2,004 research outputs found

    Translocality and a Duality Principle in Generally Covariant Quantum Field Theory

    Get PDF
    It is argued that the formal rules of correspondence between local observation procedures and observables do not exhaust the entire physical content of generally covariant quantum field theory. This result is obtained by expressing the distinguishing features of the local kinematical structure of quantum field theory in the generally covariant context in terms of a translocal structure which carries the totality of the nonlocal kinematical informations in a local region. This gives rise to a duality principle at the dynamical level which emphasizes the significance of the underlying translocal structure for modelling a minimal algebra around a given point. We discuss the emergence of classical properties from this point of view.Comment: 12 pages. To appear in Classical Quantum Gravit

    Balanced homodyne detectors in QFT

    Get PDF
    Within the dipole approximation we describe the interaction of a photodiode with the quantum electric field. The diode is modelled by an electron in a bound state which upon interaction, treated perturbatively in the paper, can get excited to one of the scattering states. We furthermore analyze a balanced homodyne detector (BHD) with a local oscillator (LO) consisting of two photodiodes illuminated by a monochromatic coherent state. We show, that to the leading order the BHD's output measures the expectation value of the quantum electric field, in the state without the LO, restricted to the frequency of the LO. The square of the output measures the two-point function of the quantum field. This shows that the BHDs provide tools for measurements of sub-vacuum (negative) expectation values of the squares quantum fields and thus for test of Quantum Energy Inequality - like bounds, or other QFT effects under the influence of external conditions.Comment: Revised version with minor mistakes remove

    Scaling limit of a non-relativistic model

    Full text link
    I calculate the structure function for scattering from the two-body bound state in its lowest level in a non-relativistic model of confined scalar ``quarks'' of masses mAm_A and mBm_B. The scaling limit in x=q2/2(mA+mB)q0x={\bf q}^2/2(m_A+m_B)q^0 exists and is non-vanishing only for the values x=mA/(mA+mB)x=m_A/(m_A+m_B) and x=mB/(mA+mB)x=m_B/(m_A+m_B) which correspond to the fractions of the momentum of the two-body system carried by each of the ``quarks.'' In the scaling limit, the interference from scattering off of the two ``quarks'' vanishes. Thus the scaling limit of this model agrees with the parton picture.Comment: 10 pages, 3 figures not included, in LaTex, UMD 92-22

    Infrared cutoffs and the adiabatic limit in noncommutative spacetime

    Full text link
    We discuss appropriate infrared cutoffs and their adiabatic limit for field theories on the noncommutative Minkowski space in the Yang-Feldman formalism. In order to do this, we consider a mass term as interaction term. We show that an infrared cutoff can be defined quite analogously to the commutative case and that the adiabatic limit of the two-point function exists and coincides with the expectation, to all orders.Comment: 19 page

    Perturbative Quantum Field Theory at Positive Temperatures: An Axiomatic Approach

    Get PDF
    It is shown that the perturbative expansions of the correlation functions of a relativistic quantum field theory at finite temperature are uniquely determined by the equations of motion and standard axiomatic requirements, including the KMS condition. An explicit expression as a sum over generalized Feynman graphs is derived. The canonical formalism is not used, and the derivation proceeds from the beginning in the thermodynamic limit. No doubling of fields is invoked. An unsolved problem concerning existence of these perturbative expressions is pointed out.Comment: 17pages Late

    Large-Scale Dryland Cropping Systems

    Get PDF
    This study was conducted from 2008 to 2015 at the Kansas State University Southwest Research-Extension Center near Tribune, Kansas. The crop rotations evaluated were continuous grain sorghum (SS), wheat-fallow (WF), wheat-corn-fallow (WCF), wheat-sorghum-fallow (WSF), wheat-corn-sorghum-fallow (WCSF), and wheat-sorghum-corn-fallow (WSCF). All rotations were grown using no-till practices except for WF, which was grown using reduced-tillage. Precipitation capture efficiency was not greater with more intensive rotations. Wheat yields were not affected by length of rotation. Corn and grain sorghum yields were about 60% greater when following wheat than when following corn or grain sorghum. Grain sorghum yields were almost twice as great as corn in similar rotations. The most profitable cropping system was wheat-sorghum-fallow

    The Hot Bang state of massless fermions

    Get PDF
    In 2002, a method has been proposed by Buchholz et al. in the context of Local Quantum Physics, to characterize states that are locally in thermodynamic equilibrium. It could be shown for the model of massless bosons that these states exhibit quite interesting properties. The mean phase-space density satisfies a transport equation, and many of these states break time reversal symmetry. Moreover, an explicit example of such a state, called the Hot Bang state, could be found, which models the future of a temperature singularity. However, although the general results carry over to the fermionic case easily, the proof of existence of an analogue of the Hot Bang state is not quite that straightforward. The proof will be given in this paper. Moreover, we will discuss some of the mathematical subtleties which arise in the fermionic case.Comment: 17 page

    Comment on: Modular Theory and Geometry

    Full text link
    In this note we comment on part of a recent article by B. Schroer and H.-W. Wiesbrock. Therein they calculate some new modular structure for the U(1)-current-algebra (Weyl-algebra). We point out that their findings are true in a more general setting. The split-property allows an extension to doubly-localized algebras.Comment: 13 pages, corrected versio

    Breeding system and reproductive skew in a highly polygynous ant population

    Get PDF
    Abstract.: Factors affecting relatedness among nest members in ant colonies with high queen number are still poorly understood. In order to identify the major determinants of nest kin structure, we conducted a detailed analysis of the breeding system of the ant Formica exsecta. We estimated the number of mature queens by mark-release-recapture in 29 nests and dissected a sub-sample of queens to assess their reproductive status. We also used microsatellites to estimate relatedness within and between all classes of nestmates (queens, their mates, worker brood, queen brood and male brood). Queen number was very high, with an arithmetic mean of 253 per nest. Most queens (90%) were reproductively active, consistent with the genetic analyses revealing that there was only a minimal reproductive skew among nestmate queens. Despite the high queen number and low reproductive skew, almost all classes of individuals were significantly related to each other. Interestingly, the number of resident queens was a poor predictor of kin structure at the nest level, consistent with the observation that new queens are produced in bursts leading to highly fluctuating queen number across years. Queen number also varied tremendously across nests, with estimates ranging from five to several hundred queens. Accordingly, the harmonic mean queen number (40.5) was six times lower than the arithmetic mean. The variation in queen number was the most important factor of the breeding system contributing to a significant relatedness between almost all classes of nestmates despite a high average number of queens per nes

    Superfield Realizations of Lorentz and CPT Violation

    Full text link
    Superfield realizations of Lorentz-violating extensions of the Wess-Zumino model are presented. These models retain supersymmetry but include terms that explicitly break the Lorentz symmetry. The models can be understood as arising from superspace transformations that are modifications of the familiar one in the Lorentz-symmetric case.Comment: 10 page
    • …
    corecore