360 research outputs found

    The quasi-free-standing nature of graphene on H-saturated SiC(0001)

    Full text link
    We report on an investigation of quasi-free-standing graphene on 6H-SiC(0001) which was prepared by intercalation of hydrogen under the buffer layer. Using infrared absorption spectroscopy we prove that the SiC(0001) surface is saturated with hydrogen. Raman spectra demonstrate the conversion of the buffer layer into graphene which exhibits a slight tensile strain and short range defects. The layers are hole doped (p = 5.0-6.5 x 10^12 cm^(-2)) with a carrier mobility of 3,100 cm^2/Vs at room temperature. Compared to graphene on the buffer layer a strongly reduced temperature dependence of the mobility is observed for graphene on H-terminated SiC(0001)which justifies the term "quasi-free-standing".Comment: 3 pages, 3 figures, accepted for publication in Applied Physics Letter

    An empirical study of the “prototype walkthrough”: a studio-based activity for HCI education

    Get PDF
    For over a century, studio-based instruction has served as an effective pedagogical model in architecture and fine arts education. Because of its design orientation, human-computer interaction (HCI) education is an excellent venue for studio-based instruction. In an HCI course, we have been exploring a studio-based learning activity called the prototype walkthrough, in which a student project team simulates its evolving user interface prototype while a student audience member acts as a test user. The audience is encouraged to ask questions and provide feedback. We have observed that prototype walkthroughs create excellent conditions for learning about user interface design. In order to better understand the educational value of the activity, we performed a content analysis of a video corpus of 16 prototype walkthroughs held in two HCI courses. We found that the prototype walkthrough discussions were dominated by relevant design issues. Moreover, mirroring the justification behavior of the expert instructor, students justified over 80 percent of their design statements and critiques, with nearly one-quarter of those justifications having a theoretical or empirical basis. Our findings suggest that PWs provide valuable opportunities for students to actively learn HCI design by participating in authentic practice, and provide insight into how such opportunities can be best promoted

    A statistical study of the post-impulsive-phase acceleration of flare-associated coronal mass ejections

    Full text link
    It is now generally accepted that the impulsive acceleration of a coronal mass ejection (CME) in the inner corona is closely correlated in time with the main energy release of the associated solar flare. In this paper, we examine in detail the post-impulsive-phase acceleration of a CME in the outer corona, which is the phase of evolution immediately following the main impulsive acceleration of the CME; this phase is believed to correspond to the decay phase of the associated flare. This observational study is based on a statistical sample of 247 CMEs that are associated with M- and X-class GOES soft X-ray flares from 1996 to 2006. We find that, from many examples of events, the CMEs associated with flares with long-decay time (or so-called long-duration flares) tend to have positive post-impulsive-phase acceleration, even though some of them have already obtained a high speed at the end of the impulsive acceleration but do not show a deceleration expected from the aerodynamic dragging of the background solar wind. On the other hand, the CMEs associated with flares of short-decay time tend to have significant deceleration. In the scattering plot of all events, there is a weak correlation between CME post-impulsive-phase acceleration and flare decay time. The CMEs deviated from the general trend are mostly slow or weak ones associated with flares of short-decay time; the deviation is caused by the relatively stronger solar wind dragging force for these events. The implications of our results on CME dynamics and CME-flare relations are discussed.Comment: 32 pages, 9 figures, accepted for publication in Ap

    Structure Of Interfaces In A-si

    Get PDF
    We present experimental results on the atomic structure of the interfaces between a-Si:H and a-SiNx:H layers obtained by analyzing the intensity of the Raman lines from zone-folded acoustic phonons and of the peaks of x-ray diffraction at grazing angles. We determine the width of these interfaces and their stability under thermal annealing in temperatures below the crystallization temperature.69277878

    Looking behind the scenes: Raman spectroscopy of top-gated epitaxial graphene through the substrate

    Get PDF
    Abstract Raman spectroscopy is frequently used to study the properties of epitaxial graphene grown on silicon carbide (SiC). In this work, we present a confocal micro-Raman study of epitaxial graphene on SiC(0001) in top-down geometry, i.e. in a geometry where both the primary laser light beam as well as the back-scattered light is guided through the SiC substrate. Compared to the conventional top-up configuration, in which confocal micro-Raman spectra are measured from the air side, we observe a significant intensity enhancement in top-down configuration, indicating that most of the Raman-scattered light is emitted into the SiC substrate. The intensity enhancement is explained in terms of dipole radiation at a dielectric surface. The new technique opens the possibility to probe graphene layers in devices where the graphene layer is covered by non-transparent materials. We demonstrate this by measuring gate-modulated Raman spectra of a top-gated epitaxial graphene field effect device. Moreover, we show that these measurements enable us to disentangle the effects of strain and charge on the positions of the prominent Raman lines in epitaxial graphene on SiC

    STRUCTURE OF INTERFACES IN A-SI-H/A-SINX-H SUPERLATTICES

    Get PDF
    We present experimental results on the atomic structure of the interfaces between a-Si: H and a-SiN(x):H layers obtained by analyzing the intensity of the Raman lines from zone-folded acoustic phonons and of the peaks of x-ray diffraction at grazing angles. We determine the width of these interfaces and their stability under thermal annealing in temperatures below the crystallization temperature.69277878

    Estimations of changes of the Sun's mass and the gravitation constant from the modern observations of planets and spacecraft

    Full text link
    More than 635 000 positional observations (mostly radiotechnical) of planets and spacecraft (1961-2010), have been used for estimating possible changes of the gravitation constant, the solar mass, and semi-major axes of planets, as well as the value of the astronomical unit, related to them. The analysis of the observations has been performed on the basis of the EPM2010 ephemerides of IAA RAS in post-newtonian approximation. The obtained results indicate on decrease in the heliocentric gravitation constant per year at the level GMSun˙/GMSun=(5.0±4.1)1014(3σ). \dot {GM_{Sun}}/GM_{Sun} = (-5.0 \pm 4.1) 10^{-14} (3\sigma). The positive secular changes of semi-major axes a˙i/ai \dot a_i/a_i have been obtained simultaneously for the planets Mercury, Venus, Mars, Jupiter, Saturn, as expected if the geliocentric gravitation constant is decreasing in century wise. The change of the mass of the Sun MSunM_{Sun} due to the solar radiation and the solar wind and the matter dropping on the Sun (comets, meteors, asteroids and dust) was estimated. Taking into account the maximal limits of the possible MSunM_{Sun} change, the value G˙/G\dot G/G falls within the interval 4.21014<G˙/G<+7.51014 -4.2\cdot10^{-14} < \dot G/G < +7.5\cdot10^{-14} in year with the 95% probability. The astronomical unit (au) is only connected with the geliocentric gravitation constant by its definition. In the future, the connection between GMSunGM_{Sun} and au should be fixed at the certain time moment, as it is inconvenient highly to have the changing value of the astronomical unit.Comment: 20 pages, 4 tables, accepted for publication in Solar System Research, 2011 (Astronomicheskii vestnik

    Can Streamer Blobs prevent the Buildup of the Interplanetetary Magnetic Field?

    Full text link
    Coronal Mass Ejections continuously drag closed magnetic field lines away from the Sun, adding new flux to the interplanetary magnetic field (IMF). We propose that the outward-moving blobs that have been observed in helmet streamers are evidence of ongoing, small-scale reconnection in streamer current sheets, which may play an important role in the prevention of an indefinite buildup of the IMF. Reconnection between two open field lines from both sides of a streamer current sheet creates a new closed field line, which becomes part of the helmet, and a disconnected field line, which moves outward. The blobs are formed by plasma from the streamer that is swept up in the trough of the outward moving field line. We show that this mechanism is supported by observations from SOHO/LASCO. Additionally, we propose a thorough statistical study to quantify the contribution of blob formation to the reduction of the IMF, and indicate how this mechanism may be verified by observations with SOHO/UVCS and the proposed NASA STEREO and ESA Polar Orbiter missions.Comment: 7 pages, 2 figures; accepted by The Astrophysical Journal Letters; uses AASTe

    Calomplification — the power of generative calorimeter models

    Get PDF
    Motivated by the high computational costs of classical simulations, machine-learned generative models can be extremely useful in particle physics and elsewhere. They become especially attractive when surrogate models can efficiently learn the underlying distribution, such that a generated sample outperforms a training sample of limited size. This kind of GANplification has been observed for simple Gaussian models. We show the same effect for a physics simulation, specifically photon showers in an electromagnetic calorimeter

    Study the build-up, initiation and acceleration of 2008 April 26 coronal mass ejection observed by STEREO

    Full text link
    In this paper, we analyze the full evolution, from a few days prior to the eruption to the initiation, and the final acceleration and propagation, of the CME that occurred on 2008 April 26 using the unprecedented high cadence and multi-wavelength observations by STEREO. There existed frequent filament activities and EUV jets prior to the CME eruption for a few days. These activities were probably caused by the magnetic reconnection in the lower atmosphere driven by photospheric convergence motions, which were evident in the sequence of magnetogram images from MDI (Michelson Doppler Imager) onboard SOHO. The slow low-layer magnetic reconnection may be responsible for the storage of magnetic free energy in the corona and the formation of a sigmoidal core field or a flux rope leading to the eventual eruption. The occurrence of EUV brightenings in the sigmoidal core field prior to the rise of the flux rope implies that the eruption was triggered by the inner tether-cutting reconnection, but not the external breakout reconnection. During the period of impulsive acceleration, the time profile of the CME acceleration in the inner corona is found to be consistent with the time profile of the reconnection electric field inferred from the footpoint separation and the RHESSI 15-25 keV HXR flux curve of the associated flare. The full evolution of this CME can be described in four distinct phases: the build-up phase, initiation phase, main acceleration phase, and propagation phase. The physical properties and the transition between these phases are discussed, in an attempt to provide a global picture of CME dynamic evolution.Comment: 28 pages, 8 figures, accepted for publication in Ap
    corecore