6,638 research outputs found

    Presence of Spotters Improves Bench Press Performance: A Deception Study.

    Get PDF
    Sheridan, A, Marchant, DC, Williams, EL, Jones, HS, Hewitt, PA, and Sparks, SA. Presence of spotters improves bench press performance: a deception study. J Strength Cond Res XX(X): 000-000, 2017-Resistance exercise is a widely used method of physical training in both recreational exercise and athletic populations. The use of training partners and spotters during resistance exercise is widespread, but little is known about the effect of the presence of these individuals on exercise performance. The purpose of the current study was to investigate the effect of spotter presence on bench press performance. Twelve recreationally trained participants (age, 21.3 ± 0.8 years, height, 1.82 ± 0.1 m, and weight, 84.8 ± 11.1 kg) performed 2 trials of 3 sets to failure at 60% of 1 repetition maximum on separate occasions. The 2 trials consisted of spotters being explicitly present or hidden from view (deception). During the trials, total repetitions (reps), total weight lifted, ratings of perceived exertion (RPE), and self-efficacy were measured. Total reps and weight lifted were significantly greater with spotters (difference = 4.5 reps, t = 5.68, p < 0.001 and difference = 209.6 kg, t = 5.65, p < 0.001, respectively). Although RPE and local RPE were significantly elevated in the deception trials (difference = 0.78, f = 6.16, p = 0.030 and difference = 0.81, f = 5.89, p = 0.034, respectively), self-efficacy was significantly reduced (difference = 1.58, f = 26.90, p < 0.001). This study demonstrates that resistance exercise is improved by the presence of spotters, which is facilitated by reduced RPE and increased self-efficacy. This has important implications for athletes and clients, who should perform resistance exercise in the proximity of others, to maximize total work performed

    Competitor presence reduces internal attentional focus and improves 16.1km cycling time trial performance.

    Get PDF
    Objectives: Whilst the presence of a competitor has been found to improve performance, the mechanisms influencing the change in selected work rates during direct competition have been suggested but not specifically assessed. The aim was to investigate the physiological and psychological influences of a visual avatar competitor during a 16.1-km cycling time trial performance, using trained, competitive cyclists. Design: Randomised cross-over design. Methods: Fifteen male cyclists completed four 16.1 km cycling time trials on a cycle ergometer, performing two with a visual display of themselves as a simulated avatar (FAM and SELF), one with no visual display(DO), and one with themselves and an opponent as simulated avatars (COMP). Participants were informed the competitive avatar was a similar ability cyclist but it was actually a representation of their fastest previous performance. Results: Increased performance times were evident during COMP (27.8 ± 2.0 min) compared to SELF(28.7 ± 1.9 min) and DO (28.4 ± 2.3 min). Greater power output, speed and heart rate were apparent during COMP trial than SELF (p < 0.05) and DO (p ≤ 0.06). There were no differences between SELF and DO.Ratings of perceived exertion were unchanged across all conditions. Internal attentional focus was significantly reduced during COMP trial (p < 0.05), suggesting reduced focused on internal sensations during an increase in performance. Conclusions: Competitive cyclists performed significantly faster during a 16.1-km competitive trial than when performing maximally, without a competitor. The improvement in performance was elicited due to a greater external distraction, deterring perceived exertion

    Improvements in Cycling Time Trial Performance Are Not Sustained Following the Acute Provision of Challenging and Deceptive Feedback

    Get PDF
    The provision of performance-related feedback during exercise is acknowledged as an influential external cue used to inform pacing decisions. The provision of this feedback in a challenging or deceptive context allows research to explore how feedback can be used to improve performance and influence perceptual responses. However, the effects of deception on both acute and residual responses have yet to be explored, despite potential application for performance enhancement. Therefore, this study investigated the effects of challenging and deceptive feedback on perceptual responses and performance in self-paced cycling time trials (TT) and explored whether changes in performance are sustained in a subsequent TT following the disclosure of the deception. Seventeen trained male cyclists were assigned to either an accurate or deceptive feedback group and performed four 16.1 km cycling TTs; 1 and 2) ride-alone baseline TTs where a fastest baseline (FBL) performance was identified, 3) a TT against a virtual avatar representing 102% of their FBL performance (PACER), and 4) a subsequent ride-alone TT (SUB). The deception group, however, were initially informed that the avatar accurately represented their FBL, but prior to SUB were correctly informed of the nature of the avatar. Affect, self-efficacy and RPE were measured every quartile. Both groups performed PACER faster than FBL and SUB (p < 0.05) and experienced lower affect (p = 0.016), lower self-efficacy (p = 0.011), and higher RPE (p < 0.001) in PACER than FBL. No significant differences were found between FBL and SUB for any variable. The presence of the pacer rather than the manipulation of performance beliefs acutely facilitates TT performance and perceptual responses. Revealing that athletes’ performance beliefs were falsely negative due to deceptive feedback provision has no effect on subsequent perceptions or performance. A single experiential exposure may not be sufficient to produce meaningful changes in the performance beliefs of trained individuals beyond the acute setting

    Magnetic Resonance Imaging Parameters at 1 Year Correlate With Clinical Outcomes Up to 17 Years After Autologous Chondrocyte Implantation

    Get PDF
    Background: The ability to predict the long-term success of surgical treatment in orthopaedics is invaluable, particularly in clinical trials. The quality of repair tissue formed 1 year after autologous chondrocyte implantation (ACI) in the knee was analyzed and compared with clinical outcomes over time. Hypothesis: Better quality repair tissue and a better appearance on magnetic resonance imaging (MRI) 1 year after ACI lead to improved longer-term clinical outcomes. Study Design: Cohort study; Level of evidence, 3. Methods: Repair tissue quality was assessed using either MRI (11.5 ± 1.4 [n = 91] or 39.2 ± 18.5 [n = 76] months after ACI) or histology (16.3 ± 11.0 months [n = 102] after ACI). MRI scans were scored using the whole-organ magnetic resonance imaging score (WORMS) and the magnetic resonance observation of cartilage repair tissue (MOCART) score, with additional assessments of subchondral bone marrow and cysts. Histology of repair tissue was performed using the Oswestry cartilage score (OsScore) and the International Cartilage Repair Society (ICRS) II score. Clinical outcomes were assessed using the modified Lysholm score preoperatively, at the time of MRI or biopsy, and at a mean 8.4 ± 3.7 years (maximum, 17.8 years) after ACI. Results: At 12 months, the total MOCART score and some of its individual parameters correlated significantly with clinical outcomes. The degree of defect fill, overall signal intensity, and surface of repair tissue at 12 months also significantly correlated with longer-term outcomes. The presence of cysts or effusion (WORMS) significantly correlated with clinical outcomes at 12 months, while the presence of synovial cysts/bursae preoperatively or the absence of loose bodies at 12 months correlated significantly with long-term clinical outcomes. Thirty percent of repair tissue biopsies contained hyaline cartilage, 65% contained fibrocartilage, and 5% contained fibrous tissue. Despite no correlation between the histological scores and clinical outcomes at the time of biopsy, a lack of hyaline cartilage or poor basal integration was associated with increased pain; adhesions visible on MRI also correlated with significantly better histological scores. Conclusion: These results demonstrate that MRI at 12 months can predict longer-term clinical outcomes after ACI. Further investigation regarding the presence of cysts, effusion, and adhesions and their relationship with histological and clinical outcomes may yield new insights into the mechanisms of cartilage repair and potential sources of pain

    Splitting the anterior mitral leaflet impairs left ventricular function in an ovine model

    Full text link
    OBJECTIVES: During mitral valve replacement, the anterior mitral leaflet is usually resected or modified. Anterior leaflet splitting seems the least disruptive modification. Reattachment of the modified leaflet to the annulus reduces the annulopapillary distance. The goal of this study was to quantify the acute effects on left ventricular function of splitting the anterior mitral leaflet and shortening the annulopapillary distance. METHODS: In 6 adult sheep, a wire was placed around the anterior leaflet and exteriorized through the left ventricular wall to enable splitting the leaflet in the beating heart. Releasable snares to reduce annulopapillary distance were likewise positioned and exteriorized. A mechanical mitral prosthesis was inserted to prevent mitral incompetence during external manipulations of the native valve. Instantaneous changes in left ventricular function were recorded before and after shortening the annulopapillary distance, then before and after splitting the anterior leaflet. RESULTS: After splitting the anterior leaflet, preload recruitable stroke work, stroke work, stroke volume, cardiac output, left ventricular end systolic pressure and mean pressure were significantly decreased by 26%, 23%, 12%, 9%, 15% and 11%, respectively. Shortening the annulopapillary distance was associated with significant decreases in the end systolic pressure volume relationship, preload recruitable stroke work, stroke work and left ventricular end systolic pressure by 67%, 33%, 15% and 13%, respectively. Shortening the annulopapillary distance after splitting the leaflet had no significant effect. CONCLUSIONS: Splitting the anterior mitral leaflet acutely impaired left ventricular contractility and haemodynamics in an ovine model. Shortening the annulopapillary distance after leaflet splitting did not further impair left ventricular function

    A possible method for non-Hermitian and non-PTPT-symmetric Hamiltonian systems

    Full text link
    A possible method to investigate non-Hermitian Hamiltonians is suggested through finding a Hermitian operator η+\eta_+ and defining the annihilation and creation operators to be η+\eta_+-pseudo-Hermitian adjoint to each other. The operator η+\eta_+ represents the η+\eta_+-pseudo-Hermiticity of Hamiltonians. As an example, a non-Hermitian and non-PTPT-symmetric Hamiltonian with imaginary linear coordinate and linear momentum terms is constructed and analyzed in detail. The operator η+\eta_+ is found, based on which, a real spectrum and a positive-definite inner product, together with the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution, are obtained for the non-Hermitian and non-PTPT-symmetric Hamiltonian. Moreover, this Hamiltonian turns out to be coupled when it is extended to the canonical noncommutative space with noncommutative spatial coordinate operators and noncommutative momentum operators as well. Our method is applicable to the coupled Hamiltonian. Then the first and second order noncommutative corrections of energy levels are calculated, and in particular the reality of energy spectra, the positive-definiteness of inner products, and the related properties (the probability explanation of wave functions, the orthogonality of eigenstates, and the unitarity of time evolution) are found not to be altered by the noncommutativity.Comment: 15 pages, no figures; v2: clarifications added; v3: 16 pages, 1 figure, clarifications made clearer; v4: 19 pages, the main context is completely rewritten; v5: 25 pages, title slightly changed, clarifications added, the final version to appear in PLOS ON

    Analogue Mean Systemic Filling Pressure: a New Volume Management Approach During Percutaneous Left Ventricular Assist Device Therapy

    Full text link
    The absence of an accepted gold standard to estimate volume status is an obstacle for optimal management of left ventricular assist devices (LVADs). The applicability of the analogue mean systemic filling pressure (Pmsa) as a surrogate of the mean circulatory pressure to estimate volume status for patients with LVADs has not been investigated. Variability of flows generated by the Impella CP, a temporary LVAD, should have no physiological impact on fluid status. This translational interventional ovine study demonstrated that Pmsa did not change with variable circulatory flows induced by a continuous flow LVAD (the average dynamic increase in Pmsa of 0.20 ± 0.95 mmHg from zero to maximal Impella flow was not significant (p = 0.68)), confirming applicability of the human Pmsa equation for an ovine LVAD model. The study opens new directions for future translational and human investigations of fluid management using Pmsa for patients with temporary LVADs

    Changes in Cognition over a 16.1 km Cycling Time Trial using Think Aloud Protocol: Preliminary Evidence.

    Get PDF
    Objectives: This study investigated cognitions of cyclists during a competitive time trial (TT) event using Think Aloud (TA) protocol analysis. Design: Single group, observational design. Method: Fifteen male and three female cyclists from the North West of England verbalised their thoughts throughout an outdoor competitive 16.1 km cycling time trial (Level 2 TA). Verbalisations were recorded using iVue Horizon 1080P camera glasses. Data was transcribed verbatim, analysed using deductive content analysis and grouped into themes: (i) Pain And Discomfort (Fatigue, Pain), (ii) External Feedback (Time, Speed, Heart Rate), (iii) Environment (Surroundings, Traffic and Other Cyclists), (iv) Pace and Distance (Pace, Distance). The number of verbalisations within each theme were analysed by distance quartile using Friedman tests to examine changes in cognitions over time. Results: Associative themes, including Fatigue and Pain, were verbalised more frequently in the earlier stages of the TT and less in the final quartile, whereas verbalisations about Distance significantly increased in the last quartile. Conclusions: This study demonstrates how a novel data collection method can capture in-event cognitions of endurance athletes. It provides an important extension to previous literature, showing how individuals may process and attend to information over time during an exercise bout. Future research should establish the relationship between performance and cognitive processes

    CAR-Net: Clairvoyant Attentive Recurrent Network

    Full text link
    We present an interpretable framework for path prediction that leverages dependencies between agents' behaviors and their spatial navigation environment. We exploit two sources of information: the past motion trajectory of the agent of interest and a wide top-view image of the navigation scene. We propose a Clairvoyant Attentive Recurrent Network (CAR-Net) that learns where to look in a large image of the scene when solving the path prediction task. Our method can attend to any area, or combination of areas, within the raw image (e.g., road intersections) when predicting the trajectory of the agent. This allows us to visualize fine-grained semantic elements of navigation scenes that influence the prediction of trajectories. To study the impact of space on agents' trajectories, we build a new dataset made of top-view images of hundreds of scenes (Formula One racing tracks) where agents' behaviors are heavily influenced by known areas in the images (e.g., upcoming turns). CAR-Net successfully attends to these salient regions. Additionally, CAR-Net reaches state-of-the-art accuracy on the standard trajectory forecasting benchmark, Stanford Drone Dataset (SDD). Finally, we show CAR-Net's ability to generalize to unseen scenes.Comment: The 2nd and 3rd authors contributed equall

    Diffusion tensor image segmentation of the cerebrum provides a single measure of cerebral small vessel disease severity related to cognitive change.

    Get PDF
    Cerebral small vessel disease (SVD) is the primary cause of vascular cognitive impairment and is associated with decline in executive function (EF) and information processing speed (IPS). Imaging biomarkers are needed that can monitor and identify individuals at risk of severe cognitive decline. Recently there has been interest in combining several magnetic resonance imaging (MRI) markers of SVD into a unitary score to describe disease severity. Here we apply a diffusion tensor image (DTI) segmentation technique (DSEG) to describe SVD related changes in a single unitary score across the whole cerebrum, to investigate its relationship with cognitive change over a three-year period. 98 patients (aged 43-89) with SVD underwent annual MRI scanning and cognitive testing for up to three years. DSEG provides a vector of 16 discrete segments describing brain microstructure of healthy and/or damaged tissue. By calculating the scalar product of each DSEG vector in reference to that of a healthy ageing control we generate an angular measure (DSEG θ) describing the patients' brain tissue microstructural similarity to a disease free model of a healthy ageing brain. Conventional MRI markers of SVD brain change were also assessed including white matter hyperintensities, cerebral atrophy, incident lacunes, cerebral-microbleeds, and white matter microstructural damage measured by DTI histogram parameters. The impact of brain change on cognition was explored using linear mixed-effects models. Post-hoc sample size analysis was used to assess the viability of DSEG θ as a tool for clinical trials. Changes in brain structure described by DSEG θ were related to change in EF and IPS (p < 0.001) and remained significant in multivariate models including other MRI markers of SVD as well as age, gender and premorbid IQ. Of the conventional markers, presence of new lacunes was the only marker to remain a significant predictor of change in EF and IPS in the multivariate models (p = 0.002). Change in DSEG θ was also related to change in all other MRI markers (p < 0.017), suggesting it may be used as a surrogate marker of SVD damage across the cerebrum. Sample size estimates indicated that fewer patients would be required to detect treatment effects using DSEG θ compared to conventional MRI and DTI markers of SVD severity. DSEG θ is a powerful tool for characterising subtle brain change in SVD that has a negative impact on cognition and remains a significant predictor of cognitive change when other MRI markers of brain change are accounted for. DSEG provides an automatic segmentation of the whole cerebrum that is sensitive to a range of SVD related structural changes and successfully predicts cognitive change. Power analysis shows DSEG θ has potential as a monitoring tool in clinical trials. As such it may provide a marker of SVD severity from a single imaging modality (i.e. DTIs)
    • …
    corecore