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Abstract. Factors affecting relatedness among nest mem-
bers in ant colonies with high queen number are still
poorly understood. In order to identify the major
determinants of nest kin structure, we conducted a
detailed analysis of the breeding system of the ant
Formica exsecta. We estimated the number of mature
queens by mark-release-recapture in 29 nests and dis-
sected a sub-sample of queens to assess their reproductive
status. We also used microsatellites to estimate related-
ness within and between all classes of nestmates (queens,
their mates, worker brood, queen brood and male brood).
Queen number was very high, with an arithmetic mean of
253 per nest. Most queens (90 %) were reproductively
active, consistent with the genetic analyses revealing that
there was only a minimal reproductive skew among
nestmate queens. Despite the high queen number and low
reproductive skew, almost all classes of individuals were
significantly related to each other. Interestingly, the
number of resident queens was a poor predictor of kin
structure at the nest level, consistent with the observation
that new queens are produced in bursts leading to highly
fluctuating queen number across years. Queen number
also varied tremendously across nests, with estimates
ranging from five to several hundred queens. Accord-
ingly, the harmonic mean queen number (40.5) was six
times lower than the arithmetic mean. The variation in
queen number was the most important factor of the
breeding system contributing to a significant relatedness
between almost all classes of nestmates despite a high
average number of queens per nest.

Keywords: Formica exsecta, relatedness, breeding system,
polygyny, queen mating frequency.

Introduction

The evolution of complex social behaviour entails the
integration of genetically non-identical individuals into
cohesive groups (Keller and Reeve, 1999). A key
component affecting the evolution and functioning of
complex animal societies is their breeding system, that is
the number, relationships and relative reproductive
contributions of individuals that are in the same group
(Ross, 2001). Over recent years, ants have emerged as a
model system to study the evolution of complex social
organization. Of particular interest is the fact that the
number and identity of reproductive queens varies
greatly within and between species (reviewed in Keller,
1993, 1995; Bourke and Franks, 1995; Ross and Keller,
1995; Crozier and Pamilo, 1996). Such variation is
important because it affects the relatedness among
colony members and thus the indirect benefits workers
gain by helping to raise the brood. In ants and other social
Hymenoptera variation in the breeding system is there-
fore predicted to alter the allocation of resources between
growth and reproduction (Pamilo, 1991; Herbers et al. ,
2001; Reuter and Keller, 2001), the relative investment
into male and female sexuals (Trivers and Hare, 1976;
Pamilo, 1991; Chapuisat and Keller, 1999b) and the
interplay of conflict and cooperation in social evolution
(Queller and Strassmann, 1998; Chapuisat and Keller,
1999a; Keller and Reeve, 1999).

Molecular tools such as microsatellite markers have
provided detailed information on the breeding system of
several ant species (see Ross, 2001). So far, the majority of
studies have focused on species and populations charac-
terized by low queen numbers, yet high queen number
occurs in a significant number of species (cf. Bourke and
Franks, 1995; Keller, 1995; Crozier and Pamilo, 1996).
Information on the breeding system of species with high
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queen number is of particular interest (Ross, 2001)
because they are characterized by low within-colony
relatedness, a type of colony structure that cannot readily
be explained by kin selection (Bourke and Franks, 1995;
Queller and Strassmann, 1998).

One of the main problems faced by experimenters
attempting to study the breeding system of ants with high
nest queen numbers is to ascertain the maternity of male
and female offspring. At the same time many factors
jointly influence colony kin-structure. For example, the
relatedness among offspring is influenced not only by the
queen number but also by the degree of queen repro-
ductive skew, queen-queen relatedness, the number of
mates per queen, the relatedness between queens and
their mates and the relatedness among mates of queens
(Ross, 2001). As a result, there can be important differ-
ences in relatedness values between species containing
similar queen number per nest. Such difference can be
due to several factors, most importantly variation among
nests in the turnover of queens (Queller et al. , 1993) or
high reproductive skew with one or a few queens mono-ACHTUNGTRENNUNGpolizing most of the colony reproduction (e.g. functional
monogyny, Bourke and Franks, 1995).

The aim of this study was to examine the breeding
system of a population of the ant Formica (Coptoformica)
exsecta (Nylander 1846). This species is of particular
interest because populations vary in the queen number
per nest, with some populations containing a single queen
(monogyny), whereas others contain numerous queens
per nest (polygyny) (Pamilo and Rosengren, 1984;
Sundstrçm et al., 2005). Furthermore, many Formica
ants exhibit extremely high queen numbers, even though
relatedness among nestmates is significantly higher than
zero (Rosengren and Pamilo, 1983). We selected a
polygynous population located in Les Chenevi�res in
the Swiss Jura mountains because this population has
been monitored for over five years and many important
aspects of its biology are well-described (Brown and
Keller, 2000, 2002; Keller et al. , 2001; Liautard and
Keller, 2001; Brown et al., 2002, 2003; Liautard et al. ,
2003).

In this population, several factors potentially affecting
the nest genetic structure have already been studied using
indirect methods. A genetic analyses of the brood with
microsatellites revealed that the effective queen number
(i.e., estimated number of unrelated queens contributing
to the production of workers) is moderate, with an
average of 2.7 queens in female-producing nests and 6.7
queens in male-producing nests Brown and Keller (2000).
The mitochondrial genotype of workers also revealed
very restricted dispersal of queens both among popula-
tions and among nests within a population, with most
queens remaining in their parental nest after mating
(Liautard and Keller, 2001). Finally, the sex-ratio ob-
served in the brood revealed that only a small proportion
of the nests (about 10 %) produce new queens in a given
year and also suggested that queen number varies cycli-
cally within a nest (Brown and Keller, 2000). These

queen-producing nests usually produce males as well
(Brown and Keller, 2000; Liautard et al. , 2003), poten-
tially allowing intra-nest mating and inbreeding.

While these previous studies have provided valuable
information on the general structure of the population,
they give only indirect estimation of the breeding system,
mainly because no reproductive queens were ever
sampled and because the true queen number per nest is
unknown. Therefore, to study breeding system, we first
needed to estimate the actual queen number per nest.
Because of the large number of individuals per nest and
complex structure of nests it is impossible to sample all
individuals. Moreover, we did not want to destroy nests.
We therefore estimated the queen number by mark-
release-recapture. We also used captured queens, in
addition to pupae collected later in the season, to estimate
the relatedness among and between all classes of indi-
viduals present in the nest. Those data were finally used to
estimate the degree of reproductive skew among queens,
as well as the relative influence of queen number and
queen relatedness on nest genetic structure.

Materials and methods

Queen number

The population of F. exsecta studied, Les Chenevi�res, contains over
1200 nests (Liautard et al., 2003) over an area of about 300�300 m,
from which a sample of 29 nests was selected. Because queens and
workers move among nests we avoided to sample closely-located nests
(average distance, 16.9 m, range 7.6–25.9 m). The number of queens
per nest was estimated by mark-release-recapture after the first batch
of eggs had been laid. This allowed us to minimize disturbance on the
production of sexual eggs which are laid in early spring whereas
workers eggs are mainly laid during the summer. Queens were collected
from the uppermost layer of nest material that was inspected carefully
in order to find all queens present, as they come close to the nest surface
to warm up after the winter. More captures events were performed in
nests exhibiting the lowest rates of recapture of marked queens. On
average 5.4 successful recapture events per nest (with at least one queen
captured) were carried out between April 25 and May 25, 2000 (see
Table 1 for details). At each capture event per nest some queens were
removed for genetic analyses and examination of their reproductive
status. The remaining queens were marked with a thin metal wire
around the petiole and released. A three-week experiment in the
laboratory demonstrated that 10 queens marked in such a way did not
lose the metal wire, and all survived.

The number of queens per nest was estimated with a Bayesian
approach, in which we calculated the likelihood based on all capture
events for each nest, including the unsuccessful ones, and accounted for
the removal of individual queens (Supplementary online material). We
included a random effect in the capture probability to account for
possible variation among capture events due to weather conditions. We
based the prior distribution for the queen number on independent data,
and used otherwise uninformative prior distributions. We sampled from
the posterior distribution using a Metropolis-Gibbs algorithm (Gelman
et al., 2004), in which each parameter is updated in turn, conditional on
the current values of the other parameter (Supplementary online
material). The estimation procedure was programmed using Mathe-
matica 5.1 (Wolfram Research, Inc. � 2004). We used the full posterior
distributions to assess the arithmetic and harmonic queen numbers, but
the mean estimates of the nest-specific queen numbers was used in our
subsequent analyses (see below).
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Genetic analyses

To determine the nest kin structure, we genotyped worker pupae, queen
pupae and male pupae from all nests where they occurred at four
microsatellite loci: Fe13, Fe17, Fe16 (Gyllenstrand et al., 2002), and
Fl21 (Chapuisat, 1996). Samples sizes per nest were: 14.7 � 5.7 for
worker pupae (mean� SD; N = 23 nests), 11.4 � 5.1 for queen pupae
(N = 4) and 10.4 � 5.7 for male pupae (N = 24; Table 2). We collected
adult queens from all nests except one where a single queen was found.
The sex of pupae was determined as in Liautard et al. (2003). To
determine queen-mating frequency and the kin relationships of the
queens� mates, we genotyped the content of the spermatheca of all
mated queens (8.2 � 2.7 per nest) at three microsatellites loci (Fe13,
Fe17, and Fl21).

PCR amplifications were carried out in 10 ml of reaction solution of
10 mM Qiagen� Taq Buffer (MgCl2 at a final concentration of 1.5 mM,
raised to 1.7 mM for Fe13 and Fe17), 2.5 mM dATP, 25 mM dTTP, 25 mM
dGTP, 25 mM dCTP, 0.025 ml of 33P-dATP, 0.5 mM of each primer, 0.5
unit of Taq Qiagen�, and 1 ml of template DNA extracted applying a
salt extraction protocol. PCR products were analyzed on standard
denaturing sequencing gels (6% acryl-bisacrylamide, 8 M urea) and
visualized by autoradiography.

Relatedness and queen-mating frequency

Genetic regression relatedness (r) was calculated based on genotypic
data with the program Relatedness 5.0.8 (Goodnight and Queller,
2001) which uses the algorithms developed by Queller and Goodnight

(1989). All individuals from the study were used to estimate
population allele frequencies. For relatedness calculations the allele
frequencies were bias-corrected by excluding the focal individuals as
well as all other members of the nest. To estimate the average
inbreeding coefficient (FIS) of the female brood, we used the program
Fstat version 2.9.3 (available at http://www.unil.ch/izea/softwares/
fstat.html; updated from Goudet (1995)). The inbreeding coefficient
was computed 100 times by using a single diploid pupae, or a single
queen, randomly selected in each nest using a program written by J.
Goudet (personal communication) and the average of those value
was taken.

The mating frequency of queens was estimated from the maximum
number of alleles observed in PCR-amplified sperm across the three
loci studied. The estimated number of doubly-mated queens was
corrected for undetected double matings (i.e., two males having by
chance the same multilocus genotype) by using the program MateSoft

1.0b (Moilanen et al., 2004) which uses the algorithms developed by
Pedersen and Boomsma (1999). The relatedness of males that had
mated with the same queen (rm2) was estimated based on the observed
male genotypes of queens which mated twice. However, this value is an
underestimate because it does not take into account the cases where the
males had identical genotypes (which results in undetected double
matings). The underestimation of the observed average relatedness can
be corrected if the probability of two males having the same genotype
(which depends on the true relatedness among mates and the
population allele frequencies) is known. The relationship between
the observed relatedness among mates of multiply-mated queens (rm2)
and the true relatedness among mates of multiply-mated queens (r�m2)
is given by:

Table 1. Estimation of queen number in colonies of Formica exsecta using mark-release-recapture with colonies ranked according to the number
captured. Data are: the total number of different queens captured for each colony; the queen number that have been marked and released in total; total
number of marked queens recaptured; the number of recapture events attempted; the number of successful recapture events, i.e. where at least one queen
(marked or unmarked) was found; and the Bayesian estimate of colony queen number (NACHTUNGTRENNUNGQ; median and 95% highest posterior density interval).

Colony ID Total captured Released marked Recapture marked Recapture events Informative
recapture events

NQ (95% CI)

100 1 1 2* 5 3 5 (1–17)
186 6 2 0 6 3 23 (8–62)
7 6 3 0 7 3 26 (9–76)
220 8 2 0 9 2 19 (9–42)
21 9 4 0 5 4 73 (15–296)
N 10 5 0 5 4 59 (17–181)
198 14 5 1 5 4 62 (20–219)
240 14 5 1 4 4 96 (20–302)
13 15 4 1 7 4 32 (17–66)
106 16 5 2 4 4 60 (20–193)
279 24 6 1 4 4 191 (48–543)
CM 25 6 1 4 4 209 (59–498)
40 28 8 1 5 4 148 (49–377)
93 28 8 0 5 4 213 (62–524)
111 32 8 1 6 4 105 (42–273)
129 36 10 1 6 4 145 (57–335)
319 38 9 2 4 4 135 (54–320)
242 41 10 1 5 4 197 (79–478)
205 46 11 0 7 3 168 (74–361)
R 48 11 0 8 4 176 (86–352)
BO 51 13 0 7 7 310 (129–602)
26 52 12 1 4 4 306 (126–694)
158 63 15 0 12 7 195 (112–337)
*4 106 24 0 7 7 550 (288–980)
283 137 29 2 8 7 481 (284–794)
EA 143 32 0 8 7 738 (417–1415)
45 164 36 0 7 7 899 (507–1553)
67 186 36 0 8 7 842 (480–1344)
70 204 44 1 7 7 859 (539–1393)

Mean 53.5 252.5 (202.6–318.4)

* The same queen was recaptured twice.

Insect. Soc. Vol. 55, 2008 Research article 349



r0m2 ¼ rm2 þ ð1� rm2Þ
Yl

k¼1

Xm

j¼1

p2
kj

 !
þ 1�

Xm

j¼1

p2
kj

 !
r0m2

 !
(1)

where pkj is the population allele frequency of the jth allele at the kth
locus. This formula was used to obtain an estimate of r�m2 by an iterative
procedure. In the exceptional cases (5/236) where queens had mated
three or four times, we randomly selected two of the mates and applied
the procedures above for the relatedness estimations. We may have
failed to detect the sperm of males contributing only a small proportion
to the queen�s spermatheca (Gertsch and Fjerdingstad, 1997), however
such males would have only a limited impact on nest genetic structure.

Reproductive skew

Three approaches were used to estimate reproductive skew. First, we
dissected 9.2 � 3.3 (mean� SD) queens per nest to determine whether
they had developed ovaries and sperm in the spermatheca. Second, we
compared the population effective queen number which contributed to
each caste (worker, male, queen) with the population harmonic mean
queen number per nest contributing to this caste. And third, we
calculated the expected relatedness among worker, queen and male
pupae with the formulas of Ross (2001) and Bourke et al. (1997),
respectively, assuming that queens shared reproduction equally (i.e., no
reproductive skew). In these equations we used the population average
FIS value of diploids pupae and, for each nest, the mating frequency, the
queen number in the nest, the relatedness among nestmate queens (rQ),
the relatedness among males that mated with the same queen (rm2) and
the relatedness among males that mated with different queens of the
same nest (rm1). For each nest we compared this expected value with the
observed value to determine the degree of reproductive skew.

The association between nest genetic structure and variation across
nests in queen number and queen-queen relatedness was analysed with
a GLM where the significance of each variable and factor was tested
with an ANOVA on type III residuals. The number of queens was log-
transformed. All statistical analyses were performed using the software
S-PLUS 6.1 (MathSoft Inc� 1988–2002).

Results

The number of queens per nest (NQ) estimated by mark-
recapture ranged from five to several hundreds (Table 1,
arithmetic mean: 253; 95 % CI: 203 –318). The mean
queen number was an order of magnitude larger than
expected based on the study of Brown and Keller (2000;
see Supplementary online material) and even the actual
number of different queens captured exceeds the ex-
pected number by a factor 3 (Table 1). Because of the
large variation in queen number across nests (Table 1),
the harmonic mean queen number over nests (40.5, 95 %
CI: 18.9– 69.5) was much lower than the arithmetic mean.

The dissections revealed that 89 % (238/268) of the
queens were mated. The majority of the 236 queens for
which reliable data on sperm genotypes could be obtained
had mated once (66.2 % after correction for undetected
double matings). Only five of the 65 multiply-mated
queens (i.e., 2.1% of the total) had mated more than
twice, with a maximum of four detected matings for one
queen. The arithmetic and harmonic mean (� SE) mating
frequencies of mated queens were 1.34 � 0.03 and
1.20 � 0.02, respectively. Because the microsatellites
were highly polymorphic (Table 2), the correction for
undetected double mating had no significant effect on

these estimates. There was no significant correlation
between queen-mating frequency (excluding unmated
queens) and the proportion of mated queens per nest
(F1,25 = 2.8, P = 0.11) or queen-queen relatedness
(F1,25 = 0.3, P = 0.60).

Almost all classes of individuals collected from the
same nest were related (Table 3). The only exceptions
were queens and their mates, which were not significantly
related, and male pupae, which were not significantly
related to female pupae (Table 3). There was no signifi-
cant correlation between queen number and the related-
ness among queens (F1,26 = 0.053, P = 0.82). The related-
ness among queens was slightly lower, but not signifi-
cantly so, from the relatedness among queen pupae (t-
test: t30 = 1.2, P = 0.25). It should be noted, however, that
this test had little power, since our sample contained only
four queen-producing nests. The males that mated with
the same queen were highly related (Table 3) and
significantly more so than males that mated with different
queens of the same nest (t54 = 3.17, P = 0.003). The
relatedness among male pupae was intermediate between
these two values, significantly higher than the relatedness
of males that mated with different queens in a nest
(t51 = 5.45, P < 0.001) and significantly lower than the
relatedness of males that mated with the same queen
(t51 = 2.11, P = 0.04). Importantly, the relatedness among
male pupae was higher when considering only nests that
produced queens (r = 0.124 � 0.050), and the relatedness
among males in these nests was not significantly different
from the relatedness among mates of a given queen
(t29 = 0.49, P = 0.63).

The relatedness of worker pupae was significantly
negatively correlated with the number of queens per nest
(Table 4). In contrast, there was no significant correlation
between queen number and the relatedness between
male pupae or queen pupae (Table 4). The relatedness
among nestmate queens was neither significantly corre-
lated with the relatedness among worker pupae nor
queen pupae (Table 4). By contrast, the relatedness of
male pupae was significantly positively correlated with
queen-queen relatedness (Table 4). The genetic analyses
also revealed a significant deficit of heterozygotes among
both the diploid pupae (FIS = 0.128, t99 = 26.6, P < 0.001)
and among adult queens (FIS = 0.114, t99 = 27.8,
P < 0.001).

Table 2. Microsatellite loci used with information on the number of
individuals analyzed given as diploid equivalents (i.e. males were
counted as 0.5 n), the number of alleles detected (k), Nei�s expected
heterozygosity (Hexp), and the size range of alleles.

Locus n k Hexp Size range (bp)

Fe13 1133.5 11 0.84 211–247
Fe16 1094.5 20 0.87 113–157
Fe17 1150 16 0.83 177–194
Fl21 982.5 22 0.88 233–300
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Ten percent (25/258) of the queens had undeveloped
ovaries. The reproductive status of queens was not
significantly associated with whether they were mated
or not (c2

1 = 1.1, P = 0.30). The proportion of queens
with developed ovaries was not significantly associated
with the queen number per nest or the relatedness among
queens (Table 4). Similarly, there was no significant
association between the proportion of mated queens

and either the nest queen number or queen-queen
relatedness (Table 4).

In line with the findings that only a minority of queens
had undeveloped ovaries, the combined genetic data and
mark-recapture census revealed a low reproductive skew
for the production of worker, male, and queen pupae
(Fig. 1). At the population level, the mean effective queen
number based on brood relatedness (which represents the
number of equally contributing mothers) was 9.6 for
worker pupae and 10.5 for male pupae. These values fall
below the 95% CI of the harmonic mean queen number
(18.9 –69.5). Similarly, the mean effective queen number
for production of queen pupae (6.8) was significantly
lower than the harmonic mean queen number in the four
nests producing queens (harmonic mean: 32.1; 95 % CI:
18.5– 55.3). Analyses at the nest level had lower power
and the difference between the observed and expected
relatedness values under the hypothesis of no reproduc-
tive skew was significant only for male pupae (worker
pupae: paired t-test: t20 = 0.18, P = 0.86; male pupae:
paired t-test: t23 = 2.3, P = 0.031; queen pupae: paired t-
test: t3 = 1.6, P = 0.21).

Further analyses at the nest level revealed that the
estimated skew for worker production was significantly
negatively correlated with nest queen number, whereas
no significant association was found with the relatedness
among queens (Table 4). For both queen and male brood,
the degree of reproductive skew was neither significantly
associated with nest queen number nor with the related-
ness among queens (Table 4). None of the interaction
terms of the GLM presented in Table 4 were statistically
significant (P > 0.05 for all; interactions with skew and
relatedness of queen pupae could not be tested due to low
sample sizes).

Discussion

This study provides a detailed analysis of the breeding
system and of the effect of queen number, queen-queen
relatedness and reproductive skew on the genetic struc-
ture of a highly polygynous ant. The repeated mark-

Table 3. Estimates of genetic relatedness (r) within and between different classes of nestmates in Formica exsecta. SE is obtained by jackknifing over
colony. N is the number of colonies (not all classes were present in all colonies studied) and n denotes the number of individuals for each estimate.
Probabilities (P) in one-sided t-tests for deviation from zero are given.

Parameter Group of nestmates N n r � SE t P

rwp Among worker pupae 22 263 0.103 0.019 5.39 <0.001

rQp Among queen pupae 4 59 0.141 0.040 3.55 0.019

rmp Among male pupae 24 280 0.086 0.013 6.71 <0.001

rQ Among adult queens 29 268 0.084 0.0055 15.29 <0.001

rm1 Males mated with different queens 29 318 0.020 0.0025 8.00 <0.001

r’m2 Among mates of the same multiply mated queen 27 142 0.274 0.083 3.30 0.001

rmQ Between adult queens and their mates 29 317, 236 0.017 0.011 1.53 0.07

rQpmp Between queen pupae and male pupae 4 59, 34 0.023 0.022 1.05 0.19

Table 4. Summary table of the GLM performed. Independent varia-
bles are the log of queen number (NQ) and the relatedness among
queens (rQ). Dependent variables are: relatedness among worker
pupae (rwp); relatedness among queen pupae (rQp); relatedness among
male pupae (rmp); proportion of queens with developed ovaries;
proportion of mated queens; and the difference between observed and
expected relatedness (skew) among worker pupae, queen pupae, and
male pupae, respectively. Significant P values are in bold.

Dependent variable Independent
variable

logNQ rQ residuals

relatedness worker df 1 1 18
F 6.3 2.2
P 0.022 0.15

relatedness queen df 1 1 1
F 0.9 0.07
P 0.55 0.83

relatedness male df 1 1 20
F 1.6 10.4
P 0.22 0.004

developed ovaries df 1 1 25
F 1.5 0.18
P 0.22 0.67

mated df 1 1 25
F 3.0 0.29
P 0.094 0.59

skew worker df 1 1 18
F 4.9 0.71
P 0.04 0.41

skew queen df 1 1 1
F 0.09 1.74
P 0.82 0.41

skew male df 1 1 20
F 0.67 0.14
P 0.42 0.71
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release-recapture study revealed considerable variation
across nests in queen number, with some nests containing
only a few queens while others containing over several
hundred queens. As a result of this high variation in queen
number across nests, the harmonic queen number was six
times smaller than the arithmetic mean queen number.
The estimated queen number was greater than previously
estimated (Brown and Keller, 2000). Some of the
discrepancy may stem from the fact that Brown and
Keller (2000) assumed that nestmate queens were
unrelated when estimating queen number.

Genetic analyses allowed us to determine the remain-
ing key parameters of the population�s breeding system.
First, we determined the relatedness among queens within
nest and found that they were significantly related. The
relatedness among queens did not significantly correlate
with nest queen number. This finding is in line with the
known biology of this population because previous studies
showed that only few nests produce new queens and these
are the ones with low queen number (i.e., those that benefit
most from the production and recruitment of new queens
Brown and Keller, 2000, 2002; Brown et al., 2002). Thus,
the queen number is expected to vary greatly over years
within nests, and because new queens are produced only
when queen number is low, the relatedness of queens
should depend only on the queen number present in the
year when new queens were produced and not the actual
queen number observed in a nest.

Second, we determined the number of males with
which queens had mated. Two-thirds of the mated queens
had sperm from a single male. The average mating
frequency of mated queens (1.34) was similar and not
significantly different from the value observed in a
monogynous population of F. exsecta in Finland (1.26;
c2

3 = 2.56, P = 0.46; Sundstrçm et al., 1996). Because we
did not analyse the female offspring of single mother
queens, we cannot directly assess the effective number of

matings per queen in this population. However, in the
Finnish population of F. exsecta it has been shown that
males that mated with the same queen differ considerably
in their relative contribution to female offspring, resulting
in a lower effective mating frequency than the average
number of males with which queens mated (Keller et al. ,
1997). Assuming that the reproductive skew among males
is similar in the Finnish and Swiss populations, queens�
effective number of matings can be estimated as 1.16. This
suggests that multiple mating has only little effect on the
observed brood relatedness.

Third, we determined the relatedness among males
that mated with the same queen and males that mated
with different queens from the same nest. Interestingly,
the relatedness among the mates of a given queen was
significantly higher than that of males mated with differ-
ent queens. A similar pattern has been found in Myrmica
sulcinodis (Pedersen and Boomsma, 1998). In F. exsecta,
the relatedness among mates was not significantly differ-
ent from the average relatedness of male pupae in queen
producing nests, suggesting that queens mate mostly
within their natal nest. There are several possible
explanations for the difference in relatedness among
males that mated with the same queen and males that
mated with different queens of the same nest. First, nests
may contain queens from different generations that have
mated with males that were produced during different
years. Second, related males may be reproductively active
at the same time in a queen-producing nest, making it
more likely for a queen to mate with related males. Third,
it is possible that some of the queens changed nests after
having mated in their natal nest. This would explain why
the relatedness among reproductive queens is slightly
lower than the relatedness among queen pupae.

Fourth, we estimated the relatedness between the
males and the queen they mated with, which represents
the expected level of inbreeding of the brood (Liautard
and Sundstrçm, 2005). This analysis revealed that mates
were not significantly related, which is surprising given
that there was a significant deficit of heterozygotes in
both worker pupae and adult queens (FIS = 0.128 and
0.114, respectively). This observed deficit of heterozy-
gotes, although slightly higher, was not significantly
different from previous estimates in the same population
(t29,33 = 0.89, P = 0.38; Brown and Keller 2000). A study
at a larger scale in the same area showed that the deficit of
heterozygotes increases with the size of the reference
population so that the FIS value is also greater than 0.15
when considering a geographic scale similar to the present
study (K�mmerli and Keller, 2007). We are unable to
provide an explanation for why our study failed to detect
a significant relatedness between queens and their mates.

The final and important component of the breeding
system estimated in this study was the reproductive status
of queens. Dissections showed that 11 % of the queens
were unmated and 10 % lacked developed ovaries,
suggesting a small degree of reproductive skew. This
was confirmed by a significant difference between the

Figure 1. The association between observed relatedness and expected
relatedness assuming equally reproducing queens of female brood
(workers and queens; circles) and male brood (triangles) in colonies of
Formica exsecta. Closed symbols show colonies producing queen
pupae. Skew is indicated by points below the line of slope one.
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observed and expected brood relatedness under no
reproductive skew for male pupae, and non significant
difference for workers and queen pupae, when analysed
at the nest level. The relatively low reproductive skew
found in F. exsecta might be a common feature of highly
polygynous social insects. Although not estimated pre-
cisely, the available data are also suggestive of low
reproductive skew in the Argentine ant (Fournier and
Keller, 2001) and Formica paralugubris (Chapuisat and
Keller, 1999a), two species with highly polygynous nests
and low relatedness among nestmates. Additionally,
relatedness among nestmates of many highly polygynous
social insects is close to zero (e.g. Chapuisat and Keller,
1999a; Giraud et al. , 2002). Those results are in contra-
diction with the only model available for groups with
many potential breeders (Reeve and Emlen, 2000), this
model predicting that in such associations reproductive
skew should be high, with the dominant breeder monop-
olizing the majority of the reproduction. The low
reproductive skew observed was not correlated with
either queen number or queen relatedness for sexual
brood. The observed low skew for worker pupae was
however negatively correlated with queen number. Addi-
tionally there was no significant association between the
mating status of queens and whether they had developed
ovaries. The proportion of queens that were mated and
had developed ovaries was also not significantly corre-
lated with the queen number per nest or their relatedness.

The characterisation of all key components of the
breeding system of this population of F. exsecta allowed us
to determine how kin structure was influenced by the
various components of the breeding system. An interesting
finding was that almost all classes of individuals were
related to each other despite the fact that the average nest
queen number was very high. The most important factor
accounting to this apparent discrepancy was the consid-
erable variation in queen number across nests, with the
harmonic mean queen number being six times lower than
the arithmetic mean. Brown and Keller (2000) found a
lower estimate of effective queen number per nest with
values ranging from two to seven. However, they had not
any information about the nests� breeding structure, they
therefore just estimated effective number of queens by
dividing 0.75 by the observed relatedness of diploid pupae.

Theoretical studies have demonstrated that variation
in queen number either across nest or temporally within a
nest is an important factor contributing to a significant
population average relatedness among nest members
because this value depends on the harmonic mean queen
number (Queller, 1993; Ross, 1993). This has then been
confirmed empirically in several species of polygynous
wasps (Gastreich et al. , 1993; Queller et al. , 1993;
Henshaw et al., 2004), although the queen number in
such colonies is much lower than in nests of our
population of F. exsecta. In swarm founding wasps,
queen number varies greatly during the season and new
queens are preferentially produced when colonies con-
tain few queens. As a result, queens are more related to

each other than workers (e.g. Queller et al. , 1993;
Henshaw et al., 2000). In our study we did not follow
queen number over several years. However, several lines
of evidence suggest that the number of reproductive
queens varies among years with new queens being
preferentially produced and recruited when their number
falls below a given threshold (Brown and Keller, 2000;
Brown et al., 2002; K�mmerli and Keller, 2007). Tempo-
ral variation in queen number has also been observed in
Myrmica ants (Elmes, 1987).

The estimation of queen number suggested that
marked queens were somewhat less likely to be captured
than unmarked queens (see Supplementary online materi-
al). This result may be explained by workers and queens
moving among nests, as it often occurs in polygynous
species. Thus, if marked queens tend to escape the nest
where they have been captured (disturbed), the probability
to recapture them will be lower than for unmarked queens.

In conclusion, the repeated mark-release-recapture of
queens used in this study proved a highly useful technique
to obtain information on the queen number per nest.
Indeed, the actual queen number per nest was found to be
much higher than expected based on previous studies.
Mark-release-recapture has been used in several other
studies in ants, but primarily for the purpose of estimating
worker or brood number, foraging range or queen
dispersal distance (e.g. Glancey and Lofgren, 1988;
Billick, 1999). To our knowledge this is the first applica-
tion for estimating nest queen number. This method could
be used to obtain information in other studies of highly
polygynous ant species where nest size or structure
precludes excavation and sorting of all nest members.
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