44 research outputs found

    Glandular Odontogenic Cyst: Report of Two Cases and Review of Literature

    Get PDF
    Glandular odontogenic cyst (GOC) is an uncommon jaw bone cyst of odontogenic origin described in 1987 by Gardner et al. It is a cyst having an unpredictable and potentially aggressive behaviour. It also has the propensity to grow to a large size and tendency to recur with only 111 cases having been reported thus far. The first case occurred in a 42-year-old female and presented as a localized swelling extending from 19 to 29 regions. There was a history of traumatic injury at the site. There was evidence of bicortical expansion and radiographs revealed a multilocular radiolucency. The second case occurred in a 21-year-old male, as a large swelling in the mandible and radiograph revealed radiolucency in the region. On histopathological examination, these lesions were diagnosed as GOC. It was concluded that, two cases submitted by us correlate with the existing literature that GOC’s affect more commonly in the middle age group, having predilection for mandible and that trauma could be a precipitating factor for its occurrence. The increased recurrence rates can be due to its intrinsic biological behavior, multilocularity of the cyst, and incomplete removal of the lining following conservative treatment

    Characterisation and expression analysis of the Atlantic halibut (Hippoglossus hippoglossus L.) cytokines: IL-1β, IL-6, IL-11, IL-12β and IFNγ

    Get PDF
    Genes encoding the five Atlantic halibut (Hippoglossus hippoglossus L.) cytokines; interleukin (IL)-1β, IL-6, IL-11b, IL-12βc, and interferon (IFN) γ, were cloned and characterised at a molecular level. The genomic organisation of the halibut cytokine genes was similar to that seen in mammals and/or other fish species. Several mRNA instability motifs were found within the 3′-untranslated region (UTR) of all cytokine cDNA sequences. The putative cytokine protein sequences showed a low sequence identity with the corresponding homologues in mammals, avian and other fish species. Nevertheless, important structural features were presumably conserved such as the presence, or absence in the case of IL-1β, of a signal peptide, secondary structure and family signature motifs. The relative expression pattern of the cytokine genes was analyzed in several halibut organs, revealing a constitutive expression in both lymphoid and non-lymphoid organs. Interestingly, the gills showed a relatively high expression of IL-1β, IL-12βc and IFNγ. The real time RT-PCR data also showed that the mRNA level of IL-1β, IL-6, IL-12βc and IFNγ was high in the thymus, while IL-11b was relatively highly expressed in the posterior kidney and posterior gut. Moreover, the halibut brain showed a relatively high level of IL-6 transcripts. Anterior kidney leucocytes in vitro stimulated with imiquimod showed a significant increase in mRNA level of the five halibut cytokine genes. The sequence and characterisation data presented here will be useful for further investigation of both innate and adaptive immune responses in halibut, and be helpful in the design of vaccines for the control of various infectious diseases

    Regulation of pH During Amelogenesis

    Get PDF
    During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation
    corecore