717 research outputs found

    Deceleration of neutral molecules in macroscopic traveling traps

    Get PDF
    A new type of decelerator is presented where polar neutral molecules are guided and decelerated using the principle of traveling electric potential wells, such that molecules are confined in stable three-dimensional traps throughout. This new decelerator is superior to the best currently operational decelerator (Scharfenberg et al., Phys.Rev.A 79, 023410(2009)), providing a substantially larger acceptance even at higher accelerations. The mode of operation is described and experimentally demonstrated by guiding and decelerating CO molecules.Comment: 10 pages, 3 figure

    Revisiting the Meteor 1925-1927 hydrographic dataset reveals centennial full-depth changes in the Atlantic Ocean

    No full text
    The hydrographic data set of the German Atlantic Expedition (GAE) 1925-1927 is compared with the contemporary profiling float and ship-based hydrography to reveal full-depth changes in the Atlantic Ocean between 19°N and 64°S. The volume-mean warming over the last 80 years amounts to 0.119 ± 0.067°C, accompanied by an increase in salinity of 0.014 ± 0.010. A clear vertical structure of these changes is observed: on average, the ocean has warmed by 0.272 ± 0.093°C and became saltier by 0.030 ± 0.014 down to about 2000 m, but cooled and freshened slightly in the deeper layers. These changes can be traced throughout the whole hydrographic survey, indicating the basin-wide character of the observed changes on a centennial timescale. The observed warming is consistent with climate model simulations over the 20th century, suggesting an attribution to anthropogenic forcing. Comparison with the pre-GAE cruises reveals no discernible warming between the 1870s and 1906/1911. © 2013 American Geophysical Union. All Rights Reserved

    A traveling wave decelerator for neutral polar molecules

    Get PDF
    Recently, a decelerator for neutral polar molecules has been presented that operates on the basis of macroscopic, three-dimensional, traveling electrostatic traps (Osterwalder et al., Phys. Rev. A 81, 051401 (2010)). In the present paper, a complete description of this decelerator is given, with emphasis on the electronics and the mechanical design. Experimental results showing the transverse velocity distributions of guided molecules are shown and compared to trajectory simulations. An assessment of non-adiabatic losses is made by comparing the deceleration signals from 13-CO with those from 12-CO and with simulated signals.Comment: 10 pages, 7 figure

    Plasticity, and Its Limits, in Adult Human Primary Visual Cortex

    Get PDF
    There is an ongoing debate about whether adult human primary visual cortex (V1) is capable of large-scale cortical reorganization in response to bilateral retinal lesions. Animal models suggest that the visual neural circuitry maintains some plasticity through adulthood, and there are also a few human imaging studies in support this notion. However, the interpretation of these data has been brought into question, because there are factors besides cortical reorganization, such as the presence of sampling bias and/or the unmasking of task-dependent feedback signals from higher level visual areas, that could also explain the results. How reasonable would it be to accept that adult human V1 does not reorganize itself in the face of disease? Here, we discuss new evidence for the hypothesis that adult human V1 is not as capable of reorganization as in animals and juveniles, because in adult humans, cortical reorganization would come with costs that outweigh its benefits. These costs are likely functional and visible in recent experiments on adaptation — a rapid, short-term form of neural plasticity — where they prevent reorganization from being sustained over the long term

    Parameterised Counting in Logspace

    Get PDF
    Logarithmic space bounded complexity classes such as L and NL play a central role in space bounded computation. The study of counting versions of these complexity classes have lead to several interesting insights into the structure of computational problems such as computing the determinant and counting paths in directed acyclic graphs. Though parameterised complexity theory was initiated roughly three decades ago by Downey and Fellows, a satisfactory study of parameterised logarithmic space bounded computation was developed only in the last decade by Elberfeld, Stockhusen and Tantau (IPEC 2013, Algorithmica 2015). In this paper, we introduce a new framework for parameterised counting in logspace, inspired by the parameterised space bounded models developed by Elberfeld, Stockhusen and Tantau (IPEC 2013, Algorithmica 2015). They defined the operators para_W and para_? for parameterised space complexity classes by allowing bounded nondeterminism with multiple-read and read-once access, respectively. Using these operators, they characterised the parameterised complexity of natural problems on graphs. In the spirit of the operators para_W and para_? by Stockhusen and Tantau, we introduce variants based on tail-nondeterminism, para_{W[1]} and para_{?tail}. Then, we consider counting versions of all four operators applied to logspace and obtain several natural complete problems for the resulting classes: counting of paths in digraphs, counting first-order models for formulas, and counting graph homomorphisms. Furthermore, we show that the complexity of a parameterised variant of the determinant function for (0,1)-matrices is #para_{?tail} L-hard and can be written as the difference of two functions in #para_{?tail} L. These problems exhibit the richness of the introduced counting classes. Our results further indicate interesting structural characteristics of these classes. For example, we show that the closure of #para_{?tail} L under parameterised logspace parsimonious reductions coincides with #para_? L, that is, modulo parameterised reductions, tail-nondeterminism with read-once access is the same as read-once nondeterminism. Initiating the study of closure properties of these parameterised logspace counting classes, we show that all introduced classes are closed under addition and multiplication, and those without tail-nondeterminism are closed under parameterised logspace parsimonious reductions. Also, we show that the counting classes defined can naturally be characterised by parameterised variants of classes based on branching programs in analogy to the classical counting classes. Finally, we underline the significance of this topic by providing a promising outlook showing several open problems and options for further directions of research

    Parameterised Counting in Logspace

    Get PDF
    Logarithmic space-bounded complexity classes such as L and NL play a central role in space-bounded computation. The study of counting versions of these complexity classes have lead to several interesting insights into the structure of computational problems such as computing the determinant and counting paths in directed acyclic graphs. Though parameterised complexity theory was initiated roughly three decades ago by Downey and Fellows, a satisfactory study of parameterised logarithmic space-bounded computation was developed only in the last decade by Elberfeld, Stockhusen and Tantau (IPEC 2013, Algorithmica 2015). In this paper, we introduce a new framework for parameterised counting in logspace, inspired by the parameterised space-bounded models developed by Elberfeld, Stockhusen and Tantau. They defined the operators paraW and paraβ for parameterised space complexity classes by allowing bounded nondeterminism with multiple-read and read-once access, respectively. Using these operators, they characterised the parameterised complexity of natural problems on graphs. In the spirit of the operators paraW and paraβ by Stockhusen and Tantau, we introduce variants based on tail-nondeterminism, paraW[1] and paraβtail. Then, we consider counting versions of all four operators and apply them to the class L. We obtain several natural complete problems for the resulting classes: counting of paths in digraphs, counting first-order models for formulas, and counting graph homomorphisms. Furthermore, we show that the complexity of a parameterised variant of the determinant function for (0, 1)-matrices is # paraβtailL-hard and can be written as the difference of two functions in # paraβtailL. These problems exhibit the richness of the introduced counting classes. Our results further indicate interesting structural characteristics of these classes. For example, we show that the closure of # paraβtailL under parameterised logspace parsimonious reductions coincides with # paraβL. In other words, in the setting of read-once access to nondeterministic bits, tail-nondeterminism coincides with unbounded nondeterminism modulo parameterised reductions. Initiating the study of closure properties of these parameterised logspace counting classes, we show that all introduced classes are closed under addition and multiplication, and those without tail-nondeterminism are closed under parameterised logspace parsimonious reductions. Finally, we want to emphasise the significance of this topic by providing a promising outlook highlighting several open problems and directions for further research

    Preserved retinotopic brain connectivity in macular degeneration

    Get PDF
    PURPOSE: The eye disease macular degeneration (MD) is a leading cause of blindness worldwide. There is no cure for MD, but several promising treatments aimed at restoring vision at the level of the retina are currently under investigation. These treatments assume that the patient's brain can still process appropriately the retinal input once it is restored, but whether this assumption is correct has yet to be determined. METHODS: We used functional magnetic resonance imaging (fMRI) and connective field modelling to determine whether the functional connectivity between the input-deprived portions of primary visual cortex (V1) and early extrastriate areas (V2/3) is still retinotopically organised. Specifically, in both patients with juvenile macular degeneration and age-matched controls with simulated retinal lesions, we assessed the extent to which the V1-referred connective fields of extrastriate voxels, as estimated on the basis of spontaneous fMRI signal fluctuations, adhered to retinotopic organisation. RESULTS: We found that functional connectivity between the input-deprived portions of visual areas V1 and extrastriate cortex is still largely retinotopically organised in MD, although on average less so than in controls. Patients with stable fixation exhibited normal retinotopic connectivity, however, suggesting that for the patients with unstable fixation, eye-movements resulted in spurious, homogeneous signal modulations across the entire input-deprived cortex, which would have hampered our ability to assess their spatial structure of connectivity. CONCLUSIONS: Despite the prolonged loss of visual input due to MD, the cortico-cortical connections of input-deprived visual cortex remain largely intact. This suggests that the restoration of sight in macular degeneration can rely on a largely unchanged retinotopic representation in early visual cortex following loss of central retinal function

    Linking cortical visual processing to viewing behavior using fMRI

    Get PDF
    One characteristic of natural visual behavior in humans is the frequent shifting of eye position. It has been argued that the characteristics of these eye movements can be used to distinguish between distinct modes of visual processing (Unema et al., 2005). These viewing modes would be distinguishable on the basis of the eye-movement parameters fixation duration and saccade amplitude and have been hypothesized to reflect the differential involvement of dorsal and ventral systems in saccade planning and information processing. According to this hypothesis, on the one hand, while in a “pre-attentive” or ambient mode, primarily scanning eye movements are made; in this mode fixation are relatively brief and saccades tends to be relatively large. On the other hand, in “attentive” focal mode, fixations last longer and saccades are relatively small, and result in viewing behavior which could be described as detailed inspection. Thus far, no neuroscientific basis exists to support the idea that such distinct viewing modes are indeed linked to processing in distinct cortical regions. Here, we used fixation-based event-related (FIBER) fMRI in combination with independent component analysis (ICA) to investigate the neural correlates of these viewing modes. While we find robust eye-movement-related activations, our results do not support the theory that the above mentioned viewing modes modulate dorsal and ventral processing. Instead, further analyses revealed that eye-movement characteristics such as saccade amplitude and fixation duration did differentially modulate activity in three clusters in early, ventromedial and ventrolateral visual cortex. In summary, we conclude that evaluating viewing behavior is crucial for unraveling cortical processing in natural vision
    corecore