI is considered to be a
poor measure of obesity status in these athletic cohorts.
While Clarke et al. [19] and Barton et al. [13] compared
the gut microbiome of athletes to matched controls con-
sidered overweight by BMI, future work should also in-
vestigate this comparison at the obese classification.
Findings from such research could provide important
data in connection with the pathogenesis of obesity and
the gut microbiota. One leading theory on the pathogen-
esis of obesity emphasizes a close link between the meta-
bolic and immune systems via the gut microbiota [68].
This body of work suggests that increased intestinal

permeability from high-fat / high sugar diets allows bac-
terial lipopolysaccharide (LPS), an outer membrane
component of gram-negative bacteria linked with induc-
tion of inflammation, from the gut microbiota to trans-
locate into the systemic circulation, resulting in systemic
endotoxemia. Activation of pro-inflammatory cytokines
is observed, leading to the chronic low-grade inflamma-
tion often implicated in obesity [69]. In contrast, athletes
have been noted to have lower levels of circulating LPS
compared to sedentary individuals [70]. These findings
support of the notion that other factors beyond BMI
levels should be considered when assessing any relation-
ship between metabolic health, obesity and the micro-
biome status of competitive athletes.
Barton et al. [13] speculated that the athlete gut

microbiome may possess a functional capacity primed
for tissue repair and a greater ability to harness energy
from the diet with increased capacity for carbohydrate
metabolism, cell structure, and nucleotide biosynthesis.
This assertion reflects the significant energy demands
and tissue adaptation that occurs during intense exercise
and elite sport. It appears that being physically active is
another important factor in the relationship between the
microbiota and host metabolism. Intervention-based
studies to delineate this relationship will be important
and provide further insights into optimal therapies to in-
fluence the gut microbiota, and its relationship with
health and disease as well as athletic performance.

Key Points 1 – Athlete/exercise-associated microbiota

• Although limited in evidence, active individual’s microbiota display a
higher abundance of health-promoting bacterial species such as A.
muciniphila and increased diversity.

• Body composition and physical activity are positively correlated with
several bacterial populations.

• Investigating metagenomic functions rather than taxonomy alone
provides a more meaningful understanding of gut microbiota and the
impact of microbial metabolic functions on human physiology.

• Athletes have more fecal metabolites (e.g., microbial SCFAs including
acetate, propionate, and butyrate) associated with enhanced muscle
turnover (fitness) and overall health than less active individuals. These
differences are likely driven by the effects of exercise training and/or
dietary intake.

• The athlete/exercise-associated gut microbiome may possess a
functional capacity primed for tissue repair and a greater ability to
harness energy from the diet with increased capacity for carbohydrate
metabolism, cell structure, and nucleotide biosynthesis.

The effect of exercise on the gut microbiota
Animal research
Few studies have focused on the impact that voluntary
exercise has on gut microbiota and, to date, all but seven
of these experimental studies utilized murine models
[17, 71]. These preliminary studies indicate that exercise
influences the composition of the gut microbiota
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community. Matsumoto et al. [72] reported that regular
running exercise in rats was related to an increase in
butyrate-producing bacteria in the microbiota compos-
ition along with an increase of butyrate concentration.
Other animal studies demonstrated that daily wheel run-
ning exercise may improve some aspects of unhealthy
states, such as diet-induced obesity, diabetes, and tox-
icity, by impacting the gut microbial composition in
mice [73–75]. These effects included altering the ratio
between the dominant phyla Firmicutes and Bacteroi-
detes, which has been found to be correlated with obes-
ity and other diseases [76–78]. Animal and human data
have reported that the Firmicutes/Bacteroidetes ratio is
higher (i.e., increased Firmicutes and/or decreased Bac-
teroidetes) in obese people compared to lean people
[79–82]. However, this is not always the same between
studies [83, 84] and may be an oversimplification of
phylum-level patterns in relation to host health. Further,
mechanisms by which specific members of the micro-
biota, such as Firmicutes and Bacteroidetes, can affect
human phenotypes remain to be fully elucidated [85].
Therefore, changes in phyla ratios should be interpreted
with caution.
Amongst the exercise studies in animals there was

little agreement regarding what taxa are influenced by
chronic exercise. Other than a positive correlation
between exercise and Lactobacillus [73, 86, 87], there
are no other taxa that consistently increase in relative
abundance in regularly exercised mice or rats. In
particular, Choi et al. [73] reported that, in comparison
to a sedentary control, mice with running wheel exercise
had higher phylum Firmicutes but fewer phyla
Tenericutes and Bacteroidetes, which attenuated changes
in gut microbiota induced by oral exposure to the
environmental toxin, polychlorinated biphenyls. Lambert
et al. [75] described that exercised mice presented a
greater abundance of Firmicutes species and lower
Bacteroides/Prevotella genera compared with sedentary
mice. In contrast, Evans et al. [74] concluded that
exercise increased Bacteroidetes, while it decreased
Firmicutes in mice, implying that exercise plays an
important role in prevention of diet-induced obesity
producing a microbial composition similar to lean mice.
The changes in the Firmicutes/Bacteroidetes ratio
exerted by exercise were inversely proportional to the
distance traveled by animals [74]. Campbell et al. [88]
asserted that exercised mice have bacteria related to Fae-
calibacterium prausnitzii which may protect the digest-
ive tract by producing butyrate and lowering the oxygen
tension in the lumen by a flavin/thiol electron shuttle.
Briefly, the health-related effects of butyrate are associ-
ated with anti-inflammatory properties, direct feeding of
colonocytes, and an impact on satiety [64]. Notably, bu-
tyrate, along with propionate and acetate, provides ~

10% of the daily caloric requirements in humans who
consume high (~ 60 g/day) amounts of dietary fiber [64].
The bacterial abundance of Clostridiaceae and Bacteroi-
daceae families and Ruminoccocus genus were negatively
associated with blood lactate levels in exercised animals,
whereas a positive association was reported for Oscillos-
pira genus [86].
Moreover, it seems that the changes exerted by

physical exercise depend on the physiological state of
the individual. For example, regular forced exercise
differentially affected microbiota richness whether they
were obese-hypertensive or normal rats [86]. Alterations
to the microbiota exerted by exercise in rats following a
high-fat diet were different to rats on a normal diet [89],
as well as the alterations produced in diabetic mice were
different to their control counterparts [75]. Collectively,
these findings indicate that modulation of the microbiota
by chronic exercise depends not only on the physio-
logical state of the individual, but also on the diet. More-
over, another significant difference between forced vs.
voluntary exercise in animals is exercise volume. This is
recapitulated in human cyclist data [18] and requires
further investigation in animal models. Finally, it has
been observed that exercise induces more effective
changes in the microbiota in juvenile rats than in adult
rats [90]. A common finding in these murine studies
examining the effects of exercise training on the gut
microbiome, is an increase in alpha diversity [17]. Sev-
eral other studies using murine-based models also dem-
onstrated increased alpha diversity in animals that
exercised vs. those that were sedentary [73, 74, 86, 87].

Cross-sectional research in humans
In healthy individuals, Estaki et al. [14] reported higher
cardiorespiratory fitness (as measured by peak or
maximum oxygen uptake, VO2peak or VO2max)
correlated with increases in both microbial diversity and
fecal butyrate (see Table 2). Also identified was a core
set of gene related functions rather than a core set of
bacterial taxa in individuals with high levels of fitness
[14]. Further, ~ 20% of the variation in gut bacterial
alpha diversity could be explained by VO2peak alone; in
fact, VO2peak stood as the only variable that contributed
significantly to increased alpha diversity. The primary
findings indicate that cardiorespiratory fitness is a good
predictor of gut microbial diversity in healthy humans,
outperforming several other variables including sex, age,
BMI, and multiple dietary components. Additionally,
enhanced bacterial diversity was correlated positively
with certain microbial metabolic functions including
chemotaxis, motility, and fatty acid biosynthesis. As
VO2peak was not significantly associated with variation
in community composition, this result suggests function
may be a better predictor than species richness, as noted

Mohr et al. Journal of the International Society of Sports Nutrition           (2020) 17:24 Page 8 of 33



Table 2 Effect of exercise and/or athletic diet on the gut microbiota: Characteristics of included articles (by publication date)

Authors,
year,
country

Subjects characteristics Study design and gut
microbiome analysis

Diet and/or exercise Duration Key outcome(s)

1. Clarke
et al.,
2014,
Ireland
[19]

Professional male rugby
players, n = 40, 29 ± 4 years;
Healthy matched controls,
n = 46, 29 ± 6 years

Cross-sectional
16S rRNA gene
amplification of the V4
region

Observational Cross-
sectional

• Athletes had a higher
diversity of gut micro-
organisms, representing 22
distinct phyla.

• GMa diversity indices were
positively correlated with
protein intake and serum
creatine kinase in athletes.

2. Estaki
et al.,
2016,
Canada
[14]

Healthy young males and
females, n = 39, stratified by
cardiorespiratory fitness, Low:
25.5 ± 3.3 years; Average:
24.3 ± 3.7 years; High: 26.2 ±
5.5 years

Cross-sectional
16S rRNA gene
amplification of the V3 and
V4 regions

Observational Cross-
sectional

• VO2peak
b, independent of

diet, positively correlated
with increased GM diversity.

• VO2peak explained
significant variation in GM
predicted metagenomic
functions, aligning positively
with genes related to
bacterial chemotaxis,
motility, and fatty acid
biosynthesis.

• Increased production of
fecal butyrate abundances
of butyrate-producing taxa
(Clostridiales, Roseburia,
Lachnospiraceae, and Erysi-
pelotrichaceae) amongst
physically fit participants.

3. Yang
et al.,
2017,
Finland
[94]

Premenopausal females with
low, moderate and high-
cardiorespiratory fitness
(VO2max), n = 71, Low
VO2max: 40.4 ± 3.5 years;
Moderate VO2max: 39.7 ± 4.2
years;
High VO2max: 30.6 ± 5 years

Cross-sectional
16S rRNA hybridization,
DNA-staining, and flow
cytometry

Observational Cross-
sectional

• Decreased Bacteroides,
increased Eubacterium
rectale-Clostridium coccoides
in low VO2max participants
vs high VO2max
participants.

• VO2max inversely associated
with Eubacterium rectale-C.
coccoides but not with
other bacteria.

4. Allen
et al.,
2018, USA
[98]

Sedentary lean males and
females, n = 18, 25.1 ± 6.52
years; Obese males and
females, n = 14, 31.14 ± 8.57
years

Longitudinal design
16S rRNA gene
amplification of the
V4 region

30–60 min moderate-to-
vigorous intensity (60–75% of
HRRc) aerobic exercise, 3x per
week

6 weeks • Exercise induced shifts in
SCFAd-producing taxa
(Faecalibacterium and
Lachnospira species) and
genetic machinery (BCoATe)
were more substantial in
lean versus obese
participants.

• A return to sedentary
activity for 6 weeks led to a
BMIf-dependent reversion in
gut microbiome
composition.

5. Barton
et al.,
2018,
Ireland
[13]

Professional male rugby
players, n = 40, 29 ± 4 years;
Healthy matched controls,
n = 46, 29 ± 6 years

Cross-sectional
Metagenomic whole
genome shotgun
sequencing and urine and
fecal metabolomics

Observational Cross-
sectional

• Relative increase in
pathways (amino acid and
antibiotic biosynthesis and
carbohydrate metabolism)
in athletes vs control.

• Increase in fecal metabolites
(acetate, propionate and
butyrate) in athletes vs
control.

6. Cronin
et al.,
2018,
Ireland
[199]

Sedentary overweight/obese
males and females, n = 90,
18–40 years

Randomized controlled
trial,
parallel group design
Metagenomic whole
genome shotgun

Groups:
• Protein-only; 30 g protein
(24 g whey)

• Exercise-only; Combined
aerobic and resistance

8 weeks • Increase in alpha diversity in
Exercise + Protein group vs
Protein group.

• Decrease in beta diversity
of the gut virome in
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Table 2 Effect of exercise and/or athletic diet on the gut microbiota: Characteristics of included articles (by publication date)
(Continued)

Authors,
year,
country

Subjects characteristics Study design and gut
microbiome analysis

Diet and/or exercise Duration Key outcome(s)

sequencing and urine and
fecal metabolomics

training (aerobic training of
moderate intensity and re-
sistance training of 3 sets of
8 repetitions on 7 different
resistance machines) 3 x per
week

• Exercise + protein

participants consuming
protein.

7.
Moreno-
Pérez
et al.,
2018,
Spain
[196]

Endurance-trained
males, n = 18,
35.38 ± 9.0 years (control
group), 34.90 ± 9.49 years
(protein group)

Randomized controlled
trial,
parallel group design
16S rRNA gene
amplification of the V3 and
V4 regions

Groups:
• Control: maltodextrin
• Protein: blend of whey
isolate (10 g) and beef
hydrolysate (10 g)

Minimum training frequency
of 5 endurance training
sessions per week; ≥240min
per week

10 weeks • Increase in Bacteroidetes in
protein group.

• Decrease in Roseburia,
Blautia, and Bifidobacterium
longum in protein group.

8.
Taniguchi
et al.,
2018,
Japan
[101]

Healthy elderly Japanese
males, n = 33, 62–76 years

Randomized crossover trial
16S rRNA gene
amplification of the V3 and
V4 regions

5-week control period OR 5-
week supervised, progressive
aerobic exercise program.
Cycle ergometer 3x per week.
60% of pre exercise VO2peak
during week 1, 70% during
weeks 2 and 3, and 75% dur-
ing weeks 4 and 5. Duration
was 30 min for weeks 1 and
2, and 45min for weeks 3–5.

5 weeks • Short-term endurance exer-
cise did not appreciably in-
fluence diversity and
composition of gut micro-
biota. Minor changes in the
gut microbiota were associ-
ated with cardiometabolic
risk factors.

• Decreased relative
abundance of C. difficile
significantly decreased,
whereas Oscillospira
significantly increased
during exercise as
compared to the control
period.

9. Durk
et al.,
2019, USA
[93]

Healthy young males and
females, n = 37, 25.7 ± 2.2
years

Cross-sectional
Quantitative Polymerase
Chain Reaction (qPCR) that
specifically measured the
quantity of a target gene
(16 s RNA) found in
Firmicutes and Bacteroidetes

Observational Cross-
sectional

• Firmicutes/Bacteroidetes ratio
positively correlated to
VO2max.

• VO2max explained ~ 22% of
the variance of an
individual’s relative gut
bacteria as determined by
Firmicutes/Bacteroidetes
ratio.

10.
Keohane
et al.,
2019,
Ireland
[99]

Ultra-endurance male
athletes, n = 4,
26.5 ± 1.3 years

A prospective, repeated-
measures, within-subject
report
Metagenomic whole
genome shotgun
sequencing

Observational 33-day
event; 3-
month
follow-up

• Increased alpha diversity
throughout event.

• Increased abundance of
butyrate producing species
(Roseburia hominis and
members of the genus
Subdoligranulum) and
species associated with
improved metabolic health
(Dorea longicatena).

• Many of the adaptions in
GM community structure
and metaproteomics
persisted at 3 months
follow up.

11. Kern
et al.,
2019,
Denmark
[108]

Overweight/obese males and
females; n = 88; 20–45 years

Randomized controlled
trial,
parallel group design
16S rRNA gene
amplification of the V4
region

Exercise groups:
• Habitual living (CON),
• Active commuting by bike
(BIKE)

• Leisure-time exercise of
moderate intensity (MOD)

6 months • Increase alpha diversity
index in VIG at 3 months
compared with CON.

• Beta diversity changed in all
exercise groups compared
with CON; VIG decreased
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Table 2 Effect of exercise and/or athletic diet on the gut microbiota: Characteristics of included articles (by publication date)
(Continued)

Authors,
year,
country

Subjects characteristics Study design and gut
microbiome analysis

Diet and/or exercise Duration Key outcome(s)

• Vigorous intensity exercise
(VIG)

heterogeneity.
• Increased inferred
functional potential of
microbiota in the exercise
groups, primarily at 3
months and in MOD.

12. Morita
et al.,
2019,
Japan
[103]

Healthy sedentary elderly
females; n = 32; ≥ 65 years

Non-randomized
comparative trial
16S rRNA terminal
restriction fragment length
polymorphism
analyses

Exercise groups:
• Trunk muscle training group
1 h per week.

• Aerobic exercise training
group, brisk walking at ≥3
METSg, 1 h daily.

12 weeks • Increased Bacteroides
relative abundance in
aerobic exercise group.

• Increased Bacteroides
following exercise
intervention associated with
increased 6-min walk test.

13.
Motiani
et al.,
2019,
Finland
[109]

Obese sedentary,
prediabetic/type 2 diabetic
males and females; n = 26
(n = 9, n = 17 respectfully);
49 ± 4 years

Parallel group design
16S rRNA gene
amplification of the V3 and
V4 regions

Exercise groups:
• Sprint interval training
group; 30 s exercise bouts
(4–6) of all out cycling
efforts with 4 min of
recovery, 3x a week.

• Moderate intensity
continuous training group;
40–60 min cycling at 60% of
VO2peak intensity, 3x a
week.

2 weeks • Increased Bacteroidetes in
both groups.

• Decreased Firmicutes:
Bacteroidetes ratio in both
groups.

• Decreased Clostridium
genus and Blautia.

• Colonic glucose uptake
positively associated with
Bacteroidetes and inversely
with Firmicutes phylum,
Firmicutes: Bacteroidetes
ratio and Blautia genus.

14.
Murtaza
et al.,
2019,
Australia
[230]

Elite male endurance race
walkers; n = 21; 20–35 years

Non-randomized
comparative trial
16S rRNA gene
amplification of the V6-V8
regions

Diet groups:
• High-Carbohydrate
• Periodized Carbohydrate
• ketogenic LCHFh

Consumed during an
intensified training program.

3 weeks • Microbiota profiles at
baseline could be separated
by Prevotella or Bacteroides
dominated enterotype.

• LCHF diet resulted in
increased relative
abundance of Bacteroides
and Dorea and decreased
Faecalibacterium.

• Negative correlations
between Bacteroides and fat
oxidation, and between
Dorea and economy test
following LCHF
intervention.

15.
Scheiman
et al.,
2019, USA
[16]

Experiment 1:
• Athletes from the 2015
Boston Marathon (n = 15),
sedentary controls (n = 10)

Experiment 2:
• Ultramarathoners and
Olympic trial rowers (n = 87)

Observational
16S rRNA gene
amplification of the V4
region for experiment 1
Metagenomic whole
genome shotgun
sequencing for experiment
2

Experiment 1:
• Marathon event
Experiment 2:
• Exercise bout

Experiment
1:
• Fecal
samples
collected 7
days before
and after
Marathon
event

Experiment
2:
• Pre/post
exercise

Experiment 1:
• Increased Veillonella relative
abundance in marathon
runners post marathon.

• Veillonella was more
prevalent among runner’s
vs non-runners, although
this was not statistically
significant.

Experiment 2:
• Increased Veillonella
abundance post exercise.

• Veillonella methylmalonyl-
CoA pathway was overrep-
resented in athlete metage-
nomic samples post
exercise.

16. Liu
et al.,
2019,
China

Overweight/obese
prediabetic males; n = 39;
20–60 years

Randomized controlled
trial,
parallel group design
Metagenomic whole

Groups:
• Control; No exercise.
• High-intensity exercise; 70
min combined aerobic and

12 weeks • Microbiota profiles were
differentially altered in
exercise responders (n = 14)
vs non-responders (n = 6).
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previously. This study also confirmed results by
Matsumoto and colleagues [72] who initially reported
that exercising rats exhibited a positive correlation
between high-cardiorespiratory fitness and an increase
in the SCFA, butyrate. Increases in fecal butyrate were
observed when relative abundances of Clostridiales,
Roseburia, Lachnospiraceae, and Erysipelotrichaceae
were increased [14]. These SCFAs are derived from fer-
mentation of undigested plant fiber by the microbiota in
the large intestine.
Functional categories most strongly correlated with

VO2peak were related to bacterial motility (bacterial
motility proteins, flagella assembly, and bacterial
chemotaxis), sporulation, and to a lesser extent the two-
component system known to enable bacterial communi-
ties to sense and respond to environmental factors [14].
One possible mechanism behind these associations may
be derived from the observation that butyrate, which
was more abundant among participants with higher car-
diorespiratory fitness, can modulate neutrophil chemo-
taxis [91]. VO2peak was inversely correlated with LPS
biosynthesis and LPS biosynthesis proteins which were
elevated among less fit participants. LPS is a major com-
ponent of the cell wall of gram-negative bacteria and
considered an endotoxin when present in the blood. By
binding to extracellular toll-like receptor 4 located on

many cell types, LPS elicits strong inflammatory
responses that may be detrimental to the host. Continu-
ous low-level translocation of LPS into circulation can
induce chronic low-level inflammatory states associated
with development of obesity and other metabolic syn-
dromes [92]. These inflammatory states are thought to
be derived to some extent from inflammatory responses
to blood LPS which is elevated in sedentary humans
[70]. Exercise training attenuates inflammation in part
by reducing elevated blood LPS [70]. The inverse rela-
tionship between VO2peak and LPS biosynthesis path-
ways implies a beneficial consequence of increased
physical activity which may result in decreased LPS
biosynthesis.
Durk et al. [93] also explored the relationship between

cardiorespiratory fitness and relative gut microbiota
composition in healthy young adults showing that
Firmicutes/Bacteroidetes ratio was significantly positively
correlated to VO2max. While no other relationships
between the gut microbiota and fitness, nutritional
intake, or anthropometric variables were found, VO2max
accounted for ~ 22% of the variance of an individual’s
relative gut bacteria (as determined by the Firmicutes/
Bacteroidetes ratio). In a cross-sectional study in pre-
menopausal women, cardiorespiratory fitness was associ-
ated with gut microbiota composition, independent of

Table 2 Effect of exercise and/or athletic diet on the gut microbiota: Characteristics of included articles (by publication date)
(Continued)

Authors,
year,
country

Subjects characteristics Study design and gut
microbiome analysis

Diet and/or exercise Duration Key outcome(s)

[106] genome shotgun
sequencing and fecal
metabolomics

resistance interval training,
3x a week.

• The microbiome of
responders had increased
functional capacity for SCFA
biosynthesis and BCAAi

catabolism.
• Exercise-induced gut micro-
biota changes were posi-
tively correlated with
improvements in glucose
homeostasis and insulin
sensitivity.

• Baseline microbiome
features accurately
predicted personalized
exercise responses.

• Fecal microbiota
transplantation from
responders conferred the
metabolic benefits of
exercise in mice.

aGM Gut microbiota
bVO2 Volume of oxygen utilization
cHRR Heart rate reserve
dSCFA Short-chain fatty acid
eBCoAT Butyryl-CoA:acetate CoA-transferase, a butyrate-regulating gene
fBMI Body mass index
gMETS Metabolic equivalents
hLCHF Low-Carbohydrate High-Fat
iBCAA Branched-chain amino acid
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age and carbohydrate or fat intake [94]. Participants with
low VO2max had lower Bacteroides, but higher Eubac-
terium rectale-Clostridium coccoides than the high
VO2max group. Aerobic capacity was inversely associ-
ated with Eubacterium rectale-Clostridium coccoides but
not with other bacteria. After adjusting for age and diet-
ary intake, all significant associations remained.
In professional rugby players, who had a unique

dietary pattern (higher energy intake and quantities of
protein, fat, carbohydrates, sugar and saturated fat per
day, with protein accounting for considerably more of
the total energy) and a high level of physical activity,
there was a higher diversity of gut microbiota compared
with controls [19]. However, it was unclear if this effect
was due to exercise, a high-protein diet, a combination
of these two factors, or other factors [19].

Acute exercise effects on the human gut microbiota
To investigate the effect of an acute exercise bout in
athletes, Zhao et al. [20] examined the fecal metabolites
and microbiota in 20 amateur runners before and after a
half-marathon race using metabolomics and 16S rRNA
sequencing analysis. According to the alpha diversity
analysis, there were few differences in diversity, never-
theless, abundances of certain microbiota members
showed differences before and after running. At the
phylum level, Lentisphaerae and Acidobacteria, whose
functions in the human gut are unknown, were detected
after running. At the species level there was a marked
increase in the families Coriobacteriaceae and Succinivi-
brionaceae. Coriobacteriaceae (phylum Actinobacteria) is
involved in metabolism of bile salts and steroid hor-
mones as well as activation of dietary polyphenols in the
human gut [95]. Coriobacteriaceae was correlated posi-
tively with 15 metabolites, indicating that metabolism of
Coriobacteriaceae may be a potential mechanism under-
lying the role of exercise in preventing disease and im-
proving health outcomes. These increased metabolites
indicate a microbiota-derived metabolism was promoted
by running. At the genus level, half-marathon running
reduced the abundance of fecal Ezakiella, Romboutsia,
and Actinobacillus, but increased the abundance of
Coprococcus and Ruminococcus bicirculans. Actinobacil-
lus species are purportedly responsible for several dis-
tinct animal diseases, such as actinomycosis in cattle,
potent septicemia in the neonatal foal, and human peri-
odontal disease [96]. Thus, inhibition of this potential
pathogen indicated an anti-inflammatory effect of exer-
cise. Interestingly, the pentose phosphate pathway, a
metabolic pathway parallel to glycolysis and involving
the oxidation of glucose, was the most enriched pathway
after a half-marathon run. These findings highlight a
microbiota-derived mechanism for the health-promoting
benefits of exercise.

In a unique study by Scheiman et al. [16], athletes who
were to run the Boston Marathon were recruited, along
with a set of sedentary controls to identify gut bacteria
associated with athletic performance and recovery states.
16S ribosomal DNA sequencing was conducted on daily
fecal samples collected up to 1 week before and 1 week
after the marathon event. The relative abundance of the
bacterial genus Veillonella increased after the marathon
and was the most differentially abundant microbial
feature between the pre- and post-exercise states. Add-
itionally, Veillonella was more prevalent among runners
compared to non-runners. Veillonella species metabolize
lactate into the SCFA acetate and propionate via the
methylmalonyl-CoA pathway [97]. To replicate these re-
sults in a second experiment and an additional cohort of
human athletes, Scheiman and colleagues [16] per-
formed shotgun metagenomic sequencing on stool sam-
ples from ultramarathoners and Olympic trial rowers
both before and after an exercise bout. Similar findings
were reproduced as relative taxonomic abundances Veil-
lonella were increased post-exercise. In addition, the
Veillonella methylmalonyl-CoA pathway was overrepre-
sented in the metagenomic samples post-exercise across
the cohort. Given the limited prevalence of the
methylmalonyl-CoA pathway across lactate-utilizing
microbes, this enrichment post-exercise may implicate
Veillonella in causing functional changes in the meta-
bolic repertoire of the gut microbiota. It seems that the
genus Veillonella is enriched in athletes after exercise
and the metabolic pathway that Veillonella species
utilize for lactate metabolism is also enriched. Gut
colonization of Veillonella may augment the Cori cycle
by providing an alternative lactate-processing method
whereby systemic lactate is converted into SCFAs that
re-enter the circulation. Higher levels of lactic acid in
athletes’ GI tract favor the growth of this genus and
these bacteria may in turn produce a compound that
could aid performance.
In a third set of experiments, Scheiman et al. [16]

isolated a strain of Veillonella atypica from a stool
sample of one of the aforementioned marathon
runners and inoculated mice. In a pre-clinical cross-
over trial, Veillonella inoculated mice had a 13% im-
provement in time to exhaustion running tests as well
as significant reductions in inflammatory cytokines
post exercise compared to control. They also more ef-
fectively converted lactate to the SCFAs propionate.
Importantly, Scheiman et al. [16] found systemic lac-
tate in these animals was able to cross the gut barrier
into the lumen, making it available as a substrate for
microbial SCFA conversion. Taken together, these ex-
periments revealed that V. atypica improved run time
via its metabolic conversion of exercise-induced lac-
tate into propionate, thereby identifying a natural,
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microbiome-encoded enzymatic process that enhances
athletic performance. While other studies reported
butyrate as a prominent feature of the athletic micro-
biota [13, 14, 72, 88, 98, 99], this research implicated
propionate as another significant beneficial SCFA.
Moreover, these preclinical, proof-of-concept experi-
ments displayed for the first time that beneficial mi-
crobes from athletes can be effectively transferred to
enhance performance. While performed in animal
model, this research is notable as it took an import-
ant step from correlative to causal function, implicat-
ing athlete microbiomes for broader human health
and performance applications.

Chronic exercise effects on the human gut microbiota
In a longitudinal research design, Allen et al. [98]
reported for the first time that exercise training can
modulate the composition and metabolic capacity of
the human gut microbiota in previously sedentary
individuals. Lean and obese subjects underwent 6
weeks of endurance training with diet controlled,
followed by a 6-week washout period [98]. Exercise-
induced modulations of the gut microbiota and SCFA
were strongly associated with changes in body com-
position in lean participants and VO2max in obese
participants, independent of diet. After the washout
period, exercise-induced changes in the microbiota
were largely reversed once exercise training ceased.
This study supports the notion that gut microbiota
composition is linked to exercise status and that
exercised-induced changes may be temporary and re-
quire continual stimulus [100]. Of note, the exercise
induced shifts in SCFA-producing taxa (Faecalibacter-
ium species [spp.] and Lachnospira spp.) and genetic
machinery (butyrate-regulating gene, BCoAT) were
more substantial in lean versus obese participants.
This connection is also supported by the observed
shifts in metabolic capacity of the gut microbiota
which may be transient and likely dependent on re-
peated exercise stimuli.
Taniguchi et al. [101] evaluated whether endurance

exercise modulates the gut microbiota in elderly
subjects, and whether these changes are associated
with host cardiometabolic phenotypes. In a
randomized crossover trial, 33 elderly Japanese men
participated in a 5-week endurance exercise program.
16S rRNA gene-based metagenomic analyses revealed
that the effect of endurance exercise on gut micro-
biota diversity was not greater than interindividual
differences, whereas changes in alpha diversity indices
during intervention were negatively correlated with
changes in systolic and diastolic blood pressure, espe-
cially during exercise. Microbial composition analyses
showed that the relative abundance of Clostridioides

difficile decreased, whereas that of Oscillospira in-
creased during exercise compared to the control
period. The changes in these taxa were correlated
with the changes in several cardiometabolic risk fac-
tors. These findings indicate that the changes in gut
microbiota were associated with cardiometabolic risk
factors, such as systolic and diastolic blood pressure.
It appears microbial SCFAs influence blood pressure
by interacting with host SCFA receptors [102]. In an-
other study with elderly subjects, Morita et al. [103]
examined the effect of a 12-week exercise interven-
tion on the composition of intestinal microbiota in
healthy women. The relative abundance of intestinal
Bacteroides increased in subjects that completed aer-
obic exercise. In addition, the increases in Bacteroides
following the exercise intervention were positively as-
sociated with increases in a 6-min walk test. It is
widely accepted that lower levels of Bacteroides are
associated with the higher prevalence of obesity and
metabolic syndrome and that Bacteroides species may
help in suppressing metabolic dysfunction [79, 104].
However, Bacteroides sometimes correlate with higher
BMI and a Westernized diet [105]; therefore, the in-
creased relative abundance observed after the 12-week
exercise intervention may be due to its ability to shift
substrates compared to other taxa that more reprodu-
cibly decline with a high-fat diet (i.e., Bifidobacteria).
More recently, Liu et al. [106] conducted a well-

controlled exercise intervention in 39 prediabetic,
medication-naive overweight men with a comprehen-
sive metagenomics and metabolomics analysis. Sub-
jects maintained their normal dietary routine and
were randomized into either a control group (no ex-
ercise; n = 19) or a supervised high-intensity exercise
program (n = 20) consisting of 70 min combined aer-
obic and resistance interval training 3 times per week.
Despite the overall metabolic benefits of the interven-
tion, ~ 30% of subjects responded poorly to exercise
in terms of improvement in glycemic control and
insulin sensitivity. Those that did respond showed a
remarkable decrease in fasting insulin and Homeo-
static Model Assessment of Insulin Resistance index
values (− 42.70% and − 49.60%, respectively). Upon in-
vestigating the gut microbiota there was a clear segre-
gation in compositional and functional changes
between exercise responders and non-responders, ac-
companied by distinct alterations in microbial metab-
olites. Specifically. responders displayed greater gene
expression of functional pathways generating SCFAs
and breaking down BCAAs. These may have been re-
lated to the positive findings in glucose metabolism
as the rise of BCAA has been associated with insulin
resistance [107]. There was also a trend in changes of
the metabolites of amino-acid catabolism (BCAAs and
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aromatic amino acids) and carbohydrate fermentation
that was consistent with the altered patterns of genes
encoding for associated metabolic enzymes. Con-
versely the microbial profiles of non-responders after
the exercise intervention shared more similarity with
those of the sedentary controls, suggesting a maladap-
tation of gut microbiota in these individuals. Similar
to the findings from Barton et al. [13] in professional
rugby athletes, pathways involved in DNA replication
and amino acid metabolism were preferentially en-
hanced in responders. Moreover, genes related to
glycan biosynthesis and lipid metabolism were ele-
vated in responders. Although there was no obvious
difference in baseline microbial structures between re-
sponders and non-responders, Liu and colleagues
were able to establish a model based on a machine-
learning algorithm from baseline microbiome signa-
tures which accurately predicted the exercise out-
comes with respect to glycemic control and insulin
sensitivity. This raised the possibility of screening for
individuals with high likelihood of exercise resistance
using gut microbiota, so that personalized adjust-
ments can be implemented in time to maximize the
efficacy of exercise intervention.
To examine the potential causal relationship

between the differentially shaped microbiotas, Liu
et al. [106] then transplanted conventional antibiotic-
treated mice with the microbiota from two responders
and two non-responders from the above experiment.
A substantial improvement in mice gavaged with
microbiota from responders was mimicked in gly-
cemic control and insulin sensitivity, in contrast to
the lack of change in mice colonized with microbiota
from non-responders. Together, the results from both
the human and animal studies indicate that exercise
may impose a differential impact on the composition
and function of the gut microbiota across individuals.
While future research is warranted, this study raised
the possibility that the makeup of the gut microbiota
may be a determiner for the efficacy of exercise (i.e.,
responders vs non-responders) and that targeting the
gut microbiota could maximize the benefit of exercise.
It may have been that exercise amplified subtle differ-
ences of the gut microbiota at baseline by remodeling
the intestinal microenvironment (such as inflamma-
tory and oxidative status and local immunity) critical
for microbial growth and interaction, which ultimately
lead to a divergent response of glycemic control to
exercise intervention. Finally, these findings further
reinforce the notion that the functional capacity of
gut microbiota, as assessed by metagenomics and
metabolomics, can be significantly altered without
major shifts in its community structure, and that
changes in host phenotype may be more dependent

on the metabolic capacity and metabolites of the
microbiota, instead of the composition per se.
In the longest exercise intervention to date, Kern

et al. [108] investigated the effects of regular aerobic
training of different intensities and modalities with
similar exercise energy expenditure on gut microbiota
over a 6-month period. A total of 88 sedentary over-
weight/obese subjects were randomized into four
arms, including habitual living (control), active com-
muting by non-motorized bicycle, leisure-time exer-
cise of moderate intensity, or vigorous intensity
exercise. Beta diversity changed in all exercise groups
compared to control, with participants in the vigorous
intensity group showing decreased heterogeneity. Fur-
ther, the vigorous exercise group experienced a
greater increase in alpha diversity at 3 months com-
pared to control. More intense exercise may be
needed to induce change in the gut microbiota in
sedentary, overweight/obese subjects. In a study of
acute exercise, both high intensity interval and mod-
erate continuous training affected the gut microbiota
in insulin resistant, sedentary individuals following a
2-week exercise intervention [109]. Specifically, Bac-
teroidetes increased and the Firmicutes/Bacteroidetes
ratio decreased. This outcome has relevance to ath-
letes as the increase in Bacteroidetes plays an essential
role in the metabolic conversions of complex sugar
polymers and degradation of proteins [110]. There
was also a decrease in Clostridium and Blautia gen-
era. Clostridium plays an important role in whole-
body immune responses, while Blautia purportedly
increases the release of proinflammatory cytokines
[111]. Interestingly, colonic glucose concentrations as-
sociated positively with Bacteroidetes and inversely
with Firmicutes phylum, the Firmicutes/Bacteroidetes
ratio, and Blautia genus. In addition, lower abun-
dance of Blautia genus was associated with better
whole-body insulin sensitivity. These results highlight
the importance of intestinal substrate uptake on the
whole-body and changes, especially in glucose uptake,
might have a positive effect on the gut microbiota.
Finally, in an observational study, Keohane et al. [99]

explored the gut microbiota response of four well-
trained ultra-endurance male athletes to prolonged, high
intensity trans-oceanic rowing, describing changes in mi-
crobial diversity, abundance, and metabolic capacity.
Serial stool samples were obtained from the athletes for
metagenomic whole-genome shotgun sequencing to rec-
ord microbial community structure and relevant func-
tional gene profiles pre-race, mid-race, race-finish, and
3months post-race after a continuous, unsupported 33-
day, 5000-km transoceanic rowing event. Alpha diversity
increased throughout the ultra-endurance event and was
evident as early as day 17 in the race. This increase
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occurred independent of any change in cardiorespiratory
fitness, with VO2max similar pre- and post-race. Varia-
tions in taxonomic composition included increased
abundance of butyrate producing species and species as-
sociated with improved metabolic health and improved
insulin sensitivity.
The functional potential of bacterial species involved

in specific amino and fatty acid biosynthesis also
increased. Specifically, the gene expression of functional
metabolic pathways involved in L-isoleucine and L-
lysine production increased, which play an important
role in reducing muscular fatigue and damage during
strenuous exercise [112]. Microbial-derived lysine may
also contribute to the body protein pool in humans
[113]. Changes in essential amino acid availability influ-
ence hematopoiesis, which in turn may increase oxygen
carrying capacity and cardiorespiratory fitness [112].
Many of the adaptations in microbial community
structure and metaproteomics persisted at 3 months
follow up.

Summary of the effect of exercise on the gut microbiota
Overall, the mechanisms by which physical activity may
promote a rich bacterial community and increased
functional pathways have not been fully elucidated but
likely involve a combination of intrinsic and extrinsic
factors. For example, physically active individuals are
more likely to be exposed to their environmental
biosphere (e.g., time spent outdoors) and follow an
overall healthy lifestyle and, consequently, harbor a
richer microbiota. Simultaneously, intrinsic adaptations
to endurance training, such as decreased blood flow,
tissue hypoxia, and increased transit and absorptive
capacity can lead to changes in the GI tract [114, 115].
Changes in GI transit time have been reported to affect
the pH within the colonic lumen which could lead to
alterations in the composition of the gut microbiota.
For instance, longer colonic transit time is associated
with decreased gut microbiota diversity, which is
paralleled by an increase in pH during transit from the
proximal to the distal colon [116, 117]. Repeated bouts
of aerobic exercise can increase GI transit time in
healthy individuals and middle-aged patients with
chronic constipation [118–120]. However, at higher in-
tensities (e.g., above 70% VO2max), gastric emptying
appears to be delayed [121–124]. Aerobic exercise also
increases fecal SCFA concentration which can decrease
pH in the colonic lumen [125]. Furthermore, metabo-
lites that are a by-product of exercise and circulate
throughout the body (e.g., lactate) may filter through
the gut and serve as an energy source for certain bac-
terial taxa (e.g., Veillonella). There is expected competi-
tion for nutrients and resources in every ecosystem,
including the gut microbiota. Therefore, many of these

microbial characteristics may be a result of ‘form fits
function’, as communities in the gut are shaped by
available resources, as determined by the physiology of
their host. These and other potential adaptive mecha-
nisms, such as a change in gut pH, may create an envir-
onmental setting that allows for richer community
diversity and metabolic functions. Anaerobic capacity
and resistance exercise training may also influence
community composition, though to date, no work has
examined these parameters in relation to gut
microbiota.
A single acute bout of prolonged excessive exercise

can have a deleterious influence on intestinal
function. Intense exercise redistributes blood from the
splanchnic circulation to actively respiring tissues
[126]. Prolonged intestinal hypo-perfusion impairs
mucosal homeostasis and causes enterocyte injury. In-
testinal ischemia may result, particularly in the setting
of dehydration, manifesting as abdominal cramps,
diarrhea, or occasionally bloody diarrhea [127]. This
adverse effect is particularly the case in endurance
sports [128]. As a result, increased intestinal perme-
ability ensues, thought to be driven by the phosphor-
ylation of several tight junction proteins [129]. These
events render the gut mucosa susceptible to endo-
toxin translocation [130]. Moderate endurance exer-
cise in mice has been associated with a lesser degree
of intestinal permeability, preservation of mucous
thickness, and lower rates of bacterial translocation
along with up-regulated anti-microbial protein pro-
duction and gene expression in small intestinal tissue
(α-defensin, β-defensin, Reg IIIb and Reg IIIc) [131].
Together these changes might help mitigate the ef-
fects of stress-induced intestinal barrier dysfunction.
In humans, physical activity can improve gastrointes-
tinal symptoms in subjects with irritable bowel syn-
drome [132]. Collectively, these outcomes are
evidence of a differential and dose-response effect of
exercise on gut health, with the underlying mecha-
nisms yet to be fully explored in healthy humans.
The current body of research supports the role of

exercise as an important behavioral factor that can
affect qualitative and quantitative changes in the gut
microbial composition and function with benefits to
the host. Although these changes may not occur in a
similar fashion across individuals and may also
depend on baseline characteristics of both the
microbiota and host. However, based on the current
body of research, exercise appears to enrich
microbiota diversity, stimulate the proliferation of
bacteria which can modulate mucosal immunity,
improve barrier functions, and stimulate bacteria and
functional pathways capable of producing substances
that protect against gastrointestinal disorders and
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improve performance (i.e., SCFAs). Indeed, exercise
may be an important intervention to alter gut
microbiota composition and restore gut symbiosis
[100]. However, excessive and/or prolonged high-
intensity exercise may not impart these effects. Not-
ably, certain taxa may be enriched in athletes such as
the lean phenotype-associated A. muciniphila, and
propionate producing Veillonella (via metabolism of
lactate). In addition, higher diversity of microbiota
composition was associated with lean phenotypes
compared to that of obese individuals. It is likely that
the diverse, metabolically favorable intestinal micro-
biota evident in the elite athlete is the cumulative
manifestation of many years of high nutrient intake
and high degrees of physical activity and training
throughout youth, adolescence, and during adult par-
ticipation in high-level sports [133]. Future areas of
gut microbiota research in relation to athletes and ex-
ercise is presented in Table 3.

Key Points 2 – Exercise and gut microbiota

• Higher cardiorespiratory fitness (as measured by VO2peak) appears to
be correlated positively with increases in microbial diversity and
metabolic function, and increases in the SCFA butyrate.

• Exercise training can modulate the composition and metabolic
capacity of the human gut microbiota in sedentary individuals.

• Changes in host phenotype may be more dependent on the
metabolic capacity and metabolites of the microbiota, instead of
strictly microbial composition.

• Changes in the gut microbiota exerted by exercise seem to depend
on the physiological state of the individual.

• Gene content/diversity in the gut may be a better predictor of
physiological states compared to species richness.

• Exercise may promote a rich bacterial community-induced shift in
SCFA-producing taxa by providing selective advantage for the
colonization of certain microbes, including A. muciniphila and
Veillonella.

• Exercise induced shifts in metabolic capacity of the gut microbiota
may be transient and likely dependent on repeated exercise stimuli.

• Prolonged excessive exercise has a deleterious influence on intestinal
function, including increased intestinal permeability.

• Nearly all studies included in this review have shown positive
correlations between gut taxa and exercise. Overall exercise appears to
enrich microbiota diversity, stimulate the proliferation of bacteria
which can modulate mucosal immunity, improve barrier functions, and
functional pathways capable of producing substances (e.g., butyrate
and propionate) that can increase performance and health.

The effect of athletic diet on the gut microbiota
In researching the human gut microbiota, it is difficult
to examine exercise and diet separately. This
relationship is compounded by changes in dietary
intakes often associated with physical activity (e.g.,
increased protein intake in resistance trained athletes or
carbohydrate intake in endurance athletes and increased

total energy and nutrient intake in general). Athletes
often consume a diet that differs from the general
population with implications on the composition of the
gut microbiome.
Diet is an established modulator of gut microbiota

composition, with significant alterations reported within
24 h of a dietary change [134]. This ability to rapidly
change has implications in research design for the
timing of measurements in exercise studies, as does
dietary composition. Indeed, various food components,
dietary patterns, and nutrients all have the potential to
substantially alter the growth of different gut microbial
populations. Medication and diet are principal
environmental factors that influence gut microbiota
composition according to large-cohort studies [135,
136]. The gut microbiota is an important factor that
shapes both energy harvest and storage through metab-
olism of proteins and production of several metabolites
including SCFAs, ammonia, sulfur-containing metabo-
lites such as hydrogen sulfide and methanethiol, and
neuroactive compounds such as tryptamine, serotonin,
phenethylamine, tryptophan, and histamine [137, 138].
Moreover, the gut microbiota can also synthesize de
novo amino acids and is involved in the utilization and
catabolism of several amino acids originating from both
alimentary and endogenous proteins. These amino acids
can serve as precursors for the synthesis of other metab-
olites produced by the microbiota including SCFAs
[139]. Animal studies have revealed communication be-
tween the gut microbiota and muscle, in which gut
microbiota can affect muscle energy homeostasis by
interfering with fat deposition, and lipid and glucose me-
tabolism through various metabolites including SCFAs
and secondary bile salts [17]. Broadly, athletes consume
higher energy diets compared to sedentary individuals
and are often encouraged to consume a diet high in
carbohydrate and protein and lower in fat [140]. During
training and competition, fiber intake may be reduced to
avoid potential GI issues including gas and distension
[141]. Importantly athletes’ dietary plans often account
for macro- and micronutrient needs, hydration, the tim-
ing of nutrients, and dietary supplements, but rarely is
the health of the gut microbiota considered [140]. Here
we describe the influence of total energy intake and the
principal macronutrient classes (protein, carbohydrate,
and fat) on the gut microbiota.

Energy intake
The GI tract represents the interface between ingested
nutrients and the host where energy is effectively
extracted. In healthy adults, ~ 85% of carbohydrates, 65–
95% of proteins, and nearly all fats are absorbed before
entering the large intestine [142]. Consequently,
indigestible carbohydrates and proteins that enter the
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Table 3 Future areas of gut microbiota research in relation to athletes and exercise

Current gaps in knowledge:a Recommendation(s) for future studies to address:

1. Athletic-focused studies have assessed the taxonomic composition of
the gut microbiota, while placing less emphasis on functional capacity.

• The functional capacity of gut microbiota, as assessed by metagenomics
and other omic-driven techniques (e.g., metabolomics), can be signifi-
cantly altered without major shifts in community structure. Effects on
the host may be more dependent on the metabolic capacity and me-
tabolites of the microbiota, instead of the composition per se. Therefore,
investigators should incorporate functional assessment of the gut
microbiota.

2. At present it is unclear how exercise affects the gut microbiota over
long durations (i.e., > 6 months).

• Assess the effect of exercise on the gut microbiota, as well as the gut
microbiota in athletes over longer periods of time.

3. Little research is available directly comparing the potential differences
in the gut microbiota between athletic disciplines, exercise routines,
training loads, and physical fitness status.

• Examine the potential differences in the gut microbiota between these
factors in both cross-sectional and longitudinal investigations.

4. There is limited research on how environmental factors affect the gut
microbiota in athletes.

• Explore the effect of temperature, humidity, pollen/allergens, and other
relevant environmental factors in relation to the gut microbiota in
athletes.

5. There is limited research available on how intrinsic adaptations to
exercise impact the gut microbiota.

• Investigate how such factors as decreased blood flow, tissue hypoxia,
and increased/decreased transit and absorptive capacity in the GI tract
can lead to changes in the gut microbiota.

6. Some research is available showing prolonged excessive exercise has a
detrimental influence on intestinal function.

• Investigate how prolonged, excessive exercise impacts intestinal
function (i.e., increased intestinal permeability) and the gut microbiota.

7. Currently the gut-brain axis remains generally unexplored in athletes. • Explore the gut-brain axis in athletes, as well as the impact of exercise
in sedentary individuals.

8. Currently the role of Akkermansia muciniphilia has not been fully
elucidated in humans, although appears to be more present in athletes
compared to non-athletes.

• Continue to investigate the role Akkermansia muciniphilia plays in the
gut microbiota and its functional impact on metabolism.

9. In relation to obesity, some athletes who may be defined as physically
active using common criterion may not necessarily be healthier based on
BMI. There is limited research comparing these athletes to sedentary
individuals matched for BMI.

• Investigate this comparison at the obese classification. Findings from
this research could provide important data in connection with the
pathogenesis of obesity and the gut microbiota.

10. The influence of energy stores (obese or lean state) and energy intake
(positive or negative energy balance) on ability to alter the gut
microbiota remain unclear.

• Gut microbiota research in athletes with high, as well as low energy
consumption requires further investigation.

• Research in those implementing caloric reduction with exercise for
weight loss is also needed.

11. The functional capacity of the athletic gut microbiota is not fully
understood, particularly the relationship to the significant energy
demands and tissue adaptation that occurs during intense exercise and
elite sport.

• Intervention-based studies should be conducted to further delineate this
relationship.

• Results from such research will be important and may provide further
insights into optimal therapies to influence the gut microbiota, and its
relationship with health and disease as well as athletic performance.

12. Few studies have focused on the impact that voluntary exercise has
on gut microbiota.

• More animal research should be conducted looking at the difference
between forced vs. voluntary exercise in relation to exercise volume.

13. Some animal research reported exercise induces more effective
changes in the microbiota in juvenile rats compared to adult rats.

• Research in animal models, as well as humans, should examine the
effect of exercise on the gut microbiota comparing different age
classifications.

14. Currently a few preclinical experiments have shown that beneficial
microbes from athletes can be effectively transferred to enhance
performance.

• Research in animal models should continue to test the functions of
these microbes expressed in athletes (e.g, Veillonella) and explore their
implications for broader human health and performance applications.

15. Limited research has shown that exercise-induced gut microbiota
changes may be temporary and require continual stimulus.

• More research is needed investigating the temporal effect of exercise
stimuli on the gut microbiota and its functional capacity, both at the
acute and chronic level.

16. Limited research has reported a segregation in compositional and
functional changes between exercise responders and non-responders, ac-
companied by distinct alterations in microbial metabolites.

• Replication of these findings and further investigation of the possibility
that the makeup of the gut microbiota may be a determiner for the
efficacy of exercise (i.e., exercise responders vs non-responders)

• Explore the possibility of targeting the gut microbiota of ‘non-
responders’ to increase the benefit of exercise.

17. To date, no study in athletes has addressed RED-Sb syndrome in rela-
tion to the gut microbiota. Moreover, little is known on the effects of en-
ergy reduced diets in athletes looking to healthfully reduce bodyweight
and/or improve body composition.

• Dissect the impact of restricted energy consumption and/or increased
energy expenditure on the gut microbiota in athletes.

18. The effects of high-protein (without concurrent high-fat) consumption • Investigate the effect of higher protein consumption on the gut
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colon represent between 10 and 30% of total ingested
energy [143, 144]. If not for the colonic microbiota,
these nutrients would generally be eliminated via the
stool without further absorption due to the limited
digestive capability of the human large intestine [142].
Therefore, the gut microbiota plays an important role in
energy extraction and, in turn, can be influenced by the
composition of the diet and the amount of energy
entering this environment [145]. In relation, the gut
microbiota produces and releases an enormous array of
compounds which may act upon host tissues modulating
appetite, gut motility, energy uptake and storage, and
energy expenditure [146, 147]. Riedl et al. [148]
estimated that for an average 90 kg male, the biomass of
bacteria in the gut could be expected to contribute
anywhere from 7 to 22% of daily adult human caloric
turnover (based on 2000 kcal [kcal] per day). Clearly, the
gut microbiota-host interaction can affect energy balance
which has implications for weight gain or loss and body
composition [149, 150].
Strong evidence exists to support the role for the gut

microbiota in energy balance by contributing to host
digestive efficiency [151]. Studies of lean and obese mice
indicate that the gut microbiota affects energy balance
by influencing the efficiency of calorie harvest from the
diet and how this harvested energy is used and stored.
For example, studies of germ-free mice (so called ‘gnoto-
biotic mice’) have provided important insights into the

role the gut microbiota plays in energy homeostasis.
Gnotobiotic mice are inefficient at processing food, yet
when colonized with conventional mouse gut biota they
gain weight by increasing their energy stores [152]. This
weight gain occurs even when decreasing energy intake
by 30% and increasing energy expenditure by 30%, com-
pared to mice who remained germ-free [153]. These re-
sults implicate the gut microbiota as an energy
harvester, significantly affecting nutrient absorption by
extracting energy from dietary substances.
To examine the impact of energy consumption on the

gut microbiota, rats fed a high-energy dense diet rapidly
altered their gut microbiota with increases in Firmi-
cutes/Bacteroidetes ratio and in pro-inflammatory Pro-
teobacteria proliferation compared to those consuming a
low-energy diet [154]. Moreover, the high-energy diet
increased circulating pro-inflammatory LPS. However,
the impact of energy consumption on, and the ultimate
extraction by, the gut microbiota is deeply intertwined
with composition of the ingested diet. For example,
obese mice fed a low saturated fat, high fruit and vege-
table diet can take on microbiota characteristics of lean
mice [63]. Moreover, mice consuming this diet regard-
less of lean or obese state gained less fat mass compared
to lean and obese mice fed a high-saturated fat, low fruit
and vegetable diet, typical of a Westernized diet.
In terms of human research there are few studies that

have examined the effect of energy intake and energy

Table 3 Future areas of gut microbiota research in relation to athletes and exercise (Continued)

Current gaps in knowledge:a Recommendation(s) for future studies to address:

on gut bacteria are not well studied. This also includes the effects of
high-protein and high-fiber intake.

microbiota, particularly in the context of lower fat and higher fiber
intakes.

• The types and amounts of fats consumed in conjunction with protein
should be investigated in the overall effect on the gut microbiota.

• Examination of the effect of prebiotics and probiotics in conjunction
with increased protein intake.

19. Protein intake appears to be a strong modulator of gut microbiota
diversity, however there is little research examining the effect of protein
supplementation.

• More research needs to be conducted investigating the effect of
protein supplementation, such as whey and vegetable-based proteins,
on the gut microbiota.

20. Early research has reported changes in the gut virome from protein
supplementation, suggesting virus particles from whey protein transmit
to the gut from consumption.

• The effect of the gut virome on the gut microbiota and host requires
further investigation, particularly in relation to food and supplement
consumption.

21. The genus Prevotella has been reported to be positively associated
with both health and disease states.

• More studies in humans are needed to better understand Prevotella’s
role in athletes, as well as its role in disease. For this, more in-depth
metagenomic studies will be required to reveal the health- or disease-
modulating properties of Prevotella, particularly at species and functional
level.

22. Little is known about exercise-nutrient interactions that underpin
adaptation and performance.

• Further research is needed to determine the synthesis kinetics and
clinical consequence of microbial by-products during increased nutri-
tional status and metabolic demands during exercise.

• Determine if specific nutrient recommendations aimed at improving
performance can be made by enhancing certain metabolites during
exercise and recovery. This includes limiting those that produce toxic
metabolites that may worsen the consequences of exercise stress.

aGaps observed in studies from the current review
bRelative Energy Deficiency in Sports
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expenditure on the gut microbiota. The majority of this
research has been conducted in relation to the study of
obesity, weight loss, and malnourishment in children.
Generally, when comparing obese and lean individuals,
both the diversity of the gut microbiota and the ratio of
Bacteroidetes to Firmicutes is decreased in obese
individuals [145]. Similar findings have been reported in
relation to gene richness and altered metabolic pathways
[155]. However, the composition of the gut microbiota
does appear to be sensitive to caloric balance as noted in
subjects studied before, during, and after weight loss
[38]. Furthermore, improved gene richness has been
reported during weight-loss and weight-stabilization in-
terventions in obese and overweight individuals [156].
What remains unclear is the influence of energy stores
(obese or lean state) versus the impact of energy intake
(positive or negative energy balance) on ability to alter
the gut microbiota. In a carefully monitored inpatient
crossover feeding trial, Jumpetz and colleagues [157] ex-
amined how gut bacterial community structure is af-
fected by two distinct caloric loads (2400 vs 3400 kcal/
day) with a similar nutrient profile (24% protein, 16%
fat, and 60% carbohydrates) and dietary energy harvest
in 12 lean and 9 obese individuals. The higher caloric
load was positively correlated with the relative abun-
dance of Firmicutes species and negatively correlated
with the relative abundance of Bacteroidetes species in
both lean and obese humans. In lean individuals, these
changes were associated with an increased energy har-
vest of approximately 150 kcal. This finding suggests that
the microbiota is responsive to energy balance (degree of
overfeeding) as well as actual adiposity. It may be that
the gut “senses” alterations in nutrient availability and
subsequently modulated the nutrient absorption. Re-
gardless, these results show that the nutrient load is a
key variable that can influence the gut community struc-
ture. In rugby athletes with high energy consumption
(median intake of 4449 kcals per day), gut microbial di-
versity was significantly greater compared to age and
BMI matched sedentary controls (median intake of 2801
kcal per day) [19]. Moreover, in cyclists consuming
high-energy, high-carbohydrate diets, abundances of
health associated bacteria were high (including Prevo-
tella and Akkermansia) and less characteristic of
Western-associated microbiota [18]. However, it is diffi-
cult to remove physical activity influence from this, and
gut microbiota research in athletes with high energy
consumption requires further investigation.
In contrast to high-energy intake and obesity, even less

is known about the gut microbiota in undernutrition
[142]. Athletes can have a tremendous energy expend-
iture often requiring a corresponding increase in dietary
intake to maintain energy balance. However, Relative
Energy Deficiency in Sports (RED-S) syndrome is

present in many athletic disciplines as a result of insuffi-
cient energy availability due to insufficient caloric intake
and/or excessive energy expenditure [158]. Occurring in
both males and females, RED-S possesses a significant
health risk. To date, no study in athletes has addressed
RED-S in relation to the gut microbiota. Moreover, little
is known on the effects of energy reduced diets in ath-
letes looking to healthfully reduce bodyweight and/or
improve body composition. Calorie restriction, primarily
in animals, can improve the composition and associated
metabolism of the gut microbiota, including increasing
the relative abundances of probiotic and butyrate-
producing microbes [159] and increasing SCFA biosyn-
thesis [160].
In humans, severe calorie restriction as a result of

bariatric surgery offers an interesting research model to
explore the effect on the gut microbiota [161]. Changes
such as reduced abundance of Firmicutes post-surgery
have been reported [162]. Although it is unclear if these
modifications were caused by dietary change or weight
loss. Furet and colleagues [163] reported that the Bacter-
oides/Prevotella ratio increased within 3 months after
surgery and remained stable thereafter. While this ratio
was negatively correlated with body weight, BMI, and
body fat mass, the correlation was highly dependent on
total calorie intake. Other alterations, such as the reduc-
tion of lactic acid forming bacteria, indicate a complex
effect of severe calorie restriction.
Undernourished children have been observed to

exhibit impaired gut microbiota development, with
reduced relative abundance of several Bifidobacterium
and Lactobacillus spp. as well as obligate anaerobic
SCFA-producing taxa [164]. For instance, a sample of
children living in an urban slum in Bangladesh with ei-
ther moderate acute malnutrition or severe acute malnu-
trition had a gut microbiota that was ‘immature’;
meaning discriminatory taxa in their gut communities
were more similar to younger rather than age-matched
healthy individuals from the same location [165]. This
‘immaturity’ was greater in those more severely mal-
nourished with probable physiologic, metabolic, and im-
munologic consequences [165]. This has led to the
proposal that disrupted microbiota development impairs
healthy bone and muscle growth during infancy [166].
To explore the association between nutrition and the
gut microbiota during infancy, Charbonneau et al. [166]
colonized young germ-free mice with the fecal micro-
biota of a growth-stunted Malawian infant. These ani-
mals were fed a representative Malawian diet with or
without a bioactive substance in breast milk (purified
sialylated bovine milk oligosaccharides). Treatment with
the milk oligosaccharides produced microbiota-
dependent growth promotion, including lean body mass
gain, changed bone morphology, and altered liver,
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muscle and brain metabolism. These effects were also
documented in gnotobiotic piglets using a similar design
showing a greater ability to utilize nutrients from the
diet [166]. These preclinical models indicate a causal,
microbiota-dependent relationship between nutrition
and growth promotion which may have implications for
younger athletes.
Various studies have explored the gut microbiota of

anorexia nervosa patients with the majority of them
being characterized by heterogeneity in the methodology
and small sample sizes (for review see: [167]). Several
studies of anorexia nervosa patients have reported
decreased abundances of the butyrate producing
Roseburia in combination with reduced butyrate levels
and lower microbial diversity and taxa abundance
compared to healthy controls [168–170]. During an in-
patient, medically supervised weight gain study in
anorexic individuals, microbial richness increased, how-
ever perturbations in intestinal microbiota and SCFA
profiles, in addition to several gastrointestinal symptoms,
did not recover during the subject’s in-patient stay [169].
Future studies will be needed to dissect the impact of re-
stricted energy consumption and/or increased energy ex-
penditure on the gut microbiota in athletes.
Overall, energy balance is an overlooked factor in

relation to the athletic gut microbiota. Not only is this
relevant to improving performance, but also addressing
the health status of those affected by RED-S. Different
dietary patterns affecting macronutrient consumption can
alter the composition of what enters the large intestine
where there is the greatest density of gut microbes. This
has a tremendous impact on the human body’s ability to
extract and utilize energy from the diet. Moreover, it is
difficult (if not impossible) to solely investigate the impact
of total energy consumption on the composition of the
gut microbiota without considering dietary variability such
as the major dietary macronutrient classes.

Protein
Despite the difficulties of studying macronutrient effects
in isolation, there is evidence to support the assertion that
dietary protein (and fat) consumption elicit both
compositional and functional changes to the gut
microbiota [171]. David et al. [134] showed a rapid shift in
gut microbial community composition and increased
populations of Alistipes, Bilophila, and Bacteroides after
consuming a high-fat/protein diet for 5 days and these
changes were thought to be a result of increased bile se-
cretion. Changes to the gut microbiota have also been
documented when dietary protein is increased: Bacter-
oides spp. are highly associated with animal proteins,
whereas Prevotella spp. are highly associated with in-
creased intakes of plant proteins [172]. Intervention stud-
ies have demonstrated that high-protein diets (animal

protein) reduced fecal butyrate concentrations and
butyrate-producing bacteria such as Bifidobacteria spp.,
Roseburia spp., and E. rectale [173–175]. Fecal concentra-
tions of potentially damaging N-nitroso compounds in-
crease markedly in volunteers who consumed a high-
protein, low-carbohydrate diet [175]. Furthermore, a study
of five male volunteers consuming high intakes of animal
protein showed that fecal sulfide production is related to
meat intake [176]; notably, hydrogen sulfide is a com-
pound associated with ulcerative colitis [177]. Ma et al.
[178] suggested that excessive protein intake or an unsuit-
able ratio of protein to protein-fermenting bacteria, could
potentially produce adverse effects on health.
The partitioning of individuals into so-called ‘entero-

types’ (stratifying global microbiome variation into a few
categories, reviewed in [179]) has been suggested to be
driven by whether their primary dietary patterns include
high complex carbohydrate (Prevotella) or high-
fat/protein (Bacteroides) consumption [172]. This
categorization has been criticized as an oversimplifica-
tion, obscuring potentially important microbial variation,
and may not be appropriate for the athletic population
[180, 181]. For example, the Bacteroides enterotype has
been suggested to most strongly be correlated with fre-
quent consumption of animal protein and saturated fat.
However, the effects of high-protein consumption (with-
out concurrent high-fat) on gut bacteria are not well
studied but of increasing importance given the current
popularity of high-protein diets, especially in athletes. In
professional rugby players, distinct compositional and
functional microbial characteristics, including increased
alpha diversity, enhanced microbial production of
SCFAs, and greater metabolic capacity are evident in the
gut [13, 19]. These microbial features not only positively
correlate with the athletes’ levels of physical activity, but
also the quantity of dietary protein consumed. In many
athletic disciplines, as well as recreational exercise, pro-
tein supplementation (e.g., whey protein) provides a
sizeable proportion of athletes’ daily protein intake [19].
Clarke et al. [19] reported microbiota diversity indices
correlated positively with protein intake and serum cre-
atine kinase indicating that diet and exercise are both
drivers of biodiversity in the gut. The protein and micro-
biota diversity relationship is further supported by a
positive correlation between blood urea levels (a by-
product of diets rich in protein) and microbiota diversity
[19]. In contrast, Jang et al. [11] reported that daily pro-
tein intake was negatively correlated with alpha diversity
in distance runners. The inconsistency of these results
compared to Clarke et al. [19] may relate to the nutri-
tional status of the athletes. In addition, the study by
Clarke and colleagues [19] met all of the recommended
dietary intake requirements, while the athletes in the in-
vestigation by Jang et al. [11] had insufficient
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carbohydrate and dietary fiber intake (compared to
standard macronutrient distribution ranges). It seems
that high-protein diets may have a negative impact on gut
microbiota diversity for athletes in endurance sports who
consume lower amounts of energy, carbohydrates, and
dietary fiber, while athletes in resistance sports that follow
a high-protein, low-carbohydrate, and high-fat diet dem-
onstrate a decrease in SCFA-producing commensal bac-
teria. Long-term diets have been linked to certain
compositional clusters in the gut microbiota: protein and
animal fat are associated with Bacteroides enrichment and
simple carbohydrates with Prevotella enrichment [172].
Excessive fermentation of dietary protein in the GI tract is
generally considered detrimental given the production of
toxic by-products such as amines, phenols, indoles, thiols,
and ammonia [182, 183]. In contrast, feeding of whey pro-
tein to mice attenuated some negative effects on the com-
position of the gut microbiota composition including
increasing Lactobacillaceae/Lactobacillus and decreasing
Clostridiaceae/Clostridium [184, 185]. Further, whey pro-
tein has been associated with reductions in body weight
and increased insulin sensitivity in the past, and is fre-
quently a major component of the athlete diet, particularly
in strength and power sports [186, 187].
Estaki et al. [14], reported total protein intake was a

major contributor to increased beta diversity (the ratio
between regional and local species diversity) at each
taxonomic rank tested in 39 healthy adults with varying
cardiorespiratory fitness levels. A strong association was
evident between protein intake and Bacteroides and, in
particular, Ruminococcaceae and Lachnospiraceae, two
of the most abundant families in human gut
environments [188], in explaining community diversity.
These saccharolytic organisms persist in fibrolytic gut
communities and are considered an important
component of a healthy gut microbiota, while their
depletion has been observed in inflammatory bowel
disease patients [189, 190].
In comparing athletes to both high and low BMI non-

athlete controls, Barton et al. [13] reported a greater num-
ber of pathways correlating to specific macronutrients
within the control participants suggesting a shift in the dy-
namics of varied metabolic functions. The impact of the
athletes’ increased protein intake compared to both
control groups was evident in the metabolomic phenotyp-
ing results. Metabolites derived from dietary protein (tri-
methylamine N-oxide, carnitines, trimethylamine, 3-
Carboxy-4-methyl-5-propyl-2-furanpropionic acid, and 3-
hydroxy-isovaleric acid), muscle turnover (creatine, 3-
methylhistidine, and L-valine), vitamins and recovery sup-
plements (glutamine, lysine, 4-pyridoxic acid, and nico-
tinamide), as well as phenylacetylglutamine (a microbial
conversion product of phenylalanine) were increased in
athletes [191].

Investigating the gut microbiota of cyclists, Petersen
et al. [18] reported an increased abundance of Prevotella
which positively correlated with a number of amino acid
and carbohydrate metabolism pathways, including
BCAA metabolism. High levels of BCAAs (leucine,
isoleucine, and valine) can attenuate exercise-induced
muscle fatigue and promote muscle-protein synthesis
[192]. While there is strong evidence showing that
BCAAs do not enhance exercise performance [192, 193],
they may reduce central fatigue [194] and attenuate
muscle damage during prolonged exercise [195]. Since
BCAAs are not produced by the human body and need
to come from the diet, having a gut microbial commu-
nity that contains Prevotella spp. to either synthesize
BCAAs or alternatively influence other microbes to pro-
duce these amino acids would be highly beneficial to
athletes who require a rapid recovery from intense
exercise.
In cross-country runners, the effect of 10 weeks of

protein supplementation (10 g whey isolate and 10 g beef
hydrolysate per day) consumed daily decreased SCFA-
producing bacteria while increasing bacteria with pro-
teolytic activity in the microbiota without affecting
SCFAs, ammonia, or fecal pH of endurance athletes
[196]. The amount of additional dietary protein was
small but yielded a significant 17% increase in dietary
protein for these athletes. Specifically, protein supple-
mentation increased the abundance of the Bacteroidetes
phylum and decreased the presence of health-related
taxa including Roseburia, Blautia, and B. longum. In
contrast to Clarke et al. [19], no changes in compos-
itional microbiota diversity were detected after the ten-
week intervention, which may relate to the low percent-
age of protein intake. Increases in dietary protein can in-
crease the amounts reaching the colon, where they are
metabolized by colonic microbiota, leading to changes in
microbiota populations and in microbial metabolites
[178]. The difference between these two studies may also
be due to differences in analyses, as Clarke et al. [19]
only assessed the V4 region of the gene, while the
present study used the V3 and V4 region (see Table 4).
Balancing the protein/carbohydrate ratio with prebiotics
when protein intake is elevated [197], or accompanying
the intake of protein supplements with probiotics, could
be future strategies to mitigate the observed or antici-
pated gut microbiota shift [198].
Cronin et al. [199] noted participants consuming

whey protein daily experienced a marked alteration in
the diversity of their gut virome (a collection of
viruses that inhabits the gut environment and affect
host cells as well as other commensal organisms
[200]) following 8 weeks of oral supplementation.
Sedentary subjects (predominantly overweight > 30%
body fat) were divided into three groups of 30
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subjects: an exercise-only group, a daily whey protein
supplementation (30 g per day) group, and an exercise
plus daily whey protein supplementation (30 g per
day) group. Individuals in the whey protein
supplementation-only group experienced a significant
increase in the beta diversity of the gut virome. Fur-
thermore, this change was mirrored in the combined

exercise and protein supplementation group, suggest-
ing a robust positive effect of whey protein on the
taxonomic richness of the gut virome. Specifically, all
bacteriophages (bacteria-targeting viruses) increased in
the groups receiving whey protein were present in
high relative abundance within the whey protein sup-
plement. Therefore, it may be virus particles from

Table 4 Recommendations for future gut microbiota research in athletes and exercise interventions

Observed weaknesses: Recommendation(s):

1. Current microbiota sequencing methods rely heavily on 16S rRNA
amplicon-based methodology which detects up to genus level with min-
imal capability for species-level detection.

• Investigators are encouraged to utilize other methodology, such as
shotgun metagenomics for its expanded taxonomic range, strain-level
resolution, and identification of other microorganisms (i.e., archaea, vi-
ruses, and fungi, etc.).

• Omic techniques, such as metatranscriptomics, metaproteomics, and
metabolomics, should be integrated with compositional data to provide
a ‘functional’ readout of the microbiome providing data on the
metabolic interplay between the host, diet, exercise, and the gut
microbiota.

• For targeted genomic approaches specific primers for quantitative PCR
can be effectively used.

2. Primer selection and hypervariable regions of 16S rRNA (i.e., V1-V9) in-
fluence the observed microbial community.

• When using 16S rRNA amplicon-based sequencing it may be better to
sequence a single variable region (V4 is mostly used in human gut
microbiome studies) with reads that (almost) entirely overlap to reduce
errors [235].

3. Several studies report less stringent inclusion/exclusion criteria and did
not fully account/control for confounding variables.

• When outlining participant criteria, investigators should pay particular
attention to important factors that may confound results such as
medication use (e.g., antibiotics, bile acid sequestrants, metformin, etc.),
dietary supplement use (e.g., prebiotics and probiotics), age, sex,
ethnicity, geographical location, etc.

• To control for confounding effects investigators should collect more
detailed data on such factors as dietary intake, training history, level of
physical fitness, gastrointestinal function (e.g., gastrointestinal symptoms
rating scale [236]), fecal pH, fecal form (i.e., Bristol stool scale, [237]), etc.

4. The majority of studies in the present review did not report power and
sample size calculations.

• Many studies in this field are likely underpowered. Therefore,
investigators are encouraged calculate and report sample size
estimations when appropriate.

5. Several studies in the present review did not provide adequate detail
on sample collection and processing. Both of these factors can
significantly affect the analysis and ultimately the results of the study.

• While there is no one method, investigators should provide detail on
these procedures and ensure these methods are the same across
samples.

• Time that samples are held at room temperature should be greatly
minimized (i.e., < 24 h without preservative) and kept consistent across
samples [238, 239].

• Homogenization of the whole stool sample may provide a more
uniform sample. This method has been shown to reduce the variation in
both the amount of DNA extracted and the relative abundance of
bacterial taxa [240].

6. Similar to issue #5, several reports did not provide adequate detail in
regard to sample transportation and storage.

• Investigators should provide detail on these procedures and ensure
these methods are the same across samples.

• The gold standard for microbial storage is freezing samples at − 80 °C
[241].

• Investigators are encouraged to keep freeze-thaw cycles minimal as they
affect reproducibility [242].

7. While not a weakness per se, feces is the only sample material used in
the analyses of the gut microbiota from the studies included in this
review.

• Eventually, more in-depth mapping of microbial community structure
and function along the length of the GI tract and across gradients (i.e.,
from lumen to mucosa) should be considered [34].

8. The variation in microbial analysis across different studies can make
comparing/contrasting study findings difficult.

• Variation in profiling techniques (e.g., sequencing strategies, platforms,
variable regions, sequencing depth, etc.) may act as a confounding
variable that can lead to significant differences due entirely to laboratory
techniques rather than treatment. While a limitation of the current
review, future, more specific reviews should provide deeper discussions
on results in the frame of their methodological approaches.

aQuality weaknesses observed in studies from the current review
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whey protein transmit to the gut from consumption.
The effect of the gut virome on the gut microbiota
and host requires further investigation, particularly in
relation to food and supplement consumption.
The source of protein, including its quality and

digestibility, may influence the site of fermentation
within the gut. Highly digestible proteins, such as whey,
can be digested by host enzymes in the proximal
intestine, reducing microbial fermentation. Similarly,
plant-originated proteins are available for microbial fer-
mentation in a more distal site given incomplete diges-
tion by host enzymes, particularly at a higher protein
level. Evidence indicates proteins from vegetable origin
have a more marked effect on microbial diversity than
animal proteins [201], however investigation in athletes
is needed. By selecting dietary ingredients containing
protein of rather high digestibility and quality, the
amount of dietary protein reaching the large intestine
may be diminished, thus limiting the quantity of residual
protein available for protein fermenting bacteria. As a
consequence, the growth and activity of potential patho-
gens could be suppressed. These seemingly opposing ef-
fects of high-protein diets imply that protein-diet
interactions are modulated by factors such as host body
composition and exercise intensity. The types and
amounts of fats consumed in each of these studies are
also likely important for the overall effects on the gut
microbiota. For example, a ketogenic diet alters gut
microbiota composition leading to an increase in Akker-
mansia abundance. Moreover, Akkermansia fed to mice
has a positive impact on reducing seizures, providing a
potential mechanism for the observed neuroprotective
effects of a ketogenic diet [66, 202].

Carbohydrates
As a macronutrient class, carbohydrates (including dietary
fiber) have a profound effect on the gut microbiota. In
comparison to bacteria, humans have much fewer enzymes
to break down carbohydrates [203] and what can be
digested by these enzymes is absorbed in the small intestine.
Dietary fiber passes undigested from the small intestine into
the colonic environment [171] and the gut microbiota relies
on these fibers for energy, which they target for disassembly
with a combined ‘toolkit’ of thousands of enzymes [204].
Therefore, carbohydrates in the form of dietary fiber
represent enormous potential for modulation of gut
microbiota based upon the chemistry and accessibility of
specific dietary fibers to microbial groups.
Increased intake of dietary fiber does not have an

overall Bifidobacterium increasing effect, however,
specific dietary fibers have been shown to selectively
increase Bifidobacteria abundance [205]. Furthermore,
increased intake of dietary fiber has been associated with
an increase in gut microbial richness and/or diversity,

especially in individuals with reduced diversity [206].
Long-term patterns of dietary fiber consumption can
also shape the overall bacterial community type. As pre-
viously discussed, enterotype assignment to the Prevo-
tella group has been suggested to be associated with
high-fiber diets. O’Keefe et al. [207] studied the effects
on gut microbiota when fat and fiber content of native
African and African American diets were swapped for 2
weeks, such that African Americans consumed high-
fiber, low-fat rural African diets and vice versa. While
changes in abundances of Bacteroides or Prevotella gen-
era were not observed in either group, the high-fiber,
low-fat diets enriched bacterial genes for butyrate pro-
duction and decreased genes for secondary bile acid syn-
thesis, emphasizing the importance of identifying
functional rather than compositional shifts.
Endurance athletes are well known to follow diets that

result in the consumption of high amounts of both simple
and complex carbohydrates [208, 209]. This dietary
pattern, in combination with the substantial number of
hours spent exercising on a weekly basis, led to the
hypothesis that endurance athletes are likely to have
increased abundance of the bacterial genus Prevotella
[208]. Prevotella is normally found in only a small
percentage of healthy individuals in European and
American cohorts [1, 2, 20, 210]. Previous microbiome
studies have repeatedly identified significant correlations
of both diet and geographic location to abundances of
Prevotella or Bacteroides. Prevotella is more often found
in individuals from certain areas of Asia [211, 212] and
rural Africa [213], and this enrichment for Prevotella is
often reflective of diets high in complex carbohydrates
(including high dietary fiber from various sources
including fruits and vegetables), egg food items, and high
levels of vitamins and minerals [172, 211]. However,
Prevotella has been noted to be associated with several
disease states. For instance, Prevotella has been shown to
be higher in patients with depression [214], insulin
resistance [215], non-alcoholic fatty liver disease [216,
217], hypertension [217], and colon cancer [218]. One po-
tential explanation for this phenomenon is that there are
several strains within the Prevotella genus that exert
pathogenic actions, which could help explain the bi-
directional and almost opposing effects that Prevotella has
shown to have in human health [219]. More studies in
humans are needed to better understand Prevotella’s role
in athletes, as well as its role in disease. For this, more in-
depth metagenomic studies will be required to reveal the
health- or disease-modulating properties of Prevotella,
particularly at species and functional level [219].
Nutritional strategies (i.e., avoiding fat and fiber) have

been recommended to reduce the risk of GI distress
before and during training and competition [220]. These
recommendations aim to support rapid gastric
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emptying, water and nutrient absorption and adequate
perfusion of the splanchnic vasculature [221]. However,
the lack of complex carbohydrates in elite athletes’ diets
may negatively affect the gut microbiota composition
and function over time. Many athletes may not be
consuming enough fiber that feed commensal bacteria
that produce beneficial byproducts for host metabolism
and homeostasis [15]. Furthermore, adding fiber,
including resistant starch, to high protein diets may help
reduce potential negative effects of high protein
consumption [222] and may increase fat oxidation [202],
further illustrating the importance of consuming
adequate dietary fiber for gut and overall health.
Petersen et al. [18] reported increased abundance of

M. smithii transcripts in professional cyclists using RNA
sequencing. M. smithii increases the fermentation
efficiency of many bacterial taxa in the gut, including
those that ferment complex polysaccharides [223]. This
effect could benefit athletes because an increase in
bacterial fermentation products (such as SCFAs) could
be absorbed and utilized by the host. Theoretically, this
effect could enhance recovery from intense exercise and
possibly race performance. SCFAs can improve skeletal
muscle insulin sensitivity [224], reduce inflammation
[225], and regulate satiety [226], all of which may
contribute to the improvements in body composition
observed in this study. Additionally, SCFAs are also
energy substrates for numerous tissue types, including
the colon [227], adipose [228] and muscle tissues [224],
indicating that SCFAs can contribute to enhanced
energy harvest from the diet, ultimately providing
support to healthy tissue growth and turnover.
Within the SCFAs, distinct clusters (acetic acid,

propionic acid, and butyric acid) were observed by Barton
et al. [13] to positively correlate with dietary contributors
(fiber and protein), while isobutyric acid, isovaleric acid,
and valeric acid positively correlated with microbial
diversity. The same clusters were observed when
positively correlating with individual taxa, in support of
purported links between SCFAs and numerous metabolic
benefits and a lean phenotype [61–63].

Fat
Like protein and carbohydrate, the specific effects of fat
on the gut microbiota are difficult to isolate; however,
the types of fats consumed appear to be important. In a
rodent study, animals fed lard showed increases in
Bacteroides and displayed signs of metabolic
dysfunction. In contrast, animals fed fish oil showed
increased levels of lactic acid bacteria and were
protected from metabolic dysfunction [229]. In humans,
ingestion of an animal-based diet for 5 days, high in fat
(69% of total energy) and protein (30% of total energy)
and almost entirely void of carbohydrates (including

dietary fiber), induced rapid and significant changes in
microbial community structure and overwhelmed inter-
individual differences in microbial gene expression. Spe-
cific alterations included gut bacterial taxonomic shifts
and transcriptional responses characteristic of carnivor-
ous mammals, with higher concentrations of bile-
tolerant bacteria (presumably due to the extremely high-
fat intake known to increase bile acid secretion) [134].
Diets high in fat could interact in various ways with the
gut microbiota to facilitate the translocation of bacterial
LPS generating chronic inflammation [171]. LPS can be
incorporated into lipid micelles formed during fat diges-
tion, and certain gut microbes may be important in
regulating this process.
In a short-term feeding study Wu et al. [172] random-

ized ten subjects into a 10-day high-fat/low-fiber diet
(38% fat, 35% carbohydrate, 27% protein) while others
were given a high-fiber/low-fat diet (13% fat, 69% carbo-
hydrate, 18% protein). Although specific taxa changes
varied between individuals, the high-fat diet slowed in-
testinal transit time by as much as 3 days. Metagenomic
analysis indicated that functional shifts, including greater
protein export and lipoic acid metabolism, were also
associated with the high-fat diet. Finally, the Bacteroides
enterotype was most strongly correlated with reports of
frequent consumption of animal protein and saturated
fat. Similarly, Murtaza and colleagues [230] completed a
three-week diet intervention in elite race walkers under-
taking intensified training combined with a ketogenic,
low-carbohydrate, high-fat diet (LCHF; < 50 g day carbo-
hydrate; 78% energy as fat; 2.1 g/kg/day protein) and re-
ported increased relative abundance of Bacteroides and
Dorea and reduced Faecalibacterium. In comparison to
high or periodized carbohydrate diet groups, the LCHF
diet resulted in a more pronounced effect on the gut
microbiota increasing the relative abundance of bacterial
taxa with recognized capabilities for lipid metabolism.
The relative abundance of Bacteroides spp. was nega-
tively correlated with fat oxidation and the relative abun-
dance of Dorea was negatively correlated with an
exercise economy test. It appears that individual respon-
siveness to a high-fat diet may affect the amount of diet-
ary fat that actually reaches the distal gut, where it could
have associative effects on the gut microbiota. Further-
more, relative abundance of Faecalibacterium spp. was
decreased in athletes after consumption of the LCHF
diet. Interestingly, Faecalibacterium spp. is one of the
most abundant bacterial taxa present in the gut micro-
biota of healthy individuals and has been linked to a host
of metabolic products with anti-inflammatory effects
[231]. Diets high in fat likely increase the pool of bile
acids that elude epithelial absorption in the GI tract and
interact with the gut microbiota [232]. This interaction
can impact the composition of the gut microbiota
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including reductions in the relative abundance of Faeca-
libacterium spp. [233]. Faecalibacterium is widely recog-
nized for its production of a suite of metabolites and
peptides with anti-inflammatory effects [231].

Summary of the effect of athletic diet on the gut microbiota
Overall, there is a need for longer-term studies in differ-
ent athletic cohorts examining the impact of diet on the
structure and function of the gut microbiota. This ap-
proach is of particular importance as many athletes fol-
low special dietary practices, such as during periods of
intensified training prior to competition and offseason
periods. Research studies should investigate exercise-
nutrient interactions that underpin adaptation and per-
formance [234]. Finally, further research is needed to de-
termine the synthesis kinetics and clinical consequence
of microbial by-products during increased nutritional
status and metabolic demands during exercise. Ultim-
ately modulation of the microbiota and its fermentation
capacity may be considered in dietary prescription for
athletes. This may include specific nutrient recommen-
dations aimed at improving performance by enhancing
certain metabolites during exercise and recovery, and
limiting those that produce toxic metabolites that may
made worsen the consequences of exercise stress [15].

Key Points 3 – Influence of Athletic Diet on Gut Microbiota.

• Diet is an established modulator of gut microbiota composition and
activity, with marked changes in microbiota composition evident
within 24 h of a dietary change.

• Energy balance is currently an overlooked factor in relation to the
athletic gut microbiota, particularly in those affected by RED-S.

• To solely investigate the impact of total energy consumption without
considering dietary variability is difficult (if not impossible).

• The effects of high-protein consumption (without concurrent high-fat)
on gut bacteria are not well studied. This also includes the effects of
high-protein and high-fiber intake.

• Protein intake appears to be a strong modulator of microbiota
diversity, with protein supplementation, such as whey, showing
potential benefits that need further study in humans.

• Proteins from vegetable origin have a marked effect on gut microbiota
but currently require investigation in athletes.

• In future studies, the types and amounts of fats consumed in
conjunction with protein should be investigated in the overall effect
on the gut microbiota.

• Increased intake of dietary fiber is associated with microbial richness
and/or diversity.

• Higher intake of carbohydrate and dietary fiber in athletes appear to
be associated with increased abundance of Prevotella.

• The specific effects of fat on the gut microbiota is difficult to isolate;
however, the types of fats consumed appear to be important.

Conclusion
The current body of literature, although limited,
indicates that the cluster of athletic components such as

exercise, associated dietary factors, and body
composition promotes a more “health-associated” gut
microbiota. Typical features include a higher abundance
of health-promoting bacterial species, increased micro-
bial diversity, functional pathways, and microbial-
associated metabolites, stimulation of bacterial abun-
dance that can modulate mucosal immunity, and im-
proved barrier functions. In comparison to sedentary
controls, athletes have increased fecal metabolites and
improved overall health (unless over-trained or in RED-
S). However, in sedentary individuals, exercise appears
to positively modulate the composition and metabolic
capacity of the human gut microbiota. Given that ath-
letes generally have a distinct diet, research on the gut
microbiome in athletes must incorporate dietary and
supplemental intake otherwise it might be a confounding
factor in determining exercise-specific effects on the
composition of the microbiome. While individuals’
microbiotas appear to be driven by their primary dietary
patterns, future research is needed to better describe the
impact of high-protein consumption and (in conjunc-
tion) the types and amount of fiber and fats consumed.
Investigators should examine how different types of
sport, athlete, and physical training regimens influence
the gut microbiota. The present review focuses on the
discussion of the results from microbiota-related studies,
however, a deep discussion of the methodological ap-
proaches of each manuscript was not possible due to the
already extended content. Future, more specific reviews
in this research area should aim for discussing the
results in the frame of their methodological approaches.
Finally, much of the current research is cross-sectional
and has relied on 16S rRNA sequencing. Therefore, fu-
ture research should employ longitudinal designs as well
as more advanced high-throughput sequencing and bio-
informatic analyses to provide deeper understanding and
functional causation of the gut microbial influence on
athlete health and performance. This information can
then be used to develop novel therapeutic and nutri-
tional strategies to modulate the microbiota and enhance
the athlete’s overall performance and health. Ultimately
this body of work will define how metabolic capabilities
of gut microbiota are shaped by exercise and elucidate
their functional roles influencing health and disease.
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