6,671 research outputs found

    Clustering of nicotinic acetylcholine receptors: from the neuromuscular junction to interneuronal synapses

    Get PDF
    Fast and accurate synaptic transmission requires high-density accumulation of neurotransmitter receptors in the postsynaptic membrane. During development of the neuromuscular junction, clustering of acetylcholine receptors (AChR) is one of the first signs of postsynaptic specialization and is induced by nerve-released agrin. Recent studies have revealed that different mechanisms regulate assembly vs stabilization of AChR clusters and of the postsynaptic apparatus. MuSK, a receptor tyrosine kinase and component of the agrin receptor, and rapsyn, an AChR-associated anchoring protein, play crucial roles in the postsynaptic assembly. Once formed, AChR clusters and the postsynaptic membrane are stabilized by components of the dystrophin/utrophin glycoprotein complex, some of which also direct aspects of synaptic maturation such as formation of postjunctional folds. Nicotinic receptors are also expressed across the peripheral and central nervous system (PNS/CNS). These receptors are localized not only at the pre- but also at the postsynaptic sites where they carry out major synaptic transmission. In neurons, they are found as clusters at synaptic or extrasynaptic sites, suggesting that different mechanisms might underlie this specific localization of nicotinic receptors. This review summarizes the current knowledge about formation and stabilization of the postsynaptic apparatus at the neuromuscular junction and extends this to explore the synaptic structures of interneuronal cholinergic synapse

    Strain-rate effect on the dynamic behaviours of a rectangular conducting plate

    Get PDF
    This paper is concerned with thermo-elasto-plastic dynamic response of a conductive plate in a magnetic pulse field. The influence of the strain rate effect and the temperature effect are taken into account for the electromagnetic elasto-plastic dynamic transient response and deformation of the conductive plate which made of strain-rate sensitive materials. The Johnson-Cook model is employed to study the strain rate effect and the temperature effect on the deformation of the plate. Basic governing equations are derived for electro-magnetic field considering the eddy current. The analysis includes the elastoplastic transient dynamic response and the heat transfer of a conductive rectangular plate, and then an appropriate numerical code based on the finite element method to quantitatively simulate the electro-magneto-elasto-plastic mechanical behaviors of the conductive rectangular plate. The numerical results indicate that the strain rate effect has to be considered for the conductive plates, especially for those with high strain rate sensitivity. Comparison of the influence of the temperature effect on the deformation of the plate with that of the strain rate effect shows that the influence of the temperature effect on the deformation of a plate is not significant

    Efficient Coil Design by Electromagnetic Topology Optimization for Electromagnetic Sharp Edge Forming of DP980 Steel Sheet

    Get PDF
    This paper proposes a design method of the tool coil by topology optimization for the electromagnetic sharp edge forming process. Topology optimization is an approach that optimizes material configuration in a given domain to meet the design requirements. The design problem for the tool coil is defined as enhancing efficiency of the forming process and optimization problem is set to be maximization of the Lorentz force induced on the tool coil. A new topology optimization formulation based on the numerical methods for electromagnetism using FEM and BEM is developed for maximization of the Lorentz force. Optimum design of the tool coil is obtained by the topology optimization using the element density approach. The optimized result is compared with other coils which have different configurations to show the effectiveness of the proposed method. The idea of applying topology optimization to the design of the tool coil is successful and this formulation deals effectively for the optimization problems

    Photoinduced Magnetization in a Thin Fe-CN-Co Film

    Full text link
    The magnetization of a thin Fe-Co cyanide film has been investigated from 5 K to 300 K and in fields up to 500 G. Upon illumination with visible light, the magnetization of the film rapidly increases. The original cluster glass behavior is further developed in the photoinduced state and shows substantial changes in critical temperature and freezing temperature.Comment: 2 pages, 2 figures, 1 table, International Conference on Magnetism 200

    Modulated structures in electroconvection in nematic liquid crystals

    Full text link
    Motivated by experiments in electroconvection in nematic liquid crystals with homeotropic alignment we study the coupled amplitude equations describing the formation of a stationary roll pattern in the presence of a weakly-damped mode that breaks isotropy. The equations can be generalized to describe the planarly aligned case if the orienting effect of the boundaries is small, which can be achieved by a destabilizing magnetic field. The slow mode represents the in-plane director at the center of the cell. The simplest uniform states are normal rolls which may undergo a pitchfork bifurcation to abnormal rolls with a misaligned in-plane director.We present a new class of defect-free solutions with spatial modulations perpendicular to the rolls. In a parameter range where the zig-zag instability is not relevant these solutions are stable attractors, as observed in experiments. We also present two-dimensionally modulated states with and without defects which result from the destabilization of the one-dimensionally modulated structures. Finally, for no (or very small) damping, and away from the rotationally symmetric case, we find static chevrons made up of a periodic arrangement of defect chains (or bands of defects) separating homogeneous regions of oblique rolls with very small amplitude. These states may provide a model for a class of poorly understood stationary structures observed in various highly-conducting materials ("prechevrons" or "broad domains").Comment: 13 pages, 13 figure

    Practice of lingual orthodontics and practitioners' opinion and experience with lingual braces in the United States

    Get PDF
    A survey was done on practicing Orthodontists in the United States on their experience with lingual orthodontics. The objectives of this survey study were to assess 1) the satisfaction level with cases treated with lingual orthodontics, 2) factors that i
    corecore