615 research outputs found

    Expression, purification and characterization of the Lily symptomless virus coat protein from Lanzhou Isolate

    Get PDF
    Background: Lily symptomless virus (LSV) is widespread in many countries where lily are grown or planted, and causes severe economic losses in terms of quantity and quality of flower and bulb production. To study the structure-function relationship of coat protein (CP) of LSV, to investigate antigenic relationships between coat protein subunits or intact virons, and to prepare specific antibodies against LSV, substantial amounts of CP protein are needed. Results: Thus, full-length cDNA of LSV coat protein was synthesized and amplified by RT-PCR from RNA isolated from LSV Lanzhou isolate. The extended 33.6 kDa CP was cloned and expressed prokaryoticly and then purified by Ni-ion affinity chromatography. Its identity and antigenicity of recombinant CP were identified on Western-blotting by using the prepared anti-LSV antibodies. Conclusions: The results indicate that fusion CP maintains its native antigenicity and specificity, providing a good source of antigen in preparation of LSV related antibodies. Detailed structural analysis of a pure recombinant CP should allow a better understanding of its role in cell attachment and LSV tropism. This investigation to LSV should provide some specific antibodies and aid to development a detection system for LSV diagnostics and epidemiologic surveys

    Cytomolecular identification of individual wheat-wheat chromosome arm associations in wheat-rye hybrids

    Get PDF
    Chromosome pairing in the meiotic metaphase I of wheatrye hybrids has been characterized by sequential genomic and fluorescent in situ hybridization allowing not only the discrimination of wheat and rye chromosomes, but also the identification of the individual wheat and rye chromosome arms involved in the chromosome associations. The majority of associations (93.8%) were observed between the wheat chromosomes. The largest number of wheat-wheat chromosome associations (53%) was detected between the A and D genomes, while the frequency of B-D and A-B associations was significantly lower (32 and 8%, respectively). Among the A-D chromosome associations, pairing between the 3AL and 3DL arms was observed with the highest frequency, while the most frequent of all the chromosome associations (0.113/ cell) was found to be the 3DS-3BS. Differences in the pairing frequency of the individual chromosome arms of wheat-rye hybrids have been discussed in relation to the homoeologous relationships between the constituent genomes of hexaploid wheat

    The pharmacological regulation of cellular mitophagy

    Get PDF
    Small molecules are pharmacological tools of considerable value for dissecting complex biological processes and identifying potential therapeutic interventions. Recently, the cellular quality-control process of mitophagy has attracted considerable research interest; however, the limited availability of suitable chemical probes has restricted our understanding of the molecular mechanisms involved. Current approaches to initiate mitophagy include acute dissipation of the mitochondrial membrane potential (ΔΨm) by mitochondrial uncouplers (for example, FCCP/CCCP) and the use of antimycin A and oligomycin to impair respiration. Both approaches impair mitochondrial homeostasis and therefore limit the scope for dissection of subtle, bioenergy-related regulatory phenomena. Recently, novel mitophagy activators acting independently of the respiration collapse have been reported, offering new opportunities to understand the process and potential for therapeutic exploitation. We have summarized the current status of mitophagy modulators and analyzed the available chemical tools, commenting on their advantages, limitations and current applications

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)

    Biocompatibility of near-IR sensitive Au-based nanoparticles as the potential drug delivery carriers

    Get PDF
    We successfully synthesized near infrared (NIR) sensitive Au(shell)-Au(2)S(core) nanoparticles, where Au(2)S dielectric core was encapsulated by a thin gold shell. The cytotoxicity in vitro and biodistribution in vivo of Au-Au(2)S nanoparticles was studied by using NIH3T3 cells and KM mice, respectively. The quantitative analysis of Au in each tissue of mice was done by using the Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Au-Au(2)S nanoparticles (< 300 mu g/ml) showed good biocompatibility. Au-Au(2)S nanoparticles were preferentially taken up by the liver and spleen, and ultimately eliminated mostly in the feces

    Aggressive juvenile fibromatosis of the paranasal sinuses: case report and brief review

    Get PDF
    Desmoid fibromatoses are benign, slow growing fibroblastic neoplasms, arising from musculoaponeurotic stromal elements. Desmoids are characterized by local invasion, with a high rate of local recurrence and a tendency to destroy adjacent structures and organs. Desmoid fibromatoses are rare in children, and though they may occur in the head and neck region, are extremely rare in the paranasal sinuses. Here we report a case of extraabdominal desmoid fibromatosis in a seven-year-old boy involving the sphenoid sinus, one of only six published reports of desmoid fibromatosis of the paranasal sinuses. The expansile soft tissue mass eroded the walls of the sphenoid sinus as well as the posterior ethmoid air cells extending cephalad through the base of the skull. We discuss the clinicopathologic features of this lesion, including structural and ultrastructural characteristics, and we review the literature regarding treatment and outcome

    Temporal blastemal cell gene expression analysis in the kidney reveals new Wnt and related signaling pathway genes to be essential for Wilms' tumor onset

    Get PDF
    Wilms' tumors (WTs) originate from metanephric blastema cells that are unable to complete differentiation, resulting in triphasic tumors composed of epithelial, stromal and blastemal cells, with the latter harboring molecular characteristics similar to those of the earliest kidney development stages. Precise regulation of Wnt and related signaling pathways has been shown to be crucial for correct kidney differentiation. In this study, the gene expression profile of Wnt and related pathways was assessed in laser-microdissected blastemal cells in WTs and differentiated kidneys, in human and in four temporal kidney differentiation stages (i.e. E15.5, E17.5, P1.5 and P7.5) in mice, using an orthologous cDNA microarray platform. A signaling pathway-based gene signature was shared between cells of WT and of earliest kidney differentiation stages, revealing genes involved in the interruption of blastemal cell differentiation in WT. Reverse transcription-quantitative PCR showed high robustness of the microarray data demonstrating 75 and 56% agreement in the initial and independent sample sets, respectively. The protein expression of CRABP2, IGF2, GRK7, TESK1, HDGF, WNT5B, FZD2 and TIMP3 was characterized in WTs and in a panel of human fetal kidneys displaying remarkable aspects of differentiation, which was recapitulated in the tumor. Taken together, this study reveals new genes candidate for triggering WT onset and for therapeutic treatment targets

    Baicalin administration attenuates hyperglycemia-induced malformation of cardiovascular system

    Get PDF
    In this study, the effects of Baicalin on the hyperglycemia-induced cardiovascular malformation during embryo development were investigated. Using early chick embryos, an optimal concentration of Baicalin (6 μM), was identified which could prevent hyperglycemia-induced cardiovascular malformation of embryos. Hyperglycemia-enhanced cell apoptosis was reduced in embryos and HUVECs in the presence of Baicalin. Hyperglycemia-induced excessive ROS production was inhibited when Baicalin was administered. Analyses of SOD, GSH-Px, MAQE and GABAA suggested Baicalin plays an antioxidant role in chick embryos possibly through suppression of outwardly rectifying Cl(-) in the high-glucose microenvironment. In addition, hyperglycemia-enhanced autophagy fell in the presence of Baicalin, through affecting the ubiquitin of p62 and accelerating autophagy flux. Both Baicalin and Vitamin C could decrease apoptosis, but CQ did not, suggesting autophagy to be a protective function on the cell survival. In mice, Baicalin reduced the elevated blood glucose level caused by streptozotocin (STZ). Taken together, these data suggest that hyperglycemia-induced embryonic cardiovascular malformation can be attenuated by Baicalin administration through suppressing the excessive production of ROS and autophagy. Baicalin could be a potential candidate drug for women suffering from gestational diabetes mellitus

    Blood Levels of Macrophage Migration Inhibitory Factor after Successful Resuscitation from Cardiac Arrest

    Get PDF
    Introduction: Ischemia-reperfusion injury following cardiopulmonary resuscitation (CPR) is associated with a systemic inflammatory response, resulting in post-resuscitation disease. In the present study we investigated the response of the pleiotropic inflammatory cytokine macrophage migration inhibitory factor (MIF) to CPR in patients admitted to the hospital after out-of-hospital cardiac arrest (OHCA). To describe the magnitude of MIF release, we compared the blood levels from CPR patients with those obtained in healthy volunteers and with an aged- and gender-matched group of patient
    corecore