113 research outputs found
Long-term increase in growth of an estuarine predator, mulloway Argyrosomus japonicus, predicted to continue under future warming scenarios
Understanding the effects of climate change on fish biology and ecology is crucial for effective management of fisheries resources. Estuaries are warming at a faster rate than nearby oceans in south-eastern Australia, yet there is little understanding of how this may impact the growth of estuarine fish. We examined long-term changes and drivers of growth in an ecologically and economically important estuarine fish in this region, the mulloway Argyrosomus japonicus, using a growth chronology spanning 39 yr (1980−2018). The chronology was developed using 3112 otoliths collected over 12° of latitude. Mixed effects models identified a long-term increase in the growth rate of A. japonicus spanning nearly 3 decades in south-eastern Australia and a positive growth response to temperature. Temperature during the months of November−February best explained this growth response, likely representing a specific growing season for the species. However, there also remained some variation in growth not explained by increasing temperature over the period. We also found evidence of faster growth in individuals sampled at both younger and older ages, potentially caused by selectivity mechanisms. Regional climate forecasts predict that, based upon the observed response to temperature, the mean annual growth rate of A. japonicus in south-eastern Australia may increase by up to 8.9% by 2099. These results add to the growing body of literature demonstrating positive growth responses by marine species in warming environments and highlight the value of understanding the drivers of long-term growth variation in exploited fish stocks in order to predict future productivity under a range of environmental and fisheries management scenarios
Long-term drivers of catch variability in south-eastern Australia's largest portunid fishery
Portunid crab fisheries are socially and economically valuable yet are characterised by high inter-annual variability. Competing hypotheses about factors contributing to this variability concern the environment, climate, and fisher behaviour. Here, we investigate variability in commercial catch, through a case study of the most heavily exploited estuary in southeastern Australia (Wallis Lake). Four main hypotheses were identified based on the broader portunid published literature: 1) Freshwater flow may cause poor recruitment due to increased offshore spawning and unfavourable dispersal of larvae, 2) Winter and spring harvesting may impact the following summer harvest by removing the spawning stock biomass (recruit overfishing); 3) Environmental factors including sea surface temperature and onshore winds may influence supply-side processes and recruitment success, contributing to catch fluctuations; and 4) Climatic indices such as the Inter Pacific Oscillation and Pacific Decadal Oscillation (PDO) may correlate with longer-term fluctuations in the fishery. We find evidence in support of hypotheses 2 and 4, with winter harvest negatively impacting the following January - April harvest and the PDO being positively correlated with January - April catch rates. Harvesting in June – November disproportionally impacts large females, and it may be possible to incorporate controls on winter fishing effort through co-management arrangements to achieve the best economic, environmental and social outcomes from the fishery. Such controls may lead to improved summer catch rates by protecting unspawned eggs during the winter months. The hypotheses explored here may provide insight in the variability observed in portunid fisheries around the world
Economic value of regional spearfishing competitions
Large-scale surveys have been used to estimate the value of recreational fishing over large areas and time periods in the past, but there is a lack of information regarding the value of smaller event based recreational fishing activities. Using the travel-cost method, we estimate the overall value generated by two regional spearfishing competitions in eastern Australia and the adjusted value per competitor. The 2021 Bluewater Classic was valued between 39,492 AUD, with past values up to 102,461 and 1,090 and $1,649. Both competitions generated substantial economic activity within the towns that hosted them, as we estimated that localised expenditure constituted 60 – 71% of a competition's overall value. These estimates demonstrate the value of recreational competitions for regional areas and the importance for economic surveys to consider smaller events
Vertically Resolved Pelagic Particle Biomass and Size Structure Across a Continental Shelf Under the Influence of a Western Boundary Current
Continental shelves are key to societal interactions with the oceans, supporting >90% of the world's fisheries through highly productive ecosystems. Previous research has shown that phytoplankton biomass is generally higher on the inner continental shelves, often due to increased nutrient inputs from upwelling or coastal run-off. However, consistency in observed vertical and horizontal gradients (in abundance, biomass or size) of larger particulates, including zooplankton, on continental shelves has not been established. Using an optical plankton counter and CTD mounted on an undulating towed body, we present high-resolution vertically resolved profiles of pelagic particle size structure across a continental shelf. Biomass was highest inshore, declining with distance from shore and with depth in the top 100Â m of the water column, although the presence of frontal zones can alter this pattern. In the region adjacent to the East Australian Current (EAC), uplift generated by either the EAC interacting with the continental slope or upwelling-favorable winds, correlated with smaller geometric mean sizes and steeper size spectrum slopes, particularly in the presence of frontal features. South of the EAC separation, the continental shelf water mass was more homogenous but still displayed the same horizontal and vertical patterns in particulate biomass and mean size. By combining our observations in a global comparison, we demonstrate consistent particulate distributions on continental shelves where the inner shelf has higher biomass with a steeper size spectrum slope compared to offshore. The highly productive inner shelf supports zooplankton communities vital to temperate ecosystems and coastal fisheries, through their consistently high biomass
Evaluating estuarine nursery use and life history patterns of Pomatomus saltatrix in eastern Australia
Estuaries provide important nursery habitats for juvenile fish, but many species move between estuarine and coastal habitats throughout their life. We used otolith chemistry to evaluate the use of estuaries and the coastal marine environment by juvenile Pomatomus saltatrix in eastern Australia. Otolith chemical signatures of juveniles from 12 estuaries, spanning 10° of latitude, were characterised using laser ablation-inductively coupled plasma-mass spectrometry. Based upon multivariate otolith elemental signatures, fish collected from most estuaries could not be successfully discriminated from one another. This was attributed to the varying influence of marine water on otolith elemental composition in fish from all estuaries. Using a reduced number of estuarine groups, the multivariate juvenile otolith elemental signatures and univariate Sr:Ca ratio suggest that between 24 and 52% of adult P. saltatrix had a juvenile period influenced by the marine environment. Elemental profiles across adult (age-1) otoliths highlighted a variety of life history patterns, not all consistent with a juvenile estuarine phase. Furthermore, the presence of age-0 juveniles in coastal waters was confirmed from historical length-frequency data from coastal trawls. Combining multiple lines of evidence suggests considerable plasticity in juvenile life history for P. saltatrix in eastern Australia through their utilisation of both estuarine and coastal nurseries. Knowledge of juvenile life history is important for the management of coastal species of commercial and recreational importance such as P. saltatrix.info:eu-repo/semantics/publishedVersio
Entrainment and development of larval fish assemblages in two contrasting cold core eddies of the East Australian Current system
Cyclonic eddies are diverse in their size, age, upwelling and behaviour, which has significant implications for fisheries production and connectivity when they interact with the continental shelf. To ascertain coastal entrainment by eddies, we compared the larval fish community of 2 contrasting cyclonic eddies in 3 depth strata (0-5, 5-50, 50-100 m), and with the adjacent shelf community. The frontal cyclonic eddy was smaller and younger than the mesoscale cyclonic eddy. A larval fish entrainment index, based on the ratio of coastal to oceanic taxa, revealed the relative abundance of coastal larvae entrained into the upper mixed layer of the frontal eddy, consistent with published numerical modelling studies of similar eddies. The frontal eddy had a high abundance of commercially important coastal taxa entrained from the inner shelf. However, the adjacent inner shelf water and putative location for frontal eddy formation had recently been displaced by the East Australian Current, resulting in the larval fish community being dominated by oceanic taxa. The spatial and temporal dynamics of coastal entrainment into the larger, older cyclonic eddy and the adjacent shelf region were revealed by mixtures of coastal and oceanic taxa in each of the depth strata. The larger cyclonic eddy had a higher biomass of zooplankton, indicating the cumulative effects of eddy age and production. Eddies which interact with the shelf en able cross-shelf mixing and may contribute to coastal fisheries
Multi-decadal trends in large-bodied fish populations in the New South Wales Murray-Darling Basin, Australia
Context: Native fish populations in Australia's Murray-Darling Basin (MDB) have experienced severe declines since European settlement. Information on their status is needed to guide management and recovery. Aims: To quantify trends in MDB fish populations in New South Wales (NSW) from 1994 to 2022. Methods: Relative abundance, biomass, and size structure were examined using generalised additive mixed models at NSW MDB and river catchment (valley) scales for five native species (Murray cod, Maccullochella peelii, golden perch, Macquaria ambigua, silver perch, Bidyanus bidyanus, Macquarie perch, Macquaria australasica, freshwater catfish, Tandanus tandanus) and one alien species (common carp, Cyprinus carpio). Key results: There was strong inter-annual variation in relative abundance, biomass and population structure for all species. At the Basin scale, relative abundance of Murray cod, golden perch and common carp increased across the time series, with no clear trends for silver perch, Macquarie perch or freshwater catfish. Patterns in relative abundance, biomass, and population structure were variable among valleys for most species. Conclusions and implications: Although native fish populations in the MDB remain degraded and face escalating threats, recent increases in the abundance of some native species are an encouraging sign that integrated restoration efforts can improve the outlook for native fish
A procedure for the estimation over time of metabolic fluxes in scenarios where measurements are uncertain and/or insufficient
<p>Abstract</p> <p>Background</p> <p>An indirect approach is usually used to estimate the metabolic fluxes of an organism: couple the available measurements with known biological constraints (e.g. stoichiometry). Typically this estimation is done under a static point of view. Therefore, the fluxes so obtained are only valid while the environmental conditions and the cell state remain stable. However, estimating the evolution over time of the metabolic fluxes is valuable to investigate the dynamic behaviour of an organism and also to monitor industrial processes. Although Metabolic Flux Analysis can be successively applied with this aim, this approach has two drawbacks: i) sometimes it cannot be used because there is a lack of measurable fluxes, and ii) the uncertainty of experimental measurements cannot be considered. The Flux Balance Analysis could be used instead, but the assumption of optimal behaviour of the organism brings other difficulties.</p> <p>Results</p> <p>We propose a procedure to estimate the evolution of the metabolic fluxes that is structured as follows: 1) measure the concentrations of extracellular species and biomass, 2) convert this data to measured fluxes and 3) estimate the non-measured fluxes using the Flux Spectrum Approach, a variant of Metabolic Flux Analysis that overcomes the difficulties mentioned above without assuming optimal behaviour. We apply the procedure to a real problem taken from the literature: estimate the metabolic fluxes during a cultivation of CHO cells in batch mode. We show that it provides a reliable and rich estimation of the non-measured fluxes, thanks to considering measurements uncertainty and reversibility constraints. We also demonstrate that this procedure can estimate the non-measured fluxes even when there is a lack of measurable species. In addition, it offers a new method to deal with inconsistency.</p> <p>Conclusion</p> <p>This work introduces a procedure to estimate time-varying metabolic fluxes that copes with the insufficiency of measured species and with its intrinsic uncertainty. The procedure can be used as an off-line analysis of previously collected data, providing an insight into the dynamic behaviour of the organism. It can be also profitable to the on-line monitoring of a running process, mitigating the traditional lack of reliable on-line sensors in industrial environments.</p
A Pathogenic Mechanism in Huntington's Disease Involves Small CAG-Repeated RNAs with Neurotoxic Activity
Huntington's disease (HD) is an autosomal dominantly inherited disorder caused by the expansion of CAG repeats in the Huntingtin (HTT) gene. The abnormally extended polyglutamine in the HTT protein encoded by the CAG repeats has toxic effects. Here, we provide evidence to support that the mutant HTT CAG repeats interfere with cell viability at the RNA level. In human neuronal cells, expanded HTT exon-1 mRNA with CAG repeat lengths above the threshold for complete penetrance (40 or greater) induced cell death and increased levels of small CAG-repeated RNAs (sCAGs), of ≈21 nucleotides in a Dicer-dependent manner. The severity of the toxic effect of HTT mRNA and sCAG generation correlated with CAG expansion length. Small RNAs obtained from cells expressing mutant HTT and from HD human brains significantly decreased neuronal viability, in an Ago2-dependent mechanism. In both cases, the use of anti-miRs specific for sCAGs efficiently blocked the toxic effect, supporting a key role of sCAGs in HTT-mediated toxicity. Luciferase-reporter assays showed that expanded HTT silences the expression of CTG-containing genes that are down-regulated in HD. These results suggest a possible link between HD and sCAG expression with an aberrant activation of the siRNA/miRNA gene silencing machinery, which may trigger a detrimental response. The identification of the specific cellular processes affected by sCAGs may provide insights into the pathogenic mechanisms underlying HD, offering opportunities to develop new therapeutic approaches
Quantitative modeling of the physiology of ascites in portal hypertension
Although the factors involved in cirrhotic ascites have been studied for a century, a number of observations are not understood, including the action of diuretics in the treatment of ascites and the ability of the plasma-ascitic albumin gradient to diagnose portal hypertension. This communication presents an explanation of ascites based solely on pathophysiological alterations within the peritoneal cavity. A quantitative model is described based on experimental vascular and intraperitoneal pressures, lymph flow, and peritoneal space compliance. The model's predictions accurately mimic clinical observations in ascites, including the magnitude and time course of changes observed following paracentesis or diuretic therapy
- …