4,712 research outputs found
Remotely operated gripper provides vertical control rod movement
Remote actuation of a gripper shaft affects vertical engagement between a drive shaft and control rod. A secondary function of the gripper is to provide remote indication of positive completion of the gripping or ungripping operation
MDL Convergence Speed for Bernoulli Sequences
The Minimum Description Length principle for online sequence
estimation/prediction in a proper learning setup is studied. If the underlying
model class is discrete, then the total expected square loss is a particularly
interesting performance measure: (a) this quantity is finitely bounded,
implying convergence with probability one, and (b) it additionally specifies
the convergence speed. For MDL, in general one can only have loss bounds which
are finite but exponentially larger than those for Bayes mixtures. We show that
this is even the case if the model class contains only Bernoulli distributions.
We derive a new upper bound on the prediction error for countable Bernoulli
classes. This implies a small bound (comparable to the one for Bayes mixtures)
for certain important model classes. We discuss the application to Machine
Learning tasks such as classification and hypothesis testing, and
generalization to countable classes of i.i.d. models.Comment: 28 page
Relativistic jet models for the BL Lacertae object Mrk 421 during three epochs of observation
Coordinated observation of the nearby BL Lacertae object Mrk 421 obtained during May 1980, January 1984, and March 1984 are described. These observations give a time-frozen picture of the continuous spectrum of Mrk 421 at X-ray, ultraviolet, optical, and radio wavelengths. The observed spectra have been fitted to an inhomogeneous relativistic jet model. In general, the models reproduce the data well. Many of the observed differences during the three epochs can be attributed to variations in the opening angle of the jet and in the angle that the jet makes to the line of sight. The jet models obtained here are compared with the homogeneous, spherically symmetric, synchrotron self-Compton models for this source. The models are also compared with the relativistic jet models obtained for other active galactic nuclei
Self-Modification of Policy and Utility Function in Rational Agents
Any agent that is part of the environment it interacts with and has versatile
actuators (such as arms and fingers), will in principle have the ability to
self-modify -- for example by changing its own source code. As we continue to
create more and more intelligent agents, chances increase that they will learn
about this ability. The question is: will they want to use it? For example,
highly intelligent systems may find ways to change their goals to something
more easily achievable, thereby `escaping' the control of their designers. In
an important paper, Omohundro (2008) argued that goal preservation is a
fundamental drive of any intelligent system, since a goal is more likely to be
achieved if future versions of the agent strive towards the same goal. In this
paper, we formalise this argument in general reinforcement learning, and
explore situations where it fails. Our conclusion is that the self-modification
possibility is harmless if and only if the value function of the agent
anticipates the consequences of self-modifications and use the current utility
function when evaluating the future.Comment: Artificial General Intelligence (AGI) 201
Electron correlation in C_(4N+2) carbon rings: aromatic vs. dimerized structures
The electronic structure of C_(4N+2) carbon rings exhibits competing
many-body effects of Huckel aromaticity, second-order Jahn-Teller and Peierls
instability at large sizes. This leads to possible ground state structures with
aromatic, bond angle or bond length alternated geometry. Highly accurate
quantum Monte Carlo results indicate the existence of a crossover between C_10
and C_14 from bond angle to bond length alternation. The aromatic isomer is
always a transition state. The driving mechanism is the second-order
Jahn-Teller effect which keeps the gap open at all sizes.Comment: Submitted for publication: 4 pages, 3 figures. Corrected figure
Optimistic Agents are Asymptotically Optimal
We use optimism to introduce generic asymptotically optimal reinforcement
learning agents. They achieve, with an arbitrary finite or compact class of
environments, asymptotically optimal behavior. Furthermore, in the finite
deterministic case we provide finite error bounds.Comment: 13 LaTeX page
A Ground-Based Albedo Upper Limit for HD 189733b from Polarimetry
We present 50 nights of polarimetric observations of HD 189733 in band
using the POLISH2 aperture-integrated polarimeter at the Lick Observatory Shane
3-m telescope. This instrument, commissioned in 2011, is designed to search for
Rayleigh scattering from short-period exoplanets due to the polarized nature of
scattered light. Since these planets are spatially unresolvable from their host
stars, the relative contribution of the planet-to-total system polarization is
expected to vary with an amplitude of order 10 parts per million (ppm) over the
course of the orbit. Non-zero and also variable at the 10 ppm level, the
inherent polarization of the Lick 3-m telescope limits the accuracy of our
measurements and currently inhibits conclusive detection of scattered light
from this exoplanet. However, the amplitude of observed variability
conservatively sets a upper limit to the planet-induced polarization
of the system of 58 ppm in band, which is consistent with a previous upper
limit from the POLISH instrument at the Palomar Observatory 5-m telescope
(Wiktorowicz 2009). A physically-motivated Rayleigh scattering model, which
includes the depolarizing effects of multiple scattering, is used to
conservatively set a upper limit to the geometric albedo of HD
189733b of . This value is consistent with the value derived from occultation observations with HST STIS (Evans et al.
2013), but it is inconsistent with the large albedo
reported by (Berdyugina et al. 2011).Comment: 10 pages, 9 figures, submitted to Ap
Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease
Prion diseases are fatal, transmissible, neurodegenerative diseases caused by the misfolding of the prion protein (PrP). At present, the molecular pathways underlying prion-mediated neurotoxicity are largely unknown. We hypothesized that the transcriptional regulator of the stress response, heat shock factor 1 (HSF1), would play an important role in prion disease. Uninoculated HSF1 knockout (KO) mice used in our study do not show signs of neurodegeneration as assessed by survival, motor performance, or histopathology. When inoculated with Rocky Mountain Laboratory (RML) prions HSF1 KO mice had a dramatically shortened lifespan, succumbing to disease ≈20% faster than controls. Surprisingly, both the onset of home-cage behavioral symptoms and pathological alterations occurred at a similar time in HSF1 KO and control mice. The accumulation of proteinase K (PK)-resistant PrP also occurred with similar kinetics and prion infectivity accrued at an equal or slower rate. Thus, HSF1 provides an important protective function that is specifically manifest after the onset of behavioral symptoms of prion disease
- …