22 research outputs found
Early changes in inflammatory and pro-thrombotic biomarkers in patients initiating antiretroviral therapy with abacavir or tenofovir
<p>Abstract</p> <p>Background</p> <p>Abacavir has been associated with an increased risk of acute myocardial infarction, but the pathogenic mechanisms remain unknown. We evaluated longitudinal changes in pro-atherosclerotic biomarkers in patients initiating abacavir or tenofovir.</p> <p>Methods</p> <p>Consecutive patients initiating antiretroviral therapy (ART) with abacavir/lamivudine or tenofovir/emtricitabine were included. Plasma levels of high sensitivity C reactive protein (hsCRP), interleukin-6 (IL-6), intercellular adhesion molecule-1, vascular cell adhesion molecule-1 (sVCAM-1) and plasminogen activator inhibitor-1 (PAI-1) were measured at baseline and at different time points throughout 48 weeks. Comparisons were adjusted for age, sex, ART status at inclusion, viral load, lipodystrophy, Framingham score and hepatitis C virus co-infection status.</p> <p>Results</p> <p>50 patients were analyzed, 28 initiating abacavir and 22 tenofovir. The endothelial biomarker sVCAM-1 declined significantly in both treatment groups. hsCRP tended to increase soon after starting therapy with abacavir, a trend that was not seen in those initiating tenofovir. IL-6 significantly increased only at week 24 from baseline in patients on abacavir (+225%, p < 0.01) although the differences were not significant between groups. The procoagulant biomarker PAI-1 plasma levels increased from baseline at week 12 (+57%; p = 0.017), week 24 (+72%; p = 0.008), and week 48 (+149%; p < 0.001) in patients on tenofovir, but differences between groups were not statistically significant.</p> <p>Conclusion</p> <p>Changes in biomarkers of inflammation, coagulation, and endothelial function are not different in viremic patients starting ART with abacavir/lamivudine or tenofovir/emtricitabine. These changes occur in the early phases of treatment and include anti- and pro-atherosclerotic effects with both drugs.</p
Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond.
International audienceABSTRACT: The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories - the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells - plus the detailed description of the main B-cell regulator, FcγRIIb, and the function of CD40+ antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express "Pathogen Recognition Receptors" such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology
The dynamics of expanding mangroves in New Zealand
In contrast to the global trend of mangrove decline, New Zealand mangroves are rapidly expanding, facilitated by elevated sediment inputs in coastal waters as a consequence of large-scale land use changes following European settlement. New Zealand mangroves are at the southern limit of the global mangrove extent, which limits the tree height of Avicennia marina var. australasica, the only mangrove species present. Mangroves in New Zealand thrive in the sheltered environments of infilling drowned river valleys with abundant supply of fine terrigenous sediments, showing various stages of mangrove succession and expansion dynamics. Bio-physical interactions and carbon dynamics in these expanding temperate mangrove systems show similarities to, but also differ from those in tropical mangrove forests, for instance due to the limited height and complexity of the mangrove communities. Likewise, ecosystem services provided by New Zealand mangroves deviate from those offered by tropical mangroves. In particular, the association of mangrove expansion with the accumulation of (the increased supply of) fine sediments and the consequent change of estuarine ecosystems, has provoked a negative perception of mangrove expansion and subsequently led to mangrove clearance. Over recent decades, a body of knowledge has been developed regarding the planning and decision making relating to mangrove removal, yet there are still effects that are unknown, for example with respect to the post-clearance recovery of the original sandflat ecosystems. In this chapter we discuss the dynamics of New Zealand’s expanding mangroves from a range of viewpoints, with the aim of elucidating the possible contributions of expanding mangroves to coastal ecosystem services, now and in the future. This chapter also reviews current policies and practice regarding mangrove removal in New Zealand and addresses the (un)known effects of mangrove clearance. These combined insights may contribute to the development of integrated coastal management strategies that recognise the full potential of expanding mangrove ecosystems
Relationship of salt marsh vegetation zonation to spatial patterns in soil moisture, salinity and topography
An intertidal San Francisco Bay salt marsh was used to study the spatial relationships between vegetation patterns and hydrologic and edaphic variables. Multiple abiotic variables were represented by six metrics: elevation, distance to major tidal channels and to the nearest channel of any size, edaphic conditions during dry and wet circumstances, and the magnitude of tidally induced changes in soil saturation and salinity. A new approach, quantitative differential electromagnetic induction (Q-DEMI), was developed to obtain the last metric. The approach converts the difference in soil electrical conductivity (ECa) between dry and wet conditions to quantitative maps of tidally induced changes in root zone soil water content and salinity. The result is a spatially exhaustive map of edaphic changes throughout the mapped area of the ecosystem. Spatially distributed data on the six metrics were used to explore two hypotheses: (1) multiple abiotic variables relevant to vegetation zonation each exhibit different, uncorrelated, spatial patterns throughout an intertidal salt marsh; (2) vegetation zones and habitats of individual plant species are uniquely characterized by different combinations of key metrics. The first hypothesis was supported by observed, uncorrelated spatial variability in the metrics. The second hypothesis was supported by binary logistic regression models that identified key vegetation zone and species habitat characteristics from among the six metrics. Based on results from 108 models, the Q-DEMI map of saturation and salinity change was the most useful metric of those tested for distinguishing different vegetation zones and plant species habitats in the salt marsh
Cutaneous Reactions to Chemotherapy
Patients undergoing cancer chemotherapy are often challenging to physicians from a management standpoint due to an unfortunate combination of general poor health, immunosuppression, and multi-drug regimens. Several chemotherapeutic agents are associated with well-described mucocutaneous toxicities.
This chapter will address the commonly encountered adverse events associated with traditional chemotherapy medications such as chemotherapy-induced alopecia, mucositis, extravasation reactions, dyschromia, and acral erythema, among others. This will be followed by a discussion of the cutaneous toxicities associated with newer agents, namely, targeted therapies such as monoclonal antibodies and tyrosine kinase inhibitors. Finally, a brief discussion of radiation recall and enhancement is also included.
By addressing important considerations in the recognition, diagnosis, and management of the cutaneous effects of cancer treatment, additional morbidity and potential mortality can be avoided in this already at-risk patient population