45 research outputs found
Two independent proteomic approaches provide a comprehensive analysis of the synovial fluid proteome response to Autologous Chondrocyte Implantation
Background: Autologous chondrocyte implantation (ACI) has a failure rate of approximately 20%, but it is yet to be fully understood why. Biomarkers are needed that can pre-operatively predict in which patients it is likely to fail, so that alternative or individualised therapies can be offered. We previously used label-free quantitation (LF) with a dynamic range compression proteomic approach to assess the synovial fluid (SF) of ACI responders and non-responders. However, we were able to identify only a few differentially abundant proteins at baseline. In the present study, we built upon these previous findings by assessing higher-abundance proteins within this SF, providing a more global proteomic analysis on the basis of which more of the biology underlying ACI success or failure can be understood. Methods: Isobaric tagging for relative and absolute quantitation (iTRAQ) proteomic analysis was used to assess SF from ACI responders (mean Lysholm improvement of 33; n = 14) and non-responders (mean Lysholm decrease of 14; n = 13) at the two stages of surgery (cartilage harvest and chondrocyte implantation). Differentially abundant proteins in iTRAQ and combined iTRAQ and LF datasets were investigated using pathway and network analyses. Results: iTRAQ proteomic analysis confirmed our previous finding that there is a marked proteomic shift in response to cartilage harvest (70 and 54 proteins demonstrating ≥ 2.0-fold change and p < 0.05 between stages I and II in responders and non-responders, respectively). Further, it highlighted 28 proteins that were differentially abundant between responders and non-responders to ACI, which were not found in the LF study, 16 of which were altered at baseline. The differential expression of two proteins (complement C1s subcomponent and matrix metalloproteinase 3) was confirmed biochemically. Combination of the iTRAQ and LF proteomic datasets generated in-depth SF proteome information that was used to generate interactome networks representing ACI success or failure. Functional pathways that are dysregulated in ACI non-responders were identified, including acute-phase response signalling. Conclusions: Several candidate biomarkers for baseline prediction of ACI outcome were identified. A holistic overview of the SF proteome in responders and non-responders to ACI has been profiled, providing a better understanding of the biological pathways underlying clinical outcome, particularly the differential response to cartilage harvest in non-responders
Sterility and Gene Expression in Hybrid Males of Xenopus laevis and X. muelleri
BACKGROUND: Reproductive isolation is a defining characteristic of populations that represent unique biological species, yet we know very little about the gene expression basis for reproductive isolation. The advent of powerful molecular biology tools provides the ability to identify genes involved in reproductive isolation and focuses attention on the molecular mechanisms that separate biological species. Herein we quantify the sterility pattern of hybrid males in African Clawed Frogs (Xenopus) and apply microarray analysis of the expression pattern found in testes to identify genes that are misexpressed in hybrid males relative to their two parental species (Xenopus laevis and X. muelleri). METHODOLOGY/PRINCIPAL FINDINGS: Phenotypic characteristics of spermatogenesis in sterile male hybrids (X. laevis x X. muelleri) were examined using a novel sperm assay that allowed quantification of live, dead, and undifferentiated sperm cells, the number of motile vs. immotile sperm, and sperm morphology. Hybrids exhibited a dramatically lower abundance of mature sperm relative to the parental species. Hybrid spermatozoa were larger in size and accompanied by numerous undifferentiated sperm cells. Microarray analysis of gene expression in testes was combined with a correction for sequence divergence derived from genomic hybridizations to identify candidate genes involved in the sterility phenotype. Analysis of the transcriptome revealed a striking asymmetric pattern of misexpression. There were only about 140 genes misexpressed in hybrids compared to X. laevis but nearly 4,000 genes misexpressed in hybrids compared to X. muelleri. CONCLUSIONS/SIGNIFICANCE: Our results provide an important correlation between phenotypic characteristics of sperm and gene expression in sterile hybrid males. The broad pattern of gene misexpression suggests intriguing mechanisms creating the dominance pattern of the X. laevis genome in hybrids. These findings significantly contribute to growing evidence for allelic dominance in hybrids and have implications for the mechanism of species differentiation at the transcriptome level
Alien Invasive Slider Turtle in Unpredicted Habitat: A Matter of Niche Shift or of Predictors Studied?
BACKGROUND: Species Distribution Models (SDMs) aim on the characterization of a species' ecological niche and project it into geographic space. The result is a map of the species' potential distribution, which is, for instance, helpful to predict the capability of alien invasive species. With regard to alien invasive species, recently several authors observed a mismatch between potential distributions of native and invasive ranges derived from SDMs and, as an explanation, ecological niche shift during biological invasion has been suggested. We studied the physiologically well known Slider turtle from North America which today is widely distributed over the globe and address the issue of ecological niche shift versus choice of ecological predictors used for model building, i.e., by deriving SDMs using multiple sets of climatic predictor. PRINCIPAL FINDINGS: In one SDM, predictors were used aiming to mirror the physiological limits of the Slider turtle. It was compared to numerous other models based on various sets of ecological predictors or predictors aiming at comprehensiveness. The SDM focusing on the study species' physiological limits depicts the target species' worldwide potential distribution better than any of the other approaches. CONCLUSION: These results suggest that a natural history-driven understanding is crucial in developing statistical models of ecological niches (as SDMs) while "comprehensive" or "standard" sets of ecological predictors may be of limited use
Soy Isoflavones Genistein and Daidzein Exert Anti-Apoptotic Actions via a Selective ER-mediated Mechanism in Neurons following HIV-1 Tat1–86 Exposure
HIV-1 viral protein Tat partially mediates the neural dysfunction and neuronal cell death associated with HIV-1 induced neurodegeneration and neurocognitive disorders. Soy isoflavones provide protection against various neurotoxic insults to maintain neuronal function and thus help preserve neurocognitive capacity.We demonstrate in primary cortical cell cultures that 17β-estradiol or isoflavones (genistein or daidzein) attenuate Tat(1-86)-induced expression of apoptotic proteins and subsequent cell death. Exposure of cultured neurons to the estrogen receptor antagonist ICI 182,780 abolished the anti-apoptotic actions of isoflavones. Use of ERα or ERβ specific antagonists determined the involvement of both ER isoforms in genistein and daidzein inhibition of caspase activity; ERβ selectively mediated downregulation of mitochondrial pro-apoptotic protein Bax. The findings suggest soy isoflavones effectively diminished HIV-1 Tat-induced apoptotic signaling.Collectively, our results suggest that soy isoflavones represent an adjunctive therapeutic option with combination anti-retroviral therapy (cART) to preserve neuronal functioning and sustain neurocognitive abilities of HIV-1 infected persons
From Africa to Europe and back: refugia and range shifts cause high genetic differentiation in the Marbled White butterfly Melanargia galathea
<p>Abstract</p> <p>Background</p> <p>The glacial-interglacial oscillations caused severe range modifications of biota. Thermophilic species became extinct in the North and survived in southern retreats, e.g. the Mediterranean Basin. These repeated extinction and (re)colonisation events led to long-term isolation and intermixing of populations and thus resulted in strong genetic imprints in many European species therefore being composed of several genetic lineages. To better understand these cycles of repeated expansion and retraction, we selected the Marbled White butterfly <it>Melanargia galathea</it>. Fourty-one populations scattered over Europe and the Maghreb and one population of the sibling taxon <it>M. lachesis </it>were analysed using allozyme electrophoresis.</p> <p>Results</p> <p>We obtained seven distinct lineages applying neighbour joining and STRUCTURE analyses: (i) Morocco, (ii) Tunisia, (iii) Sicily, (iv) Italy and southern France, (v) eastern Balkans extending to Central Europe, (vi) western Balkans with western Carpathian Basin as well as (vii) south-western Alps. The hierarchy of these splits is well matching the chronology of glacial and interglacial cycles since the Günz ice age starting with an initial split between the <it>galathea </it>group in North Africa and the <it>lachesis </it>group in Iberia. These genetic structures were compared with past distribution patterns during the last glacial stage calculated with distribution models.</p> <p>Conclusions</p> <p>Both methods suggest climatically suitable areas in the Maghreb and the southern European peninsulas with distinct refugia during the last glacial period and underpin strong range expansions to the North during the Postglacial. However, the allozyme patterns reveal biogeographical structures not detected by distribution modelling as two distinct refugia in the Maghreb, two or more distinct refugia at the Balkans and a close link between the eastern Maghreb and Sicily. Furthermore, the genetically highly diverse western Maghreb might have acted as source or speciation centre of this taxon, while the eastern, genetically impoverished Maghreb population might result from a relatively recent recolonisation from Europe via Sicily.</p
Revised Lithostratigraphy of the Sonsela Member (Chinle Formation, Upper Triassic) in the Southern Part of Petrified Forest National Park, Arizona
BACKGROUND: Recent revisions to the Sonsela Member of the Chinle Formation in Petrified Forest National Park have presented a three-part lithostratigraphic model based on unconventional correlations of sandstone beds. As a vertebrate faunal transition is recorded within this stratigraphic interval, these correlations, and the purported existence of a depositional hiatus (the Tr-4 unconformity) at about the same level, must be carefully re-examined. METHODOLOGY/PRINCIPAL FINDINGS: Our investigations demonstrate the neglected necessity of walking out contacts and mapping when constructing lithostratigraphic models, and providing UTM coordinates and labeled photographs for all measured sections. We correct correlation errors within the Sonsela Member, demonstrate that there are multiple Flattops One sandstones, all of which are higher than the traditional Sonsela sandstone bed, that the Sonsela sandstone bed and Rainbow Forest Bed are equivalent, that the Rainbow Forest Bed is higher than the sandstones at the base of Blue Mesa and Agate Mesa, that strata formerly assigned to the Jim Camp Wash beds occur at two stratigraphic levels, and that there are multiple persistent silcrete horizons within the Sonsela Member. CONCLUSIONS/SIGNIFICANCE: We present a revised five-part model for the Sonsela Member. The units from lowest to highest are: the Camp Butte beds, Lot's Wife beds, Jasper Forest bed (the Sonsela sandstone)/Rainbow Forest Bed, Jim Camp Wash beds, and Martha's Butte beds (including the Flattops One sandstones). Although there are numerous degradational/aggradational cycles within the Chinle Formation, a single unconformable horizon within or at the base of the Sonsela Member that can be traced across the entire western United States (the "Tr-4 unconformity") probably does not exist. The shift from relatively humid and poorly-drained to arid and well-drained climatic conditions began during deposition of the Sonsela Member (low in the Jim Camp Wash beds), well after the Carnian-Norian transition
