528 research outputs found
The Quest for Antiinflammatory and Immunomodulatory Strategies in Heart Failure
Intensive research over the last 3 decades has unequivocally demonstrated the relevance of inflammation in heart failure (HF). Despite our current and ever increasing knowledge about inflammation, the clinical success of antiinflammatory and immunomodulatory therapies in HF is still limited. This review outlines the complexity and diversity of inflammation, its reciprocal interaction with HF, and addresses future perspectives, calling for immunomodulatory therapies that are specific for factors that activate the immune system without the risk of nonspecific immune suppression
A stable alkylated cobalt catalyst for photocatalytic H2 generation in liposomes
Photocatalytic proton reduction is a promising way to produce dihydrogen (H-2) in a clean and sustainable manner, and mimicking nature by immobilising proton reduction catalysts and photosensitisers on liposomes is an attractive approach for biomimetic solar fuel production in aqueous solvents. Current photocatalytic proton reduction systems on liposomes are, however, limited by the stability of the catalyst. To overcome this problem, a new alkylated cobalt(II) polypyridyl complex (CoC12) was synthesised and immobilised on the lipid bilayer of liposomes, and its performance was studied in a photocatalytic system containing an alkylated ruthenium photosensitiser (RuC12) and a 1 : 1 mixture of sodium ascorbate and tris-2-carboxyethylphosphine hydrochloride as sacrificial electron donors. Several parameters (concentration of CoC12 and RuC12, pH, membrane composition) were changed to optimise the turnover number for H-2 production. Overall, CoC12 was found to be photostable and the optimised turnover number (161) was limited only by the decomposition of the ruthenium-based photosensitiser.Metals in Catalysis, Biomimetics & Inorganic MaterialsBiological and Soft Matter Physic
Gravitational waves from self-ordering scalar fields
Gravitational waves were copiously produced in the early Universe whenever
the processes taking place were sufficiently violent. The spectra of several of
these gravitational wave backgrounds on subhorizon scales have been extensively
studied in the literature. In this paper we analyze the shape and amplitude of
the gravitational wave spectrum on scales which are superhorizon at the time of
production. Such gravitational waves are expected from the self ordering of
randomly oriented scalar fields which can be present during a thermal phase
transition or during preheating after hybrid inflation. We find that, if the
gravitational wave source acts only during a small fraction of the Hubble time,
the gravitational wave spectrum at frequencies lower than the expansion rate at
the time of production behaves as with an
amplitude much too small to be observable by gravitational wave observatories
like LIGO, LISA or BBO. On the other hand, if the source is active for a much
longer time, until a given mode which is initially superhorizon (), enters the horizon, for , we find that the gravitational
wave energy density is frequency independent, i.e. scale invariant. Moreover,
its amplitude for a GUT scale scenario turns out to be within the range and
sensitivity of BBO and marginally detectable by LIGO and LISA. This new
gravitational wave background can compete with the one generated during
inflation, and distinguishing both may require extra information.Comment: 21 pages, 2 figures, added discussion about numerical integration and
a new figure to illustrate the scale-invariance of the GW power spectrum,
conclusions unchange
Effective Two Higgs Doublets in Nonminimal Supersymmetric Models
The Higgs sectors of supersymmetric extensions of the Standard Model have two
doublets in the minimal version (MSSM), and two doublets plus a singlet in two
others: with (UMSSM) and without (NMSSM) an extra U(1)'. A very concise
comparison of these three models is possible if we assume that the singlet has
a somewhat larger breaking scale compared to the electroweak scale. In that
case, the UMSSM and the NMSSM become effectively two-Higgs-doublet models
(THDM), like the MSSM. As expected, the mass of the lightest CP-even neutral
Higgs boson has an upper bound in each case. We find that in the NMSSM, this
bound exceeds not very much that of the MSSM, unless tan(beta) is near one.
However, the upper bound in the UMSSM may be substantially enhanced.Comment: 8 pages, 1 table, 3 figure
Effects of site dilution on the magnetic properties of geometrically frustrated antiferromagnets
The effect of site dilution by non magnetic impurities on the susceptibility
of geometrically frustrated antiferromagnets (kagome and pyrochlore lattices)
is discussed in the framework of the Generalized Constant Coupling model, for
both classical and quantum Heisenberg spins. For the classical diluted
pyrochlore lattice, excellent agreement is found when compared with Monte Carlo
data. Results for the quantum case are also presented and discussed.Comment: 5 pages, 3 figure
No signs of check-list fatigue - introducing the StOP? intra-operative briefing enhances the quality of an established pre-operative briefing in a pre-post intervention study.
The team timeout (TTO) is a safety checklist to be performed by the surgical team prior to incision. Exchange of critical information is, however, important not only before but also during an operation and members of surgical teams frequently feel insufficiently informed by the operating surgeon about the ongoing procedure. To improve the exchange of critical information during surgery, the StOP?-protocol was developed: At appropriate moments during the procedure, the leading surgeon briefly interrupts the operation and informs the team about the current Status (St) and next steps/objectives (O) of the operation, as well as possible Problems (P), and encourages questions of other team members (?). The StOP?-protocol draws attention to the team. Anticipating the occurrence of StOP?-protocols may support awareness of team processes and quality issues from the beginning and thus support other interventions such as the TTO; however, it also may signal an additional demand and contribute to a phenomenon akin to "checklist fatigue." We investigated if, and how, the introduction of the StOP?-protocol influenced TTO quality.
This was a prospective intervention study employing a pre-post design. In the visceral surgical departments of two university hospitals and one urban hospital the quality of 356 timeouts (out of 371 included operation) was assessed by external observers before (154) and after (202) the introduction of the StOP?-briefing. Timeout quality was rated in terms of timeout completeness (number of checklist items mentioned) and timeout quality (engagement, pace, social atmosphere, noise).
As compared to the baseline, after the implementation of the StOP?-protocol, observed timeouts had higher completeness ratings (F = 8.69, p = 0.003) and were rated by observers as higher in engagement (F = 13.48, p < 0.001), less rushed (F = 14.85, p < 0.001), in a better social atmosphere (F = 5.83, p < 0.016) and less noisy (F = 5.35, p < 0.022).
Aspects of TTO are affected by the anticipation of StOP?-protocols. However, rather than harming the timeout goals by inducing "checklist fatigue," it increases completeness and quality of the team timeout
An artificial metalloenzyme that can oxidize water photocatalytically: design, synthesis, and characterization
Metals in Catalysis, Biomimetics & Inorganic MaterialsSolid state NMR/Biophysical Organic ChemistryBiological and Soft Matter Physic
Isotope shift calculations for atoms with one valence electron
This work presents a method for the ab initio calculation of isotope shift in
atoms and ions with one valence electron above closed shells. As a zero
approximation we use relativistic Hartree-Fock and then calculate correlation
corrections. The main motivation for developing the method comes from the need
to analyse whether different isotope abundances in early universe can
contribute to the observed anomalies in quasar absorption spectra. The current
best explanation for these anomalies is the assumption that the fine structure
constant, alpha, was smaller at early epoch. We test the isotope shift method
by comparing the calculated and experimental isotope shift for the alkali and
alkali-like atoms Na, MgII, K, CaII and BaII. The agreement is found to be
good. We then calculate the isotope shift for some astronomically relevant
transitions in SiII and SiIV, MgII, ZnII and GeII.Comment: 11 page
- …