55 research outputs found
About the connection between the power spectrum of the Cosmic Microwave Background and the Fourier spectrum of rings on the sky
In this article we present and study a scaling law of the CMB
Fourier spectrum on rings which allows us (i) to combine spectra corresponding
to different colatitude angles (e.g. several detectors at the focal plane of a
telescope), and (ii) to recover the power spectrum once the
coefficients have been measured. This recovery is performed numerically below
the 1% level for colatitudes degrees. In addition, taking
advantage of the smoothness of the and of the , we provide
analytical expressions which allow to recover one of the spectrum at the 1%
level, the other one being known.Comment: 8 pages, 8 figure
About the connection between vacuum birefringence and the light-light scattering amplitude
Birefringence phenomena stemming from vacuum polarization are revisited in
the framework of coherent scattering. Based on photon-photon scattering, our
analysis brings out the direct connection between this process and vacuum
birefringence. We show how this procedure can be extended to the Kerr and the
Cotton-Mouton birefringences in vacuum, thus providing a unified treatment of
various polarization schemes, including those involving static fields
Observation of periodic variable stars towards the galactic spiral arms by EROS II
We present the results of a massive variability search based on a photometric
survey of a six square degree region along the Galactic plane at (, ) and (, ). This
survey was performed in the framework of the EROS II (Exp\'erience de Recherche
d'Objets Sombres) microlensing program. The variable stars were found among
1,913,576 stars that were monitored between April and June 1998 in two
passbands, with an average of 60 measurements. A new period-search technique is
proposed which makes use of a statistical variable that characterizes the
overall regularity of the flux versus phase diagram. This method is well suited
when the photometric data are unevenly distributed in time, as is our case.
1,362 objects whose luminosity varies were selected. Among them we identified 9
Cepheids, 19 RR Lyrae, 34 Miras, 176 eclipsing binaries and 266 Semi-Regular
stars. Most of them are newly identified objects. The cross-identification with
known catalogues has been performed. The mean distance of the RR Lyrae is
estimated to be kpc undergoing an average absorption of
magnitudes. This distance is in good agreement with the one
of disc stars which contribute to the microlensing source star population.Our
catalogue and light curves are available electronically from the CDS,
Strasbourg and from our Web site http://eros.in2p3.fr.Comment: 15 pages, 11 figures, accepted in A&A (april 2002
The EROS2 search for microlensing events towards the spiral arms: the complete seven season results
The EROS-2 project has been designed to search for microlensing events
towards any dense stellar field. The densest parts of the Galactic spiral arms
have been monitored to maximize the microlensing signal expected from the stars
of the Galactic disk and bulge. 12.9 million stars have been monitored during 7
seasons towards 4 directions in the Galactic plane, away from the Galactic
center. A total of 27 microlensing event candidates have been found. Estimates
of the optical depths from the 22 best events are provided. A first order
interpretation shows that simple Galactic models with a standard disk and an
elongated bulge are in agreement with our observations. We find that the
average microlensing optical depth towards the complete EROS-cataloged stars of
the spiral arms is , a number that is
stable when the selection criteria are moderately varied. As the EROS catalog
is almost complete up to , the optical depth estimated for the
sub-sample of bright target stars with () is easier to interpret. The set of microlensing events
that we have observed is consistent with a simple Galactic model. A more
precise interpretation would require either a better knowledge of the distance
distribution of the target stars, or a simulation based on a Galactic model.
For this purpose, we define and discuss the concept of optical depth for a
given catalog or for a limiting magnitude.Comment: 22 pages submitted to Astronomy & Astrophysic
Probing For New Physics and Detecting non linear vacuum QED effects using gravitational wave interferometer antennas
Low energy non linear QED effects in vacuum have been predicted since 1936
and have been subject of research for many decades. Two main schemes have been
proposed for such a 'first' detection: measurements of ellipticity acquired by
a linearly polarized beam of light passing through a magnetic field and direct
light-light scattering. The study of the propagation of light through an
external field can also be used to probe for new physics such as the existence
of axion-like particles and millicharged particles. Their existence in nature
would cause the index of refraction of vacuum to be different from unity in the
presence of an external field and dependent of the polarization direction of
the light propagating. The major achievement of reaching the project
sensitivities in gravitational wave interferometers such as LIGO an VIRGO has
opened the possibility of using such instruments for the detection of QED
corrections in electrodynamics and for probing new physics at very low
energies. In this paper we discuss the difference between direct birefringence
measurements and index of refraction measurements. We propose an almost
parasitic implementation of an external magnetic field along the arms of the
VIRGO interferometer and discuss the advantage of this choice in comparison to
a previously proposed configuration based on shorter prototype interferometers
which we believe is inadequate. Considering the design sensitivity in the
strain, for the near future VIRGO+ interferometer, of in the range 40 Hz Hz leads to a variable
dipole magnet configuration at a frequency above 20 Hz such that Tm/ for a `first' vacuum non linear QED detection
EROS 2 intensive observation of the caustic crossing of microlensing event MACHO SMC-98-1
We report on intensive photometric monitoring on 18 June 1998 of MACHO SMC-98-1, a binary-lens microlensing event seen toward the Small Magellanic Cloud (SMC). The observations cover 5.3 hours (UT 5:17 -- 10:37), and show a sharp drop of 1.8 mag during the first 1.8 hours, followed by an abrupt flattening at UT 7:08 +- 0:02. We interpret the kink at 7:08 as the end of the second caustic crossing (when the source first moved completely outside the caustic). These results indicate that mu sin(phi) <~ 1.5 km/s/kpc at the 2 sigma level, where mu is the proper motion of the lens (relative to the line of sight to the source), and phi is the unknown (and so random) angle of the caustic crossing. Hence, the source probably does not lie in either the Galactic halo or disk and so is most likely in the SMC itself. Our data can be combined with those of other groups to give more precise constraints on the proper motion (and hence the nature) of the lens
Observation of Microlensing towards the Galactic Spiral Arms: EROS II 3 year survey
We present an analysis of the light curves of 9.1 million stars observed during three seasons by EROS (Experience de Recherche d'Objets Sombres), in the Galactic plane away from the bulge. Seven stars exhibit luminosity variations compatible with gravitational microlensing effects due to unseen objects. The corresponding optical depth, averaged over four directions, is tau = 0.45 +0.24 -0.11 x 10^-6. While this value is compatible with expectations from simple galactic models under reasonable assumptions on the target distances, we find an excess of events with short timescale towards the direction closest to the Galactic Centre
Photometric Constraints on Microlens Spectroscopy of EROS-BLG-2000-5
We apply EROS photometric data to interpret previously published Keck and VLT
spectra of the binary-microlens caustic-crossing event EROS-BLG-2000-5. We show
that the VLT data imply that the outer 4 % of the limb of the K3-giant source
is strongly in emission in Halpha, in contradiction to available models of the
photosphere. This conflict could be resolved if the integrated Halpha emission
from the chromosphere were equal to 8 % of the integrated Halpha absorption
from the source as a whole. These conclusions regarding the extreme limb are
almost completely model-independent. We also present a general method for using
the photometric data to facilitate direct comparison between the atmospheric
model and the spectroscopic data. While this method has some model-dependent
features, it is fairly robust and can serve to guide the analysis of spectra
while more detailed models of the lens geometry are being developed. In
addition, we find that the color of the limb of the source (outer 5.5 % by
radius) is Delta(V-I) = 0.37 redder than the source as a whole, so that it has
the color of a M0 giant.Comment: 7 figures, 1 tabl
- …