7,307 research outputs found

    Construction of an expression vector for Lactococcus lactis based on an indigenous cryptic plasmid

    Get PDF
    To construct an expression vector for Lactococcus lactis, the EmPMT fragment which contained the erythromycin resistance gene, P32 promoter, multiple cloning site (MCS) and terminator (T) was subcloned into the small cryptic plasmid pAR141. The resulting vector, designated as pAR1411, wasfound to be stably maintained in L. lactis MG1363 after transformation for at least 100 generations under non-selective conditions. The vector was also demonstrated to be able to express the gene coding for chloramphenicol acetyltransferase (cat) in L. lactis

    Deletion of Integron-Associated Gene Cassettes Impact on the Surface Properties of Vibrio rotiferianus DAT722

    Full text link
    Background: The integron is a genetic recombination system that catalyses the acquisition of genes on mobilisable elements called gene cassettes. In Vibrio species, multiple acquired gene cassettes form a cassette array that can comprise 1-3% of the bacterial genome. Since 75% of these gene cassettes contain genes encoding proteins of uncharacterised function, how the integron has driven adaptation and evolution in Vibrio species remains largely unknown. A feature of cassette arrays is the presence of large indels. Using Vibrio rotiferianus DAT722 as a model organism, the aim of this study was to determine how large cassette deletions affect vibrio physiology with a view to improving understanding into how cassette arrays influence bacterial host adaptation and evolution. Methodology/Principal Findings: Biological assays and proteomic techniques were utilised to determine how artificially engineered deletions in the cassette array of V. rotiferianus DAT722 affected cell physiology. Multiple phenotypes were identified including changes to growth and expression of outer membrane porins/proteins and metabolic proteins. Furthermore, the deletions altered cell surface polysaccharide with Proton Nuclear Magnetic Resonance on whole cell polysaccharide identifying changes in the carbohydrate ring proton region indicating that gene cassette products may decorate host cell polysaccharide via the addition or removal of functional groups. Conclusions/Significance: From this study, it was concluded that deletion of gene cassettes had a subtle effect on bacterial metabolism but altered host surface polysaccharide. Deletion (and most likely rearrangement and acquisition) of gene cassettes may provide the bacterium with a mechanism to alter its surface properties, thus impacting on phenotypes such as biofilm formation. Biofilm formation was shown to be altered in one of the deletion mutants used in this study. Reworking surface properties may provide an advantage to the bacterium's interactions with organisms such as bacteriophage, protozoan grazers or crustaceans. © 2013 Rapa et al

    A genomic island integrated into recA of Vibrio cholerae contains a divergent recA and provides multi-pathway protection from DNA damage

    Get PDF
    © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd. Lateral gene transfer (LGT) has been crucial in the evolution of the cholera pathogen, Vibrio cholerae. The two major virulence factors are present on two different mobile genetic elements, a bacteriophage containing the cholera toxin genes and a genomic island (GI) containing the intestinal adhesin genes. Non-toxigenic V.cholerae in the aquatic environment are a major source of novel DNA that allows the pathogen to morph via LGT. In this study, we report a novel GI from a non-toxigenic V.cholerae strain containing multiple genes involved in DNA repair including the recombination repair gene recA that is 23% divergent from the indigenous recA and genes involved in the translesion synthesis pathway. This is the first report of a GI containing the critical gene recA and the first report of a GI that targets insertion into a specific site within recA. We show that possession of the island in Escherichia coli is protective against DNA damage induced by UV-irradiation and DNA targeting antibiotics. This study highlights the importance of genetic elements such as GIs in the evolution of V.cholerae and emphasizes the importance of environmental strains as a source of novel DNA that can influence the pathogenicity of toxigenic strains

    Pregnancy postponement and childlessness leads to chronic hypervascularity of the breasts and cancer risk

    Get PDF
    Epidemiologists have established that women with small families, and particularly nulliparae, are prone to develop breast cancer later in life. We report that physiological mammary hypervascularity may be an intermediate reason against the background that breast-core vascularity is normal in pregnancy but pathological in the vascularisation of cancer. We examined breast ‘core’ vascularity in nulliparae during their potential reproductive life and in parous women after their last birth but before their menopause. Fifty clinically normal pre-menopausal non-pregnant women (100 breasts) were studied daily for one ‘luteal positive’ menstrual cycle. Their parity history varied from zero to five babies. Under controlled domestic conditions each wore a special electronic thermometric bra to automatically record breast ‘core’ temperature changes as a measure of mammary tissue blood flow. In the nulliparae there was a rise of breast vascularity throughout reproductive life. In the parous women, a year or so after each birth, breast vascularity was reset at a lower level than before the pregnancy; thereafter, as in nulliparae, there was progressive increase in mammary vascularity until the menopause

    A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis

    Get PDF
    BACKGROUND: Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved affected tissues or if each manifestation has a distinct underlying pathology. METHODS: We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets for enrichment in skin and lung using a Wilcoxon rank sum test. RESULTS: We identified a common pathogenic gene expression signature-an immune-fibrotic axis-indicative of pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells) affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation transcriptional programs in SSc-associated PF lung and in the skin of patients with an "inflammatory" SSc gene expression signature. CONCLUSIONS: Our results suggest that the innate immune system is central to SSc disease processes but that subtle distinctions exist between tissues. Our approach provides a framework for examining molecular signatures of disease in fibrosis and autoimmune diseases and for leveraging publicly available data to understand common and tissue-specific disease processes in complex human diseases

    Ipsilateral vagotomy to unilaterally ovariectomized pre-pubertal rats modifies compensatory ovarian responses

    Get PDF
    The present study evaluates the participation of the vagus nerve in pre-pubertal rats with unilateral ovariectomy on puberty onset, and on progesterone, testosterone and estradiol serum levels, and the compensatory responses of the ovary. Unilateral vagotomy did not modify the onset of puberty in unilaterally ovariectomized rats. Ovulation rates of animals with the left vagus nerve sectioned and the left ovary in-situ was lower than in rats with only unilateral ovariectomy. Sectioning the left vagus to 32-day old rats with the left ovary in-situ resulted in lower compensatory ovarian hypertrophy than in rats with right unilateral ovariectomy. Twenty-eight or 32-day old animals with sectioning of the right vagus nerve and the right ovary in situ showed higher compensatory ovulation. Twenty-eight -day old rats with the right ovary in situ had higher progesterone and testosterone levels than animals of the same age with the left ovary in-situ. Compared to animals with the right ovary in situ, animals treated at 32-days of age, sectioning the ipsi-lateral vagus nerve resulted in higher progesterone levels. Higher progesterone levels were observed in 28- and 32 days old rats with the left ovary in situ and left vagus nerve sectioned. Thirty-two day old animals with the right ovary in situ and right vagus nerve sectioned had higher progesterone levels than rats of the same age with the left ovary in situ and left vagus nerve sectioned. Left vagotomy to 28-day old rats with the left ovary in situ resulted in higher testosterone levels, a reverse response to that observed in animals with sectioning of the right vagus and the right ovary in situ. Thirty-two day old rats with the left ovary in situ and left vagus nerve sectioned showed lower testosterone levels than animals without vagotomy and with the left ovary in situ

    k is the Magic Number -- Inferring the Number of Clusters Through Nonparametric Concentration Inequalities

    Full text link
    Most convex and nonconvex clustering algorithms come with one crucial parameter: the kk in kk-means. To this day, there is not one generally accepted way to accurately determine this parameter. Popular methods are simple yet theoretically unfounded, such as searching for an elbow in the curve of a given cost measure. In contrast, statistically founded methods often make strict assumptions over the data distribution or come with their own optimization scheme for the clustering objective. This limits either the set of applicable datasets or clustering algorithms. In this paper, we strive to determine the number of clusters by answering a simple question: given two clusters, is it likely that they jointly stem from a single distribution? To this end, we propose a bound on the probability that two clusters originate from the distribution of the unified cluster, specified only by the sample mean and variance. Our method is applicable as a simple wrapper to the result of any clustering method minimizing the objective of kk-means, which includes Gaussian mixtures and Spectral Clustering. We focus in our experimental evaluation on an application for nonconvex clustering and demonstrate the suitability of our theoretical results. Our \textsc{SpecialK} clustering algorithm automatically determines the appropriate value for kk, without requiring any data transformation or projection, and without assumptions on the data distribution. Additionally, it is capable to decide that the data consists of only a single cluster, which many existing algorithms cannot

    Generalized quark-antiquark potential at weak and strong coupling

    Get PDF
    We study a two-parameter family of Wilson loop operators in N=4 supersymmetric Yang-Mills theory which interpolates smoothly between the 1/2 BPS line or circle and a pair of antiparallel lines. These observables capture a natural generalization of the quark-antiquark potential. We calculate these loops on the gauge theory side to second order in perturbation theory and in a semiclassical expansion in string theory to one-loop order. The resulting determinants are given in integral form and can be evaluated numerically for general values of the parameters or analytically in a systematic expansion around the 1/2 BPS configuration. We comment about the feasibility of deriving all-loop results for these Wilson loops.Comment: 43 pages: 15 comprising the main text and 25 for detailed appendice
    corecore