404 research outputs found

    Heterologous Tissue Culture Expression Signature Predicts Human Breast Cancer Prognosis

    Get PDF
    BACKGROUND: Cancer patients have highly variable clinical outcomes owing to many factors, among which are genes that determine the likelihood of invasion and metastasis. This predisposition can be reflected in the gene expression pattern of the primary tumor, which may predict outcomes and guide the choice of treatment better than other clinical predictors. METHODOLOGY/PRINCIPAL FINDINGS: We developed an mRNA expression-based model that can predict prognosis/outcomes of human breast cancer patients regardless of microarray platform and patient group. Our model was developed using genes differentially expressed in mouse plasma cell tumors growing in vivo versus those growing in vitro. The prediction system was validated using published data from three cohorts of patients for whom microarray and clinical data had been compiled. The model stratified patients into four independent survival groups (BEST, GOOD, BAD, and WORST: log-rank test p = 1.7×10(−8)). CONCLUSIONS: Our model significantly improved the survival prediction over other expression-based models and permitted recognition of patients with different prognoses within the estrogen receptor-positive group and within a single pathological tumor class. Basing our predictor on a dataset that originated in a different species and a different cell type may have rendered it less sensitive to proliferation differences and endowed it with wide applicability. SIGNIFICANCE: Prognosis prediction for patients with breast cancer is currently based on histopathological typing and estrogen receptor positivity. Yet both assays define groups that are heterogeneous in survival. Gene expression profiling allows subdivision of these groups and recognition of patients whose tumors are very unlikely to be lethal and those with much grimmer outlooks, which can augment the predictive power of conventional tumor analysis and aid the clinician in choosing relaxed vs. aggressive therapy

    α-Adducin Gly460Trp Gene Mutation and Essential Hypertension in a Chinese Population: A Meta-Analysis including 10960 Subjects

    Get PDF
    BACKGROUND: The α-adducin Gly460Trp (G460W) gene polymorphism may be associated with susceptibility to essential hypertension (EH), but this relationship remains controversial. In an attempt to resolve this issue, we conducted a meta-analysis. METHODS: Twenty-three separated studies involving 5939 EH patients and 5021 controls were retrieved and analyzed. Four ethnicities were included: Han, Kazakh, Mongolian, and She. Eighteen studies with 5087 EH patients and 4183 controls were included in the Han subgroup. Three studies with 636 EH patients and 462 controls were included in the Kazakh subgroup. The Mongolian subgroup was represented by only one study with 100 EH patients and 50 controls; similarly, only one study with 116 EH patients and 326 controls was available for the She subgroup. The pooled and ethnic group odds ratios (ORs) along with the corresponding 95% confidence intervals (95% CI) were assessed using a random effects model. RESULTS: There was a significant association between the α-adducin G460W gene polymorphism and EH in the pooled Chinese population under both an allelic genetic model (OR: 1.12, 95% CI: 1.04-1.20, P = 0.002) and a recessive genetic model (OR: 1.40, 95% CI: 1.16-1.70, P = 0.0005). In contrast, no significant association between the α-adducin G460W gene polymorphism and EH was observed in the dominant genetic model (OR: 0.88, 95% CI: 0.72-1.09, P = 0.24). In stratified analysis by ethnicity, significantly increased risk was detected in the Han subgroup under an allelic genetic model (OR: 1.13, 95% CI: 1.04-1.23, P = 0.003) and a recessive genetic model (OR: 1.43, 95% CI: 1.17-1.75, P = 0.0006). CONCLUSIONS: In a Chinese population of mixed ethnicity, the α-adducin G460W gene polymorphism was linked to EH susceptibility, most strongly in Han Chinese

    Real-Time Cytotoxicity Assay for Rapid and Sensitive Detection of Ricin from Complex Matrices

    Get PDF
    BACKGROUND: In the context of a potential bioterrorist attack sensitive and fast detection of functionally active toxins such as ricin from complex matrices is necessary to be able to start timely countermeasures. One of the functional detection methods currently available for ricin is the endpoint cytotoxicity assay, which suffers from a number of technical deficits. METHODOLOGY/FINDINGS: This work describes a novel online cytotoxicity assay for the detection of active ricin and Ricinus communis agglutinin, that is based on a real-time cell electronic sensing system and impedance measurement. Characteristic growth parameters of Vero cells were monitored online and used as standardized viability control. Upon incubation with toxin the cell status and the cytotoxic effect were visualized using a characteristic cell index-time profile. For ricin, tested in concentrations of 0.06 ng/mL or above, a concentration-dependent decrease of cell index correlating with cytotoxicity was recorded between 3.5 h and 60 h. For ricin, sensitive detection was determined after 24 h, with an IC50 of 0.4 ng/mL (for agglutinin, an IC50 of 30 ng/mL was observed). Using functionally blocking antibodies, the specificity for ricin and agglutinin was shown. For detection from complex matrices, ricin was spiked into several food matrices, and an IC50 ranging from 5.6 to 200 ng/mL was observed. Additionally, the assay proved to be useful in detecting active ricin in environmental sample materials, as shown for organic fertilizer containing R. communis material. CONCLUSIONS/SIGNIFICANCE: The cell-electrode impedance measurement provides a sensitive online detection method for biologically active cytotoxins such as ricin. As the cell status is monitored online, the assay can be standardized more efficiently than previous approaches based on endpoint measurement. More importantly, the real-time cytotoxicity assay provides a fast and easy tool to detect active ricin in complex sample matrices

    Overexpression of circulating MiR-30b-5p identifies advanced breast cancer

    Get PDF
    Breast cancer (BrC) remains the leading cause of cancer-related death in women, mainly due to recurrent and/or metastatic events, entailing the need for biomarkers predictive of progression to advanced disease. MicroRNAs hold promise as noninvasive cancer biomarkers due to their inherent stability and resilience in tissues and bodily fluids. There is increasing evidence that specific microRNAs play a functional role at different steps of the metastatic cascade, behaving as signaling mediators to enable the colonization of a specific organ. Herein, we aimed to evaluate the biomarker performance of microRNAs previously reported as associated with prognosis for predicting BrC progression in liquid biopsies. Background Breast cancer (BrC) remains the leading cause of cancer-related death in women, mainly due to recurrent and/or metastatic events, entailing the need for biomarkers predictive of progression to advanced disease. MicroRNAs hold promise as noninvasive cancer biomarkers due to their inherent stability and resilience in tissues and bodily fluids. There is increasing evidence that specific microRNAs play a functional role at different steps of the metastatic cascade, behaving as signaling mediators to enable the colonization of a specific organ. Herein, we aimed to evaluate the biomarker performance of microRNAs previously reported as associated with prognosis for predicting BrC progression in liquid biopsies. Methods Selected microRNAs were assessed using a quantitative reverse transcription-polymerase chain reaction in a testing cohort of formalin-fixed paraffin-embedded primary (n = 16) and metastatic BrC tissues (n = 22). Then, miR-30b-5p and miR-200b-3p were assessed in a validation cohort #1 of formalin-fixed paraffin-embedded primary (n = 82) and metastatic BrC tissues (n = 93), whereas only miR-30b-5p was validated on a validation cohort #2 of liquid biopsies from BrC patients with localized (n = 20) and advanced (n = 25) disease. ROC curve was constructed to evaluate prognostic performance. Results MiR-30b-5p was differentially expressed in primary tumors and paired metastatic lesions, with bone metastases displaying significantly higher miR-30b-5p expression levels, paralleling the corresponding primary tumors. Interestingly, patients with advanced disease disclosed increased circulating miR-30b-5p expression compared to patients with localized BrC. Conclusions MiR-30b-5p might identify BrC patients at higher risk of disease progression, thus, providing a useful clinical tool for patients’ monitoring, entailing earlier and more effective treatment. Nonetheless, validation in larger multicentric cohorts is mandatory to confirm these findings.Research Center of Portuguese Oncology Institute of Porto (PI 74-CI-IPOP-19-2016). JL and CSG are supported by a PhD fellowship from FCT - Fundação para a Ciência e Tecnologia (SFRH/ BD/132751/2017 and SFRH/BD/92786/2013, respectively). SS is supported by a PhD fellowship IPO/ESTIMA-1 NORTE-01-0145-FEDER-000027. BMC is funded by FCT-Fundação para a Ciência e a Tecnologia (IF/00601/2012

    Thienoisoindigo-Based Semiconductor Nanowires Assembled with 2-Bromobenzaldehyde via Both Halogen and Chalcogen Bonding

    Get PDF
    We fabricated nanowires of a conjugated oligomer and applied them to organic field-effect transistors (OFETs). The supramolecular assemblies of a thienoisoindigo-based small molecular organic semiconductor (TIIG-Bz) were prepared by co-precipitation with 2-bromobenzaldehyde (2-BBA) via a combination of halogen bonding (XB) between the bromide in 2-BBA and electron-donor groups in TIIG-Bz, and chalcogen bonding (CB) between the aldehyde in 2-BBA and sulfur in TIIG-Bz. It was found that 2-BBA could be incorporated into the conjugated planes of TIIG-Bz via XB and CB pairs, thereby increasing the pi - pi stacking area between the conjugated planes. As a result, the driving force for one-dimensional growth of the supramolecular assemblies via pi - pi stacking was significantly enhanced. TIIG-Bz/2-BBA nanowires were used to fabricate OFETs, showing significantly enhanced charge transfer mobility compared to OFETs based on pure TIIG-Bz thin films and nanowires, which demonstrates the benefit of nanowire fabrication using 2-BB

    Regulatory subunits of PKA define an axis of cellular proliferation/differentiation in ovarian cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The regulatory subunit of cAMP-dependent protein kinase (PKA) exists in two isoforms, RI and RII, which distinguish the PKA isozymes, type I (PKA-I) and type II (PKA-II). Evidence obtained from a variety of different experimental approaches has shown that the relative levels of type I and type II PKA in cells can play a major role in determining the balance between cell growth and differentiation. In order to characterize the effect of PKA type I and type II regulatory subunits on gene transcription at a global level, the PKA regulatory subunit genes for RIα and RIIβ were stably transfected into cells of the ovarian cancer cell line (OVCAR8).</p> <p>Results</p> <p>RIα transfected cells exhibit hyper-proliferative growth and RIIβ transfected cells revert to a relatively quiescent state. Profiling by microarray revealed equally profound changes in gene expression between RIα, RIIβ, and parental OVCAR cells. Genes specifically up-regulated in RIα cells were highly enriched for pathways involved in cell growth while genes up-regulated in RIIβ cells were enriched for pathways involved in differentiation. A large group of genes (~3600) was regulated along an axis of proliferation/differentiation between RIα, parental, and RIIβ cells. RIα/wt and RIIβ/wt gene regulation was shown by two separate and distinct gene set analytical methods to be strongly cross-correlated with a generic model of cellular differentiation.</p> <p>Conclusion</p> <p>Overexpression of PKA regulatory subunits in an ovarian cancer cell line dramatically influences the cell phenotype. The proliferation phenotype is strongly correlated with recently identified clinical biomarkers predictive of poor prognosis in ovarian cancer suggesting a possible pivotal role for PKA regulation in disease progression.</p

    Haemodynamics and flow modification stents for peripheral arterial disease:a review

    Get PDF
    Endovascular stents are widely used for the treatment of peripheral arterial disease (PAD). However, the development of in-stent restenosis and downstream PAD progression remain a challenge. Stent revascularisation of PAD causes arterial trauma and introduces abnormal haemodynamics, which initiate complicated biological processes detrimental to the arterial wall. The interaction between stent struts and arterial cells in contact, and the blood flow field created in a stented region, are highly affected by stent design. Spiral flow is known as a normal physiologic characteristic of arterial circulation and is believed to prevent the development of flow disturbances. This secondary flow motion is lost in atheromatous disease and its re-introduction after endovascular treatment of PAD has been suggested as a method to induce stabilised and coherent haemodynamics. Stent designs able to generate spiral flow may support endothelial function and therefore increase patency rates. This review is focused on secondary flow phenomena in arteries and the development of flow modification stent technologies for the treatment of PAD

    Tim-3 Negatively Regulates IL-12 Expression by Monocytes in HCV Infection

    Get PDF
    T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is a newly identified negative immunomodulator that is up-regulated on dysfunctional T cells during viral infections. The expression and function of Tim-3 on human innate immune responses during HCV infection, however, remains poorly characterized. In this study, we report that Tim-3 is constitutively expressed on human resting CD14+ monocyte/macrophages (M/MØ) and functions as a cap to block IL-12, a key pro-inflammatory cytokine linking innate and adaptive immune responses. Tim-3 expression is significantly reduced and IL-12 expression increased upon stimulation with Toll-like receptor 4 (TLR4) ligand - lipopolysaccharide (LPS) and TLR7/8 ligand - R848. Notably, Tim-3 is over-expressed on un-stimulated as well as TLR-stimulated M/MØ, which is inversely associated with the diminished IL-12 expression in chronically HCV-infected individuals when compared to healthy subjects. Up-regulation of Tim-3 and inhibition of IL-12 are also observed in M/MØ incubated with HCV-expressing hepatocytes, as well as in primary M/MØ or monocytic THP-1 cells incubated with HCV core protein, an effect that mimics the function of complement C1q and is reversible by blocking the HCV core/gC1qR interaction. Importantly, blockade of Tim-3 signaling significantly rescues HCV-mediated inhibition of IL-12, which is primarily expressed by Tim-3 negative M/MØ. Tim-3 blockade reduces HCV core-mediated expression of the negative immunoregulators PD-1 and SOCS-1 and increases STAT-1 phosphorylation. Conversely, blocking PD-1 or silencing SOCS-1 gene expression also decreases Tim-3 expression and enhances IL-12 secretion and STAT-1 phosphorylation. These findings suggest that Tim-3 plays a crucial role in negative regulation of innate immune responses, through crosstalk with PD-1 and SOCS-1 and limiting STAT-1 phosphorylation, and may be a novel target for immunotherapy to HCV infection

    Diagnostic value of fine-needle aspiration biopsy for breast mass: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fine-needle aspiration biopsy (FNAB) of the breast is a minimally invasive yet maximally diagnostic method. However, the clinical use of FNAB has been questioned. The purpose of our study was to establish the overall value of FNAC in the diagnosis of breast lesions.</p> <p>Methods</p> <p>After a review and quality assessment of 46 studies, sensitivity, specificity and other measures of accuracy of FNAB for evaluating breast lesions were pooled using random-effects models. Summary receiver operating characteristic curves were used to summarize overall accuracy. The sensitivity and specificity for the studies data (included unsatisfactory samples) and underestimation rate of unsatisfactory samples were also calculated.</p> <p>Results</p> <p>The summary estimates for FNAB in diagnosis of breast carcinoma were as follows (unsatisfactory samples was temporarily exluded): sensitivity, 0.927 (95% confidence interval [CI], 0.921 to 0.933); specificity, 0.948 (95% CI, 0.943 to 0.952); positive likelihood ratio, 25.72 (95% CI, 17.35 to 28.13); negative likelihood ratio, 0.08 (95% CI, 0.06 to 0.11); diagnostic odds ratio, 429.73 (95% CI, 241.75 to 763.87); The pooled sensitivity and specificity for 11 studies, which reported unsatisfactory samples (unsatisfactory samples was considered to be positive in this classification) were 0.920 (95% CI, 0.906 to 0.933) and 0.768 (95% CI, 0.751 to 0.784) respectively. The pooled proportion of unsatisfactory samples that were subsequently upgraded to various grade cancers was 27.5% (95% CI, 0.221 to 0.296).</p> <p>Conclusions</p> <p>FNAB is an accurate biopsy for evaluating breast malignancy if rigorous criteria are used. With regard to unsatisfactory samples, futher invasive procedures are required in order to minimize the chance of a missed diagnosis of breast cancer.</p
    corecore