41 research outputs found
Robotic Ultrasound Guidance by B-scan Plane Positioning Control
AbstractUltrasound is indispensable imaging modality for clinical diagnosis such as fetus assessment and heart assessment. Moreover, many ultrasound applications for image guided procedures have been proposed and attempted because US is less invasive, less cost, and high portability. However, to obtain US images, a US imaging probe has to be held manually and contacted with a patient body. To address the issue, we have proposed a robotic system for automatic probe scanning. The system consists of a probe scanning robot, navigation software, an optical tracking device, and an ultrasound imaging device. The robot, that is six degrees of freedom, is composed of a frame mechanism and a probe holding mechanism. The frame mechanism has six pneumatic actuators to reduce its weight, and the probe holding mechanism has one DC motor. The probe holding mechanism is connected with the pneumatic actuators using wires. Moreover, the robot can control the position and orientation of the B-scan plane based on the transformation between an optical tracker attached to the US probe and the B-scan plane. The navigation system, which is connected with the tracking device and an US imaging device via a VGA cable, computes the relative position between the positions of a therapeutic tool and the B-scan plane, and sends it to the robot. Then the position of the B-scan plane can be controlled based on the tool position. Also, the navigation system displays the plane with a texture of an actual echogram and a tool model three-dimensionally to monitor the relative position of the tool and the B-scan plane. To validate the basic system performance, phantom tests were conducted. The phantom was made of gelatin and poly(ethylene glycol). In the tests, the needle was inserted into the phantom, and the B-scan plane was controlled to contain a tracked needle in real-time. From the results, the needle was continuously visualized during needle insertion. Therefore, it is confirmed that the system has a great potential for automatic US image guided procedures
Particulate multivalent presentation of the receptor binding domain induces protective immune responses against MERS-CoV
Middle East respiratory syndrome coronavirus (MERS-CoV) is a WHO priority pathogen for which vaccines are urgently needed. Using an immune-focusing approach, we created self-assembling particles multivalently displaying critical regions of the MERS-CoV spike protein ─fusion peptide, heptad repeat 2, and receptor binding domain (RBD) ─ and tested their immunogenicity and protective capacity in rabbits. Using a "plug-and-display" SpyTag/SpyCatcher system, we coupled RBD to lumazine synthase (LS) particles producing multimeric RBD-presenting particles (RBD-LS). RBD-LS vaccination induced antibody responses of high magnitude and quality (avidity, MERS-CoV neutralizing capacity, and mucosal immunity) with cross-clade neutralization. The antibody responses were associated with blocking viral replication and upper and lower respiratory tract protection against MERS-CoV infection in rabbits. This arrayed multivalent presentation of the viral RBD using the antigen-SpyTag/LS-SpyCatcher is a promising MERS-CoV vaccine candidate and this platform may be applied for the rapid development of vaccines against other emerging vi
Response Prediction in Chronic Hepatitis C by Assessment of IP-10 and IL28B-Related Single Nucleotide Polymorphisms
Background: High baseline levels of IP-10 predict a slower first phase decline in HCV RNA and a poor outcome following interferon/ribavirin therapy in patients with chronic hepatitis C. Several recent studies report that single nucleotide polymorphisms (SNPs) adjacent to IL28B predict spontaneous resolution of HCV infection and outcome of treatment among HCV genotype 1 infected patients. Methods and Findings: In the present study, we correlated the occurrence of variants at three such SNPs (rs12979860, rs12980275, and rs8099917) with pretreatment plasma IP-10 and HCV RNA throughout therapy within a phase III treatment trial (HCV-DITTO) involving 253 Caucasian patients. The favorable SNP variants (CC, AA, and TT, respectively) were associated with lower baseline IP-10 (P = 0.02, P = 0.01, P = 0.04) and were less common among HCV genotype 1 infected patients than genotype 2/3 (P<0.0001, P<0.0001, and P = 0.01). Patients carrying favorable SNP genotypes had higher baseline viral load than those carrying unfavorable variants (P = 0.0013, P = 0.029, P = 0.0004 respectively). Among HCV genotype 1 infected carriers of the favorable C, A, or T alleles, IP-10 below 150 pg/mL significantly predicted a more pronounced reduction of HCV RNA from day 0 to 4 (first phase decline), which translated into increased rates of RVR (62%, 53%, and 39%) and SVR (85%, 76%, and 75% respectively) among homozygous carriers with baseline IP-10 below 150 pg/mL. In multivariate analyses of genotype 1-infected patients, baseline IP-10 and C genotype at rs12979860 independently predicted the first phase viral decline and RVR, which in turn independently predicted SVR. Conclusions: Concomitant assessment of pretreatment IP-10 and IL28B-related SNPs augments the prediction of the first phase decline in HCV RNA, RVR, and final therapeutic outcome
Phasevarions Mediate Random Switching of Gene Expression in Pathogenic Neisseria
Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes) that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression). In Haemophilus influenzae, the random switching of the modA gene controls expression of a phase-variable regulon of genes (a “phasevarion”), via differential methylation of the genome in the modA ON and OFF states. Phase-variable mod genes are also present in Neisseria meningitidis and Neisseria gonorrhoeae, suggesting that phasevarions may occur in these important human pathogens. Phylogenetic studies on phase-variable mod genes associated with type III restriction modification (R-M) systems revealed that these organisms have two distinct mod genes—modA and modB. There are also distinct alleles of modA (abundant: modA11, 12, 13; minor: modA4, 15, 18) and modB (modB1, 2). These alleles differ only in their DNA recognition domain. ModA11 was only found in N. meningitidis and modA13 only in N. gonorrhoeae. The recognition site for the modA13 methyltransferase in N. gonorrhoeae strain FA1090 was identified as 5′-AGAAA-3′. Mutant strains lacking the modA11, 12 or 13 genes were made in N. meningitidis and N. gonorrhoeae and their phenotype analyzed in comparison to a corresponding mod ON wild-type strain. Microarray analysis revealed that in all three modA alleles multiple genes were either upregulated or downregulated, some of which were virulence-associated. For example, in N. meningitidis MC58 (modA11), differentially expressed genes included those encoding the candidate vaccine antigens lactoferrin binding proteins A and B. Functional studies using N. gonorrhoeae FA1090 and the clinical isolate O1G1370 confirmed that modA13 ON and OFF strains have distinct phenotypes in antimicrobial resistance, in a primary human cervical epithelial cell model of infection, and in biofilm formation. This study, in conjunction with our previous work in H. influenzae, indicates that phasevarions may be a common strategy used by host-adapted bacterial pathogens to randomly switch between “differentiated” cell types
Animal models for COVID-19
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological
agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection
caused by the introduction of a novel coronavirus into humans late in 2019 (frst
detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread
to 215 countries, has infected more than 30 million people and has caused more than
950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there
is an urgent need to develop therapeutic agents and vaccines to mitigate the current
pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World
Health Organization (WHO) assembled an international panel to develop animal
models for COVID-19 to accelerate the testing of vaccines and therapeutic agents.
Here we summarize the fndings to date and provides relevant information for
preclinical testing of vaccine candidates and therapeutic agents for COVID-19.info:eu-repo/semantics/acceptedVersio
Erratum: Five Complete Genome Sequences Spanning the Dutch Streptococcus suis Serotype 2 and Serotype 9 Populations (Microbiology Resource Announcements (2022) 9:6 (e01439-19) DOI: 10.1128/MRA.01439-19)
Volume 9, no. 6, e01439-19, 2020, https://doi.org/10.1128/MRA.01439-19. Page 1, line 7: “CC20” should read “CC220.” Page 2, Table 1, line 3, column 4: “20” should read “220.” Page 2, Table 1, line 5, column 2: “Diseased pig” should read “Healthy pig.”
Five complete genome sequences spanning the dutch streptococcus suis Serotype 2 and Serotype 9 populations
The zoonotic pathogen Streptococcus suis can cause septicemia and meningitis in humans. We report five complete genomes of Streptococcus suis serotype 2 and serotype 9, covering the complete phylogeny of serotype 9 Dutch porcine isolates and zoonotic isolates. The isolates include the model strain S10 and the Dutch emerging zoonotic lineage
Targeted sequence capture and GS-FLX Titanium sequencing of 23 hypertrophic and dilated cardiomyopathy genes: implementation into diagnostics
Genetic evaluation of cardiomyopathies poses a challenge. Multiple genes are involved but no clear genotype-phenotype correlations have been found so far. In the past, genetic evaluation for hypertrophic (HCM) and dilated (DCM) cardiomyopathies was performed by sequential screening of a very limited number of genes. Recent developments in sequencing have increased the throughput, enabling simultaneous screening of multiple genes for multiple patients in a single sequencing run. Development and implementation of a next generation sequencing (NGS) based genetic test as replacement for Sanger sequencing. In order to increase the number of genes that can be screened in a shorter time period, we enriched all exons of 23 of the most relevant HCM and DCM related genes using on-array multiplexed sequence capture followed by massively parallel pyrosequencing on the GS-FLX Titanium. After optimisation of array based sequence capture it was feasible to reliably detect a large panel of known and unknown variants in HCM and DCM patients, whereby the unknown variants could be confirmed by Sanger sequencing. The rate of detection of (pathogenic) variants in both HCM and DCM patients was increased due to a larger number of genes studied. Array based target enrichment followed by NGS showed the same accuracy as Sanger sequencing. Therefore, NGS is ready for implementation in a diagnostic settin