765 research outputs found

    Development of HPD Clusters for MAGIC-II

    Full text link
    MAGIC-II is the second imaging atmospheric Cherenkov telescope of the MAGIC observatory, which has recently been inaugurated on Canary island of La Palma. We are currently developing a new camera based on clusters of hybrid photon detectors (HPD) for the upgrade of MAGIC-II. The photon detectors feature a GaAsP photocathode and an avalanche diode as electron bombarded anodes with internal gain, and were supplied by Hamamatsu Photonics K.K. (R9792U-40). The HPD camera with high quantum efficiency will increase the MAGIC-II sensitivity and lower the energy threshold. The basic performance of the HPDs has been measured and a prototype of an HPD cluster has been developed to be mounted on MAGIC-II. Here we report on the status of the HPD cluster and the project of eventually using HPD clusters in the central area of the MAGIC-II camera.Comment: Contribution to the 31st ICRC, Lodz, Poland, July 200

    Improving Models for Student Retention and Graduation using Markov Chains

    Full text link
    Graduation rates are a key measure of the long-term efficacy of academic interventions. However, challenges to using traditional estimates of graduation rates for underrepresented students include inherently small sample sizes and high data requirements. Here, we show that a Markov model increases confidence and reduces biases in estimated graduation rates for underrepresented minority and first-generation students. We use a Learning Assistant program to demonstrate the Markov model's strength for assessing program efficacy. We find that Learning Assistants in gateway science courses are associated with a 9% increase in the six-year graduation rate. These gains are larger for underrepresented minority (21%) and first-generation students (18%). Our results indicate that Learning Assistants can improve overall graduation rates and address inequalities in graduation rates for underrepresented students

    Review of biorthogonal coupled cluster representations for electronic excitation

    Full text link
    Single reference coupled-cluster (CC) methods for electronic excitation are based on a biorthogonal representation (bCC) of the (shifted) Hamiltonian in terms of excited CC states, also referred to as correlated excited (CE) states, and an associated set of states biorthogonal to the CE states, the latter being essentially configuration interaction (CI) configurations. The bCC representation generates a non-hermitian secular matrix, the eigenvalues representing excitation energies, while the corresponding spectral intensities are to be derived from both the left and right eigenvectors. Using the perspective of the bCC representation, a systematic and comprehensive analysis of the excited-state CC methods is given, extending and generalizing previous such studies. Here, the essential topics are the truncation error characteristics and the separability properties, the latter being crucial for designing size-consistent approximation schemes. Based on the general order relations for the bCC secular matrix and the (left and right) eigenvector matrices, formulas for the perturbation-theoretical (PT) order of the truncation errors (TEO) are derived for energies, transition moments, and property matrix elements of arbitrary excitation classes and truncation levels. In the analysis of the separability properties of the transition moments, the decisive role of the so-called dual ground state is revealed. Due to the use of CE states the bCC approach can be compared to so-called intermediate state representation (ISR) methods based exclusively on suitably orthonormalized CE states. As the present analysis shows, the bCC approach has decisive advantages over the conventional CI treatment, but also distinctly weaker TEO and separability properties in comparison with a full (and hermitian) ISR method

    Validation of four-dimensional flow cardiovascular magnetic resonance for aortic stenosis assessment

    Get PDF
    The management of patients with aortic stenosis (AS) crucially depends on accurate diagnosis. The main aim of this study were to validate the four-dimensional flow (4D flow) cardiovascular magnetic resonance (CMR) methods for AS assessment. Eighteen patients with clinically severe AS were recruited. All patients had pre-valve intervention 6MWT, echocardiography and CMR with 4D flow. Of these, ten patients had a surgical valve replacement, and eight patients had successful transcatheter aortic valve implantation (TAVI). TAVI patients had invasive pressure gradient assessments. A repeat assessment was performed at 3–4 months to assess the remodelling response. The peak pressure gradient by 4D flow was comparable to an invasive pressure gradient (54 ± 26 mmHG vs 50 ± 34 mmHg, P = 0.67). However, Doppler yielded significantly higher pressure gradient compared to invasive assessment (61 ± 32 mmHG vs 50 ± 34 mmHg, P = 0.0002). 6MWT was associated with 4D flow CMR derived pressure gradient (r = −0.45, P = 0.01) and EOA (r = 0.54, P < 0.01) but only with Doppler EOA (r = 0.45, P = 0.01). Left ventricular mass regression was better associated with 4D flow derived pressure gradient change (r = 0.64, P = 0.04). 4D flow CMR offers an alternative method for non-invasive assessment of AS. In addition, 4D flow derived valve metrics have a superior association to prognostically relevant 6MWT and LV mass regression than echocardiography

    Mitral regurgitation quantification by cardiac magnetic resonance imaging (MRI) remains reproducible between software solutions

    Get PDF
    Background: The reproducibility of mitral regurgitation (MR) quantification by cardiovascular magnetic resonance (CMR) imaging using different software solutions remains unclear. This research aimed to investigate the reproducibility of MR quantification between two software solutions: MASS (version 2019 EXP, LUMC, Netherlands) and CAAS (version 5.2, Pie Medical Imaging). Methods: CMR data of 35 patients with MR (12 primary MR, 13 mitral valve repair/replacement, and ten secondary MR) was used. Four methods of MR volume quantification were studied, including two 4D-flow CMR methods (MRMVAV and MRJet) and two non-4D-flow techniques (MRStandard and MRLVRV). We conducted within-software and inter-software correlation and agreement analyses. Results: All methods demonstrated significant correlation between the two software solutions: MRStandard (r=0.92, p<0.001), MRLVRV (r=0.95, p<0.001), MRJet (r=0.86, p<0.001), and MRMVAV (r=0.91, p<0.001). Between CAAS and MASS, MRJet and MRMVAV, compared to each of the four methods, were the only methods not to be associated with significant bias. Conclusions: We conclude that 4D-flow CMR methods demonstrate equivalent reproducibility to non-4D-flow methods but greater levels of agreement between software solutions

    Mitral regurgitation quantification by cardiac magnetic resonance imaging (MRI) remains reproducible between software solutions [version 2; peer review: 1 approved]

    Get PDF
    BACKGROUND: The reproducibility of mitral regurgitation (MR) quantification by cardiovascular magnetic resonance (CMR) imaging using different software solutions remains unclear. This research aimed to investigate the reproducibility of MR quantification between two software solutions: MASS (version 2019 EXP, LUMC, Netherlands) and CAAS (version 5.2, Pie Medical Imaging). METHODS: CMR data of 35 patients with MR (12 primary MR, 13 mitral valve repair/replacement, and ten secondary MR) was used. Four methods of MR volume quantification were studied, including two 4D-flow CMR methods (MRMVAV and MRJet) and two non-4D-flow techniques (MRStandard and MRLVRV). We conducted within-software and inter-software correlation and agreement analyses. RESULTS: All methods demonstrated significant correlation between the two software solutions: MR_{Standard} (r=0.92, p<0.001), MR_{LVRV} (r=0.95, p<0.001), MR_{Jet} (r=0.86, p<0.001), and MR_{MVAV} (r=0.91, p<0.001). Between CAAS and MASS, MR_{Jet} and MR_{MVAV}, compared to each of the four methods, were the only methods not to be associated with significant bias. CONCLUSIONS: We conclude that 4D-flow CMR methods demonstrate equivalent reproducibility to non-4D-flow methods but greater levels of agreement between software solutions
    • …
    corecore