33 research outputs found

    Shortcuts to adiabaticity in a time-dependent box

    Full text link
    A method is proposed to drive an ultrafast non-adiabatic dynamics of an ultracold gas trapped in a box potential. The resulting state is free from spurious excitations associated with the breakdown of adiabaticity, and preserves the quantum correlations of the initial state up to a scaling factor. The process relies on the existence of an adiabatic invariant and the inversion of the dynamical self-similar scaling law dictated by it. Its physical implementation generally requires the use of an auxiliary expulsive potential analogous to those used in soliton control. The method is extended to a broad family of many-body systems. As illustrative examples we consider the ultrafast expansion of a Tonks-Girardeau gas and of Bose-Einstein condensates in different dimensions, where the method exhibits an excellent robustness against different regimes of interactions and the features of an experimentally realizable box potential.Comment: 6 pp, 4 figures, typo in Eq. (6) fixe

    The highly accurate anteriolateral portal for injecting the knee

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The extended knee lateral midpatellar portal for intraarticular injection of the knee is accurate but is not practical for all patients. We hypothesized that a modified anteriolateral portal where the synovial membrane of the medial femoral condyle is the target would be highly accurate and effective for intraarticular injection of the knee.</p> <p>Methods</p> <p>83 subjects with non-effusive osteoarthritis of the knee were randomized to intraarticular injection using the modified anteriolateral bent knee versus the standard lateral midpatellar portal. After hydrodissection of the synovial membrane with lidocaine using a mechanical syringe (reciprocating procedure device), 80 mg of triamcinolone acetonide were injected into the knee with a 2.0-in (5.1-cm) 21-gauge needle. Baseline pain, procedural pain, and pain at outcome (2 weeks and 6 months) were determined with the 10 cm Visual Analogue Pain Score (VAS). The accuracy of needle placement was determined by sonographic imaging.</p> <p>Results</p> <p>The lateral midpatellar and anteriolateral portals resulted in equivalent clinical outcomes including procedural pain (VAS midpatellar: 4.6 ± 3.1 cm; anteriolateral: 4.8 ± 3.2 cm; p = 0.77), pain at outcome (VAS midpatellar: 2.6 ± 2.8 cm; anteriolateral: 1.7 ± 2.3 cm; p = 0.11), responders (midpatellar: 45%; anteriolateral: 56%; p = 0.33), duration of therapeutic effect (midpatellar: 3.9 ± 2.4 months; anteriolateral: 4.1 ± 2.2 months; p = 0.69), and time to next procedure (midpatellar: 7.3 ± 3.3 months; anteriolateral: 7.7 ± 3.7 months; p = 0.71). The anteriolateral portal was 97% accurate by real-time ultrasound imaging.</p> <p>Conclusion</p> <p>The modified anteriolateral bent knee portal is an effective, accurate, and equivalent alternative to the standard lateral midpatellar portal for intraarticular injection of the knee.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00651625">NCT00651625</a></p

    CD1d-Expressing Breast Cancer Cells Modulate NKT Cell-Mediated Antitumor Immunity in a Murine Model of Breast Cancer Metastasis

    Get PDF
    Tumor tolerance and immune suppression remain formidable obstacles to the efficacy of immunotherapies that harness the immune system to eradicate breast cancer. A novel syngeneic mouse model of breast cancer metastasis was developed in our lab to investigate mechanisms of immune regulation of breast cancer. Comparative analysis of low-metastatic vs. highly metastatic tumor cells isolated from these mice revealed several important genetic alterations related to immune control of cancer, including a significant downregulation of cd1d1 in the highly metastatic tumor cells. The cd1d1 gene in mice encodes the MHC class I-like molecule CD1d, which presents glycolipid antigens to a specialized subset of T cells known as natural killer T (NKT) cells. We hypothesize that breast cancer cells, through downregulation of CD1d and subsequent evasion of NKT-mediated antitumor immunity, gain increased potential for metastatic tumor progression.In this study, we demonstrate in a mouse model of breast cancer metastasis that tumor downregulation of CD1d inhibits iNKT-mediated antitumor immunity and promotes metastatic breast cancer progression in a CD1d-dependent manner in vitro and in vivo. Using NKT-deficient transgenic mouse models, we demonstrate important differences between type I and type II NKT cells in their ability to regulate antitumor immunity of CD1d-expressing breast tumors.The results of this study emphasize the importance of determining the CD1d expression status of the tumor when tailoring NKT-based immunotherapies for the prevention and treatment of metastatic breast cancer

    The Single-Phase ProtoDUNE Technical Design Report

    Get PDF
    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report

    The DUNE Far Detector Interim Design Report, Volume 3: Dual-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 3 describes the dual-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report, Volume 2: Single-Phase Module

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE far detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 2 describes the single-phase module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 1 contains an executive summary that describes the general aims of this document. The remainder of this first volume provides a more detailed description of the DUNE physics program that drives the choice of detector technologies. It also includes concise outlines of two overarching systems that have not yet evolved to consortium structures: computing and calibration. Volumes 2 and 3 of this IDR describe, for the single-phase and dual-phase technologies, respectively, each detector module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure

    The Single-Phase ProtoDUNE Technical Design Report

    Get PDF
    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report

    The DUNE Far Detector Interim Design Report Volume 1: Physics, Technology and Strategies

    Get PDF
    The DUNE IDR describes the proposed physics program and technical designs of the DUNE Far Detector modules in preparation for the full TDR to be published in 2019. It is intended as an intermediate milestone on the path to a full TDR, justifying the technical choices that flow down from the high-level physics goals through requirements at all levels of the Project. These design choices will enable the DUNE experiment to make the ground-breaking discoveries that will help to answer fundamental physics questions. Volume 1 contains an executive summary that describes the general aims of this document. The remainder of this first volume provides a more detailed description of the DUNE physics program that drives the choice of detector technologies. It also includes concise outlines of two overarching systems that have not yet evolved to consortium structures: computing and calibration. Volumes 2 and 3 of this IDR describe, for the single-phase and dual-phase technologies, respectively, each detector module's subsystems, the technical coordination required for its design, construction, installation, and integration, and its organizational structure
    corecore