7,755 research outputs found

    H2B: Heartbeat-based Secret Key Generation Using Piezo Vibration Sensors

    Full text link
    We present Heartbeats-2-Bits (H2B), which is a system for securely pairing wearable devices by generating a shared secret key from the skin vibrations caused by heartbeat. This work is motivated by potential power saving opportunity arising from the fact that heartbeat intervals can be detected energy-efficiently using inexpensive and power-efficient piezo sensors, which obviates the need to employ complex heartbeat monitors such as Electrocardiogram or Photoplethysmogram. Indeed, our experiments show that piezo sensors can measure heartbeat intervals on many different body locations including chest, wrist, waist, neck and ankle. Unfortunately, we also discover that the heartbeat interval signal captured by piezo vibration sensors has low Signal-to-Noise Ratio (SNR) because they are not designed as precision heartbeat monitors, which becomes the key challenge for H2B. To overcome this problem, we first apply a quantile function-based quantization method to fully extract the useful entropy from the noisy piezo measurements. We then propose a novel Compressive Sensing-based reconciliation method to correct the high bit mismatch rates between the two independently generated keys caused by low SNR. We prototype H2B using off-the-shelf piezo sensors and evaluate its performance on a dataset collected from different body positions of 23 participants. Our results show that H2B has an overwhelming pairing success rate of 95.6%. We also analyze and demonstrate H2B's robustness against three types of attacks. Finally, our power measurements show that H2B is very power-efficient

    Examining the interplay between CEPSA's ESG performance and financial performance:an overview of energy sector transformation

    Get PDF
    This study delves into the financial performance of the Compañía Española de Petróleos, S.A.U. (CEPSA) within the context of the ongoing ESG transformation in the Energy Sector. The primary aim of this research is to understand the critical dimensions essential for evaluating energy companies’ ESG performances. The research assesses the changes in CEPSA’s financial indicators over the last five years (2018–2022). The report uses DuPont analysis to evaluate CEPSA’s environmental and social responsibility performances. The study examines several financial performance metrics, including return on net assets, profitability, and corporate financing structure changes. The methodology of this study comprehensively assesses CEPSA’s sustainable development trajectory and ESG management system. The analysis reveals that CEPSA has consistently improved its sustainable development capabilities over the last five years by establishing a comprehensive ESG management system. While return on net assets and profitability indicators have shown positive trends, the financing structure has changed significantly. Notably, the proportion of debt financing has increased substantially, and there is a slight decline in the net profit margin. The formal transformation in 2020 further influenced increases in liabilities and fixed assets for CEPSA. The study focuses on CEPSA’s sustained improvements in ESG management and the associated shifts in financial metrics, adding originality to the study and offering a nuanced perspective on the evolving landscape of sustainable practices. The study reveals the financial implications of ESG transformation in the energy sector and offers valuable insights for stakeholders. Moreover, this research contributes to the existing literature by employing the DuPont analysis system to explore the intricate relationship between ESG performance and financial indicators in the energy sector

    Developing VLSI Curricula in Electrical and Computer Engineering Department

    Get PDF
    © ASEE 2010VLSI (Very Large Scale Integrated Circuits) technology has enabled the information technology revolution which greatly changed the life style of human society. Computers, internet, cellphones, digital cameras/camcorders and many other consumer electronic products are powered by VLSI technology. In the past decades, the VLSI industry was constantly driven by the miniaturization of transistors. As governed by Moore’s law, the number of transistors in the same chip area has been doubled every 12 to 18 months. Nowadays, a typical VLSI CPU chip can contain millions to billions of transistors. As a result, the design of VLSI system is becoming more and more complex. Various EDA tools must be used to help the design of modern VLSI chips. The semiconductor and VLSI industry remain strong needs for VLSI engineers each year. In this paper, efforts in developing systematic VLSI curricula in Electrical and Computer Engineering department have been proposed. The goal of the curricula is to prepare students to satisfy the growing demands of VLSI industry as well as the higher education/research institutions. Modern VLSI design needs a thorough understanding about VLSI in device, gate, module and system levels. We developed CPEG/EE 448D: Introduction to VLSI to give students a comprehensive introduction about digital VLSI design and analysis. In this course, various EDA tools (such as Mentor Graphics tools, Cadence PSPICE, Synopsys) are used in the course projects to help students practice the VLSI design. In addition, analog and mixed signal circuit design are becoming more and more important as MEMS (Microelectromechanical Systems) and Nano devices are integrated with VLSI into Systemon-Chip (SoC) design. We developed CPEG/EE 458: Analog VLSI to introduce the analog and mixed signal VLSI design. As portable electronics (e.g. laptops, cellphones, PDAs, digital cameras) becoming more and more popular, low power VLSI circuit design is becoming a hot field. We developed CPEG/EE 548: Low Power VLSI Circuit Design to introduce various low power techniques to reduce the power consumption of VLSI circuits. Nowadays the VLSI circuits can contain billions of transistors, the testing of such complex system becoming more and more challenging. We developed CPEG/EE 549: VLSI Testing to introduce various VLSI testing strategies for modern VLSI design. In addition to the design and testing, we also developed EE 448: Microelectronic Fabrication to introduce the fabrication processes of modern VLSI circuits. With such a series of VLSI related curricula, students have an opportunity to learn comprehensive knowledge and hands-on experience about VLSI circuit design, testing, fabrication and EDA tools. Students demonstrate tremendous interests in the VLSI field, and all the VLSI courses are generally oversubscripted by students in the early stage of enrollment. Many students are also doing the VLSI graduate research and published various papers/posters in the VLSI related journals/conferences

    Cosmological solutions of massive gravity on de Sitter

    Full text link
    In the framework of the recently proposed models of massive gravity, defined with respect to a de Sitter reference metric, we obtain new homogeneous and isotropic solutions for arbitrary cosmological matter and arbitrary spatial curvature. These solutions can be classified into three branches. In the first two, the massive gravity terms behave like a cosmological constant. In the third branch, the massive gravity effects can be described by a time evolving effective fluid with rather remarkable features, including the property to behave as a cosmological constant at late time.Comment: 6 pages, 1 figure; discussion extended, a few references added, improved analysis in Section

    Planar Chiral [2.2]Paracyclophane-Based Bisoxazoline Ligands and Their Applications in Cu-Mediated N–H Insertion Reaction

    Get PDF
    New catalysts for important C–N bond formation are highly sought after. In this work, we demonstrate the synthesis and viability of a new class of planar chiral [2.2]paracyclophane-based bisoxazoline (BOX) ligands for the copper-catalyzed N–H insertion of α-diazocarbonyls into anilines. The reaction features a wide substrate scope and moderate to excellent yields, and delivers the valuable products at ambient conditions
    • …
    corecore