3,874 research outputs found

    Muscular and non-muscular contributions to maximum power cycling in children and adults: implications for developmental motor control

    Get PDF
    This article is available open access through the publisher’s website at the link below.During submaximal cycling, children demonstrate a different distribution between muscular and non-muscular (gravitational and motion-dependent) forces when compared with adults. This is partly due to anthropometric differences. In this study, we tested the hypothesis that during maximum power cycling, children would construct the task (in terms of the distribution between muscular and non-muscular pedal power) similarly to adults. Eleven children (aged 8–9 years) and 13 adults (aged 20–40 years) performed a maximal isokinetic cycling task over 3 s at 115 r.p.m. Multivariate analyses of variance revealed no significant differences in normalized maximum, minimum and average positive non-muscular pedal power between children and adults (Wilks' λ=0.755, F3,20=2.17, P=0.124). Thus, maximum cycling is a developmental `self-scaling' task and age-related differences in muscular power production are not confounded by differences in anthropometry. This information is useful to researchers who wish to differentiate between muscular and non-muscular power when studying developmental motor control. In addition to the similarities in the distribution between muscular and non-muscular pedal power, we found age-related differences in the relative joint power contributions to total pedal power. In children, a significantly smaller proportion of total pedal power was generated at the ankle joint (6.1±5.4% for children and 12.6±3.2% for adults), whilst relatively more power was generated at the knee and hip joints. These results suggest that intermuscular coordination may be contributing to children's limits in maximum power production during multi-joint tasks

    From Management to Sustainability: Strategies for Producers, Consumers, and Small Businesses; Journal: Journal of Management and Sustainability

    Get PDF
    The effects of climate change and other stressors on the agricultural sector provide proof that the need to achieve agricultural sustainability is a legitimate issue that should be addressed immediately. The ultimate financial benefits to achieving sustainability are immense. This study investigated the causes of climate change and reported how it directly and indirectly affects the agricultural sector of the Southeastern Region of the United States. We concluded that crops vary with the different adaptation strategies and with the predicted rise in temperature and fluctuation in precipitation. It is essential for producers to monitor closely their previous growing seasons. Long term investments include plant breeding, rotating crops, building infrastructure, and mitigation systems. Climate awareness and its impacts on agriculture by consumers, producers, and policymakers are essential to develop adaptation strategies to mitigate the effects of climate change

    Survey of H-alpha emission from thirty nearby dwarf galaxies

    Full text link
    Measurements of the H-alpha flux from 30 neighboring dwarf galaxies are presented. After correction for absorption, these fluxes are used to estimate the star formation rate (SFR). The SFR for 18 of the galaxies according to the H-alpha emission are compared with estimates of the SFR from FUV magnitudes obtained with the GALEX telescope. These are in good agreement over the range log[SFR] = [-3,0]M sun/yr.Comment: 18 pages, 10 figures, 3 table

    Variational modelling of wave-structure interactions with an offshore wind-turbine mast

    Get PDF
    We consider the development of a mathematical model of water waves interacting with the mast of an offshore wind turbine. A variational approach is used for which the starting point is an action functional describing a dual system comprising a potential-flow fluid, a solid structure modelled with nonlinear elasticity, and the coupling between them. We develop a linearized model of the fluid–structure or wave–mast coupling, which is a linearization of the variational principle for the fully coupled nonlinear model. Our numerical results for the linear case indicate that our variational approach yields a stable numerical discretization of a fully coupled model of water waves and an elastic beam. The energy exchange between the subsystems is seen to be in balance, yielding a total energy that shows only small and bounded oscillations amplitude of which tends to zero with the second-order convergence as the timestep approaches zero. Similar second-order convergence is observed for spatial mesh refinement. The linearized model so far developed can be extended to a nonlinear regime

    The HadCM3 contribution to PlioMIP phase 2

    Get PDF
    We present the UK's input into the Pliocene Model Intercomparison Project phase 2 (PlioMIP2) using the Hadley Centre Climate Model version 3 (HadCM3). The 400 ppm CO2 Pliocene experiment has a mean annual surface air temperature that is 2.9 ∘C warmer than the pre-industrial and a polar amplification of between 1.7 and 2.2 times the global mean warming. The Pliocene Research Interpretation and Synoptic Mapping (PRISM4) enhanced Pliocene palaeogeography accounts for a warming of 1.4 ∘C, whilst the CO2 increase from 280 to 400 ppm leads to a further 1.5 ∘C of warming. Climate sensitivity is 3.5 ∘C for the pre-industrial and 2.9 ∘C for the Pliocene. Precipitation change between the pre-industrial and Pliocene is complex, with geographic and land surface changes primarily modifying the geographical extent of mean annual precipitation. Sea ice fraction and areal extent are reduced during the Pliocene, particularly in the Southern Hemisphere, although they persist through summer in both hemispheres. The Pliocene palaeogeography drives a more intense Pacific and Atlantic meridional overturning circulation (AMOC). This intensification of AMOC is coincident with more widespread deep convection in the North Atlantic. We conclude by examining additional sensitivity experiments and confirm that the choice of total solar insolation (1361 vs. 1365 Wm−2) and orbital configuration (modern vs. 3.205 Ma) does not significantly influence the anomaly-type analysis in use by the Pliocene community

    Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows

    Get PDF
    The micromachining technology that emerged in the late 1980s can provide micron-sized sensors and actuators. These micro transducers are able to be integrated with signal conditioning and processing circuitry to form micro-electro-mechanical-systems (MEMS) that can perform real-time distributed control. This capability opens up a new territory for flow control research. On the other hand, surface effects dominate the fluid flowing through these miniature mechanical devices because of the large surface-to-volume ratio in micron-scale configurations. We need to reexamine the surface forces in the momentum equation. Owing to their smallness, gas flows experience large Knudsen numbers, and therefore boundary conditions need to be modified. Besides being an enabling technology, MEMS also provide many challenges for fundamental flow-science research

    Direct dispersion of SWNTs in highly conductive solvent-enhanced PEDOT:PSS films

    Get PDF
    Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) is shown to be an effective dispersant for single-wall carbon nanotubes (SWNTs), enabling uniform aqueous suspensions to be obtained at weight loadings of up to 0.23 mg/ml (>1% by weight relative to PEDOT:PSS) without recourse to additional surfactants. Thin films spin-coated from PEDOT:PSS/SWNT suspensions exhibited sheet resistances of 90 Ω/sq. at 80 % transmittance, slightly higher than equivalent films of pure PEDOT:PSS which exhibited sheet resistances of 70 Ω/sq. at the same transmittance

    Fleming's penicillin producing streain is not Penicillium chrysogenum but P. rubens

    Get PDF
    Penicillium chrysogenum is a commonly occurring mould in indoor environments and foods, and has gained much attention for its use in the production of the antibiotic penicillin. Phylogenetic analysis of the most important penicillin producing P. chrysogenum isolates revealed the presence of two highly supported clades, and we show here that these two clades represent two species, P. chrysogenum and P. rubens. These species are phenotypically similar, but extrolite analysis shows that P. chrysogenum produces secalonic acid D and F and/or a metabolite related to lumpidin, while P. rubens does not produce these metabolites. Fleming’s original penicillin producing strain and the full genome sequenced strain of P. chrysogenum are re-identified as P. rubens. Furthermore, the well-known claim that Alexander Fleming misidentified the original penicillin producing strain as P. rubrum is discussed
    • …
    corecore