89 research outputs found
Dietary cholesterol promotes repair of demyelinated lesions in the adult brain
Multiple Sclerosis (MS) is an inflammatory demyelinating disorder in which remyelination failure contributes to persistent disability. Cholesterol is rate-limiting for myelin biogenesis in the developing CNS; however, whether cholesterol insufficiency contributes to remyelination failure in MS, is unclear. Here, we show the relationship between cholesterol, myelination and neurological parameters in mouse models of demyelination and remyelination. In the cuprizone model, acute disease reduces serum cholesterol levels that can be restored by dietary cholesterol. Concomitant with blood-brain barrier impairment, supplemented cholesterol directly supports oligodendrocyte precursor proliferation and differentiation, and restores the balance of growth factors, creating a permissive environment for repair. This leads to attenuated axon damage, enhanced remyelination and improved motor learning. Remarkably, in experimental autoimmune encephalomyelitis, cholesterol supplementation does not exacerbate disease expression. These findings emphasize the safety of dietary cholesterol in inflammatory diseases and point to a previously unrecognized role of cholesterol in promoting repair after demyelinating episodes
Vehicle Detection Using Alex Net and Faster R-CNN Deep Learning Models: A Comparative Study
This paper has been presented at : 5th International Visual Informatics Conference (IVIC 2017)This paper presents a comparative study of two deep learning models used here for vehicle detection. Alex Net and Faster R-CNN are compared with the analysis of an urban video sequence. Several tests were carried to evaluate the quality of detections, failure rates and times employed to complete the detection task. The results allow to obtain important conclusions regarding the architectures and strategies used for implementing such network for the task of video detection, encouraging future research in this topic.S.A. Velastin is grateful to funding received from the Universidad Carlos III de Madrid, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 600371, el Ministerio de EconomĂa y Competitividad (COFUND2013-51509) and Banco Santander. The authors wish to thank Dr. Fei Yin for the code for metrics employed for evaluations. Finally, we gratefully acknowledge the support of NVIDIA Corporation with the donation of the GPUs used for this research. The data and code used for this work is available upon request from the authors
Object Detection Through Exploration With A Foveated Visual Field
We present a foveated object detector (FOD) as a biologically-inspired
alternative to the sliding window (SW) approach which is the dominant method of
search in computer vision object detection. Similar to the human visual system,
the FOD has higher resolution at the fovea and lower resolution at the visual
periphery. Consequently, more computational resources are allocated at the
fovea and relatively fewer at the periphery. The FOD processes the entire
scene, uses retino-specific object detection classifiers to guide eye
movements, aligns its fovea with regions of interest in the input image and
integrates observations across multiple fixations. Our approach combines modern
object detectors from computer vision with a recent model of peripheral pooling
regions found at the V1 layer of the human visual system. We assessed various
eye movement strategies on the PASCAL VOC 2007 dataset and show that the FOD
performs on par with the SW detector while bringing significant computational
cost savings.Comment: An extended version of this manuscript was published in PLOS
Computational Biology (October 2017) at
https://doi.org/10.1371/journal.pcbi.100574
The CogBIAS longitudinal study protocol: cognitive and genetic factors influencing psychological functioning in adolescence.
BACKGROUND: Optimal psychological development is dependent upon a complex interplay between individual and situational factors. Investigating the development of these factors in adolescence will help to improve understanding of emotional vulnerability and resilience. The CogBIAS longitudinal study (CogBIAS-L-S) aims to combine cognitive and genetic approaches to investigate risk and protective factors associated with the development of mood and impulsivity-related outcomes in an adolescent sample. METHODS: CogBIAS-L-S is a three-wave longitudinal study of typically developing adolescents conducted over 4 years, with data collection at age 12, 14 and 16. At each wave participants will undergo multiple assessments including a range of selective cognitive processing tasks (e.g. attention bias, interpretation bias, memory bias) and psychological self-report measures (e.g. anxiety, depression, resilience). Saliva samples will also be collected at the baseline assessment for genetic analyses. Multilevel statistical analyses will be performed to investigate the developmental trajectory of cognitive biases on psychological functioning, as well as the influence of genetic moderation on these relationships. DISCUSSION: CogBIAS-L-S represents the first longitudinal study to assess multiple cognitive biases across adolescent development and the largest study of its kind to collect genetic data. It therefore provides a unique opportunity to understand how genes and the environment influence the development and maintenance of cognitive biases and provide insight into risk and protective factors that may be key targets for intervention.This work was supported by the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement no: [324176]
BDNF polymorphism predicts the rate of decline in skilled task performance and hippocampal volume in healthy individuals
Numerous studies have indicated a link between the presence of polymorphism in brain-derived neurotrophic factor (BDNF) and cognitive and affective disorders. However, only a few have studied these effects longitudinally along with structural changes in the brain. This study was carried out to investigate whether valine-to-methionine substitution at position 66 (val66met) of pro-BDNF could be linked to alterations in the rate of decline in skilled task performance and structural changes in hippocampal volume. Participants consisted of 144 healthy Caucasian pilots (aged 40–69 years) who completed a minimum of 3 consecutive annual visits. Standardized flight simulator score (SFSS) was measured as a reliable and quantifiable indicator for skilled task performance. In addition, a subset of these individuals was assessed for hippocampal volume alterations using magnetic resonance imaging. We found that val66met substitution in BDNF correlated longitudinally with the rate of decline in SFSS. Structurally, age-dependent hippocampal volume changes were also significantly altered by this substitution. Our study suggests that val66met polymorphism in BDNF can be linked to the rate of decline in skilled task performance. Furthermore, this polymorphism could be used as a predictor of the effects of age on the structure of the hippocampus in healthy individuals. Such results have implications for understanding possible disabilities in older adults performing skilled tasks who are at a higher risk for cognitive and affective disorders
Shared and Disorder-Specific Event-Related Brain Oscillatory Markers of Attentional Dysfunction in ADHD and Bipolar Disorder.
Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) often present with overlapping symptoms and cognitive impairments, such as increased fluctuations in attentional performance measured by increased reaction-time variability (RTV). We previously provided initial evidence of shared and distinct event-related potential (ERP) impairments in ADHD and BD in a direct electrophysiological comparison, but no study to date has compared neural mechanisms underlying attentional impairments with finer-grained brain oscillatory markers. Here, we aimed to compare the neural underpinnings of impaired attentional processes in ADHD and BD, by examining event-related brain oscillations during a reaction-time task under slow-unrewarded baseline and fast-incentive conditions. We measured cognitive performance, ERPs and brain-oscillatory modulations of power and phase variability in 20 women with ADHD, 20 women with BD (currently euthymic) and 20 control women. Compared to controls, both ADHD and BD groups showed increased RTV in the baseline condition and increased RTV, theta phase variability and lower contingent negative variation in the fast-incentive condition. Unlike controls, neither clinical group showed an improvement from the slow-unrewarded baseline to the fast-incentive condition in attentional P3 amplitude or alpha power suppression. Most impairments did not differ between the disorders, as only an adjustment in beta suppression between conditions (lower in the ADHD group) distinguished between the clinical groups. These findings suggest shared impairments in women with ADHD and BD in cognitive and neural variability, preparatory activity and inability to adjust attention allocation and activation. These overlapping impairments may represent shared neurobiological mechanisms of attentional dysfunction in ADHD and BD, and potentially underlie common symptoms in both disorders.We thank all who made this research possible:
The National Adult ADHD Clinic at the South London and Maudsley
Hospital, Dr Helen Costello, Prof Sophia Frangou, Prof Anne Farmer,
Jessica Deadman, Hannah Collyer, Sarah-Jane Gregori, and all participants
who contributed their time to the study. Dr Giorgia Michelini
was supported by a 1+3 PhD studentship awarded by the MRC Social,
Genetic and Developmental Psychiatry Centre, Institute of Psychiatry,
Psychology and Neuroscience, King’s College London (G9817803).
This project was supported by an Economic and Social Research Council
studentship to Dr Viryanaga Kitsune (ES/100971X/1). Dr Giorgia
Michelini and Prof Philip Asherson are supported by generous grants
from the National Institute for Health Research Biomedical Research
Centre for Mental Health at King’s College London, Institute of Psychiatry,
Psychology and Neuroscience and South London and Maudsley
National Health Service (NHS) Foundation Trust. The funders had
no role in the design and conduct of the study; collection, management,
analysis, and interpretation of the data; preparation, review, or
approval of the manuscript; and decision to submit the manuscript for
publication
SnaPad system Version 1. Operator's reference
SIGLETIB: AC 8888 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
- …