10,593 research outputs found

    Fermionic Quasi-free States and Maps in Information Theory

    Full text link
    This paper and the results therein are geared towards building a basic toolbox for calculations in quantum information theory of quasi-free fermionic systems. Various entropy and relative entropy measures are discussed and the calculation of these reduced to evaluating functions on the one-particle component of quasi-free states. The set of quasi-free affine maps on the state space is determined and fully characterized in terms of operations on one-particle subspaces. For a subclass of trace preserving completely positive maps and for their duals, Choi matrices and Jamiolkowski states are discussed.Comment: 19 page

    Report from solar physics

    Get PDF
    A discussion of the nature of solar physics is followed by a brief review of recent advances in the field. These advances include: the first direct experimental confirmation of the central role played by thermonuclear processes in stars; the discovery that the 5-minute oscillations of the Sun are a global seismic phenomenon that can be used as a probe of the structure and dynamical behavior of the solar interior; the discovery that the solar magnetic field is subdivided into individual flux tubes with field strength exceeding 1000 gauss. Also covered was a science strategy for pure solar physics. Brief discussions are given of solar-terrestrial physics, solar/stellar relationships, and suggested space missions

    Water vapor diffusion in Mars subsurface environments

    Get PDF
    The diffusion coefficient of water vapor in unconsolidated porous media is measured for various soil simulants at Mars-like pressures and subzero temperatures. An experimental chamber which simultaneously reproduces a low-pressure, low-temperature, and low-humidity environment is used to monitor water flux from an ice source through a porous diffusion barrier. Experiments are performed on four types of simulants: 40–70 µm glass beads, sintered glass filter disks, 1–3 µm dust (both loose and packed), and JSC Mars–1. A theoretical framework is presented that applies to environments that are not necessarily isothermal or isobaric. For most of our samples, we find diffusion coefficients in the range of 2.8 to 5.4 cm^2 s^-1 at 600 Pascal and 260 K. This range becomes 1.9–4.7 cm^2 s^-1 when extrapolated to a Mars-like temperature of 200 K. Our preferred value for JSC Mars–1 at 600 Pa and 200 K is 3.7 ± 0.5 cm^2 s^-1. The tortuosities of the glass beads is about 1.8. Packed dust displays a lower mean diffusion coefficient of 0.38 ± 0.26 cm^2 s^-1, which can be attributed to transition to the Knudsen regime where molecular collisions with the pore walls dominate. Values for the diffusion coefficient and the variation of the diffusion coefficient with pressure are well matched by existing models. The survival of shallow subsurface ice on Mars and the providence of diffusion barriers are considered in light of these measurements

    Galaxy Distances in the Nearby Universe: Corrections For Peculiar Motions

    Get PDF
    By correcting the redshift--dependent distances for peculiar motions through a number of peculiar velocity field models, we recover the true distances of a wide, all-sky sample of nearby galaxies (~ 6400 galaxies with velocities cz<5500 km/s), which is complete up to the blue magnitude B=14 mag. Relying on catalogs of galaxy groups, we treat ~2700 objects as members of galaxy groups and the remaining objects as field galaxies. We model the peculiar velocity field using: i) a cluster dipole reconstruction scheme; ii) a multi--attractor model fitted to the Mark II and Mark III catalogs of galaxy peculiar velocities. According to Mark III data the Great Attractor has a smaller influence on local dynamics than previously believed, whereas the Perseus-Pisces and Shapley superclusters acquire a specific dynamical role. Remarkably, the Shapley structure, which is found to account for nearly half the peculiar motion of the Local Group, is placed by Mark III data closer to the zone of avoidance with respect to its optical position. Our multi--attractor model based on Mark III data favors a cosmological density parameter Omega ~ 0.5 (irrespective of a biasing factor of order unity). Differences among distance estimates are less pronounced in the ~ 2000 - 4000 km/s distance range than at larger or smaller distances. In the last regions these differences have a serious impact on the 3D maps of the galaxy distribution and on the local galaxy density --- on small scales.Comment: 24 pages including (9 eps figures and 7 tables). Figures 1,2,3,4 are available only upon request. Accepted by Ap

    Design of an Automated Ultrasonic Scanning System for In-Situ Composite Cure Monitoring and Defect Detection

    Get PDF
    The preliminary design and development of an automated ultrasonic scanning system for in-situ composite cure monitoring and defect detection in the high temperature environment of an oven was completed. This preliminary design is a stepping stone to deployment in the high temperature and high pressure environment of an autoclave, the primary cure method of aerospace grade thermoset composites. Cure monitoring with real-time defect detection during the process could determine when defects form and how they move. In addition, real-time defect detection during cure could assist validating physics-based process models for predicting defects at all stages of the cure cycle. A physics-based process model for predicting porosity and fiber waviness originating during cure is currently under development by the NASA Advanced Composites Project (ACP). For the design, an ultrasonic contact scanner is enclosed in an insulating box that is placed inside an oven during cure. Throughout the cure cycle, the box is nitrogen-cooled to approximately room temperature to maintain a standard operating environment for the scanner. The composite part is mounted on the outside of the box in a vacuum bag on the build/tool plate. The build plate is attached to the bottom surface of the box. The scanner inspects the composite panel through the build plate, tracking the movement of defects introduced during layup and searching for new defects that may form during cure. The focus of this paper is the evaluation and selection of the build plate material and thickness. The selection was based on the required operating temperature of the scanner, the cure temperature of the composite material, thermal conductivity models of the candidate build plates, and a series of ultrasonic attenuation tests. This analysis led to the determination that a 63.5 mm thick build plate of borosilicate glass would be utilized for the system. The borosilicate glass plate was selected as the build plate material due to the low ultrasonic attenuation it demonstrated, its ability to efficiently insulate the scanner while supporting an elevated temperature on the part side of the plate, and the availability of a 63.5 mm thick plate without the need for lamination

    The Starburst in the Central Kiloparsec of Markarian 231

    Get PDF
    We present VLBA observations at 0.33 and 0.61 GHz, and VLA observations between 5 and 22 GHz, of subkiloparsec scale radio emission from Mrk 231. In addition to jet components clearly associated with the AGN, we also find a smooth extended component of size 100 - 1000 pc most probably related to the purported massive star forming disk in Mrk 231. The diffuse radio emission from the disk is found to have a steep spectrum at high frequencies, characteristic of optically thin synchrotron emission. The required relativistic particle density in the disk can be produced by a star formation rate of 220 Msolar/yr in the central kiloparsec. At low frequencies the disk is absorbed, most likely by ionized gas with an emission measure of 8 x 10^5 pc cm-6. We have also identified 4 candidate radio supernovae that, if confirmed, represent direct evidence for ongoing star formation in the central kiloparsec.Comment: in press at ApJ for v. 519 July 1999, 14 page LaTeX document includes 6 postscript figure

    Slowing heavy, ground-state molecules using an alternating gradient decelerator

    Get PDF
    Cold supersonic beams of molecules can be slowed down using a switched sequence of electrostatic field gradients. The energy to be removed is proportional to the mass of the molecules. Here we report deceleration of YbF, which is 7 times heavier than any molecule previously decelerated. We use an alternating gradient structure to decelerate and focus the molecules in their ground state. We show that the decelerator exhibits the axial and transverse stability required to bring these molecules to rest. Our work significantly extends the range of molecules amenable to this powerful method of cooling and trapping.Comment: 4 pages, 5 figure

    Solar response of the BATSE instrument on the gamma-ray observatory

    Get PDF
    The Burst and Transient Source Experiment (BATSE) on board the gamma ray observatory (GRO) aims at comprehensive observations of time profiles, spectra, and locations of high-energy transient sources. The mysterious cosmic gamma ray bursts provided the main motivation for the observations, but BATSE will make excellent observations of many classes of sources, and in particular solar flares. The solar response of BATSE, as inferred from its design parameters, is analyzed for two purposes: the optimization of the solar observations themselves, and the characterization of the solar effects on ordinary nonsolar observations
    • …
    corecore