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Abstract. This paper presents a comparative study of two deep learning models
used here for vehicle detection. Alex Net and Faster R-CNN are compared with
the analysis of an urban video sequence. Several tests were carried to evaluate
the quality of detections, failure rates and times employed to complete the
detection task. The results allow to obtain important conclusions regarding the
architectures and strategies used for implementing such network for the task of
video detection, encouraging future research in this topic.
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1 Introduction

Currently traffic management is supported by urban traffic analysis. Traditionally, 
vehicle counting and road density evaluations are done with inductive loop sensors and 
increasingly with video information. Nevertheless, video detection faces different 
challenges due to changes in illumination conditions and high vehicle densities with 
frequent occlusions. Most video detection systems are based on appearance features or 
motion features. Appearance features [1–4] such as shape, color, edge maps and tex-
ture, are used to detect vehicles even in stationary positions. Other works are based on 
HOG (Histogram of Oriented Gradients) and some variations of it [5, 6]. Motion 
features are obtained based on the dynamics of the traffic movement. Such methods are 
generally based on background subtraction [7], use of frame difference [8], Kalman filter 
[9], optical flow [10, 11], etc. For a detailed survey of traditional vehicle detection 
methods please see [12].

On the other hand, deep learning theory (DL) applied to image processing is the 
current dominant computer vision theory especially in tasks such as image recognition.
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Since 2010 the annual image recognition challenge known as the ImageNet 
Large-Scale Visual Recognition Competition (ILSVRC) [13] is being dominated by 
this approach.

For vehicle detection, several works using Deep Learning in vehicle detection are 
reported in the literature. Earlier approaches relied on 2D Deep Belief Networks (2D-
DBN) [14], learning features by means of this architecture and using a pre-training 
sparse filtering process [15] or Hybrid architectures (HDNN) which overcome the issue 
of the single scale extraction features of traditional DNNs [16]. Color as a discriminative 
feature is used in [17] and [18]. There are also pre-training schemes [19] that obtain 
competitive results even with low resolution images and implementable in real time as in 
[20]. More recently, detection and classification of multiples classes is performed using 
integrated models as Fast R-CNN and Faster R-CNN [21–26]. Reports exist of methods 
able to recognize vehicle make and models (MMR) [27, 28], re-identification archi-
tectures for security urban surveillance [29–31], strategies using DBN [14, 32–34] that 
work with relatively few labelled data and models that are able to classify even the pose 
or orientation of the vehicle [23, 35, 36]. Generally most of the detection and classifi-
cations models are implemented using different CNN architectures such as CaffeNet 
[37, 38], GoogLeNet [39], and VGGNet [26] used in [27]. AlexNet [40] is used by Su et 
al.[18] in conjunction with GoogleNet [39] and NIN (Network in Network) [41].

Nevertheless, as far as we know, there are no comparative studies of DL strategies 
used for vehicle classification, nor on the use of CNNs already trained for feature 
extraction to perform vehicle discrimination in video sequences.

This work compares the results of a CNN used for feature extraction and a CNN 
integrated model network, both used for the task of classifying vehicles in video 
sequences. The paper is organized as follows: Sect. 2 gives a brief explanation of the 
architecture of the convolutional neural networks, explaining the advantage of the use of 
an already-trained network for feature extraction and the benefits of the integrated CNN 
model. Section 3 shows the classification approaches, describing the character-istics of 
the models built for the video detection task. Section 4 shows the results of the two 
models, comparing and explaining the results. Section 5 presents the conclusions and 
proposes some future work.

2 CNN Architectures Used

In this section, we describe the principal characteristics of the CNN AlexNet and the 
Faster R-CNN networks used in this comparative study.

2.1 AlexNet

AlexNet is considered the pioneer work of CNN networks, even after the work of Yann 
LeCun [42]. The AlexNet model was introduced in the paper “ImageNet Classification 
with Deep Convolutional Networks”, were the authors created a “large, deep convo-
lutional neural network”, used to win the 2012 ILSVRC (ImageNet Large-Scale Visual 
Recognition Challenge) [43]. The network was trained on ImageNet data, with over 15 
million annotated images from a total of over 22,000 categories.
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The architecture of “AlexNet” has 23 layers, integrating 5 convolution layers, 5 
ReLu layers (Rectified units), 2 layers for normalization, 3 pooling layers, 3 fully 
connected layers, one probabilistic layer with softmax units and finally a classification 
layer ending in 1000 neurons for 1000 categories (Fig. 1).

Fig. 1. Alex Net architecture. [40]

The main characteristics of the network includes the use of ReLU for the nonlin-
earity functions that decrease the training time as ReLUs are faster than the conven-
tional tanh function used in MLP. For training proposes, the authors used techniques as 
data augmentation consisting in horizontal reflections, image translations or even patch 
extractions. Dropout layers were also included to overcome the problems of vanishing 
gradient and overfitting. The model was trained using batch stochastic gradient descent, 
using specific values for momentum and weight decay. It took nearly six days for 
training using two GTX 580 GPUs.

2.2 Faster R-CNN

The problem of object detection involves the detection of different classes of objects in 
each image. Traditionally, the strategy used was to deploy a two-class classifier (object 
vs non-object) in conjunction with a sliding window search. The amount of all win-
dows scales and ratios returned could be huge, and then it was necessary to implement 
methods like non-maximal suppression for reducing the redundant candidates. This was 
the origin of object proposal algorithms, with strategies to limit search using calibration 
information [44], Branch & Bound [45] or grouping adjacent pixels merging them to 
find a blob region as in Selective Search [46]. These methods also included pre defining 
windows based on objects candidates as in Spatial Pyramid Pooling [47], or Edge boxes 
[48]. A valuable comparison of such methods was done by Hosang et al. [49]. The pre- 
filtering strategy has been used with positive results combining it with CNN networks 
for classification as in R-CNN [50] but employing too much time in the training process. 
To improve the training process time, Fast R-CNN [21] has been proposed that swaps 
the extracting strategy of detecting regions and running CNN. A high-resolution image 
is fed to the CNN network, the network produces a high resolution convolutional feature 
map. The region proposal produces regions over the feature map (conv5). The 
convolutional features of these regions are
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then fed into fully connected layers, with a linear classifier and a bounding box linear 
regression module to define regions. This model continues slowly at test time. Faster 
R-CNN addressed this issue by combining features of a fully convolutional network to 
perform both region proposals and object detection. Since region proposals depended 
on features of the image that were already calculated with the forward pass of the CNN 
(first step of classification), the model reuses the same CNN results for region proposals 
instead of running a separate selective search algorithm. The region proposal network 
(RPN) shares convolutional layers with the object detection network, then only one 
CNN needs to be trained and region proposals is calculated almost for free. Then, 
additional convolutional layers are used to regress region bounds with scores for object 
proposal at each location. The RPN works by moving a sliding window over the CNN 
feature map and at each window, generating k potential bounding boxes and scores 
associated for how good each of those boxes is expected to be. This k represents the 
common aspect ratios that candidates to objects could fit, caller anchor boxes. For each 
anchor box, the RPN output a bounding box and score per position in the image. This 
model improves significantly the speed and the object detection results.

Besides achieving the highest accuracy on both PASCAL VOC 2007 and 2012, 
Faster R-CNN was the basis of more than 125 proposed entries in ImageNet detection 
and localization at ILSVRC 2016 [51] and in the COCO challenge 2015 was the 
foundation of the winners in several categories [25]. Figure 2 shows the network 
structure of the Faster R-CNN framework. Both the region proposal network and the 
object classifier share fully convolutional layers. These layers are trained jointly. The 
region proposal network behaves as an attention director, determining the optimal 
bounding boxes across a wide range of scales and using nine candidate aspect ratios to 
be evaluated for object classi-fication. In other words, the RPN tells the unified network 
where to look.

Fig. 2. Faster R-CNN network structure. Modified from [24]

3 Detection and Classification Approaches

An initial ROI (region of interest) step is implemented, allowing the user to select the 
precise area of analysis. This step optimizes performance and speeds up the processes 
of detection and classification, by reducing the area of analysis in the video sequences. 
Two models, AlexNet and Faster R-CNN were used for vehicle detection and classi-
fication in this research.
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3.1 AlexNet Model

In the AlexNet model, object detection is performed based on background subtraction, 
using a Gaussian Mixture Model according to Zivkovic [52, 53]. Once the objects are 
detected, these are classified as vehicles on three categories: motorcycles, cars or buses. 
Other possible objects detected are classified as part of the urban environment (“urb-
Tree”), any possible remaining detection is assigned to the “unknown” class. The 
classifier is constructed using a multiclass linear SVM trained with features obtained 
from a pre-trained CNN. Those features have been extracted for a set of 80 images per 
category, including the “urbTree” category created from the urban traffic environment. 
This approach to image category classification is based on the work published by Matlab 
in “Image category classification using deep learning” [54] and extended in [55] for 
Motorcycles classification. Here, we extend the categories to include the bus set. The 
classifier trained using CNN features provides close to 100% accuracy, which is higher 
than the accuracy achieved using methods such as Bag of Features and SURF. As in [55] 
the set of images categories has been created corresponding to images related to 
motorcycles, cars, buses and urban environment related objects (“urbTree”). Those 
images were obtained from different angles and perspectives in urban traffic in 
Medellin City (Colombia). Examples of each category are shown in Fig. 3.

Fig. 3. Examples of cars, motorbikes and buses.

Following the strategy described in [55] by using the selected images, the 
pre-trained CNN “AlexNet” network is used for feature extraction, this technique is 
detailed described by Razavian et al. in [56]. For this work, the AlexNet network is 
only used to classify four categories. This pre-trained network was used to learn 
motorcycles, cars and buses features obtained from the extended dataset, with 80 
images per category and 80 examples of the class “urbTree” created from the urban 
environment. In the end, the total number of examples is only 320.

Features are extracted from the training set, propagating images through the net-
work up to a specific fully connected layer (fc7), extracting activations responses to 
create a training set of features, which is used later for classification.

For classification, as in [55], a multiclass SVM classifier is trained using the image 
features obtained from the CNN. Since the length of the feature vector is 4096, a fast 
stochastic gradient descent solver is used as training algorithm. In this case the clas-sifier 
is trained with only 96 examples (24 per category). The validation set, which
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corresponds to the remaining 224 examples (56 by category) is then classified. The 
classifier accuracy is evaluated now with the features obtained on this set. Figure 4 
shows the results in a confusion matrix. The classifier mismatches three bus images 
classifying those as cars; one car image is classified as bus and another as a motorcycle. 
The mean accuracy obtained is 0.978.

• Person: person
• Animal: bird, cat, cow, dog, horse, sheep
• Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train
• Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

Fig. 4. Confusion matrix of the experiments (Class 1: Buses 2: Cars 3: Motorcycles 4: urbTree)

3.2 Faster R-CNN Model

The Faster R-CNN [25] model used in this research, is the one available for download 
at https://github.com/ShaoqingRen/faster_rcnn. The model is an object detection 
framework based on deep convolutional neural networks, which includes two net-
works: A Region Proposal Network (RPN) and an Object Detection Network. Both 
networks are trained for sharing convolutional layers to obtain real time results.

The model can be run based on two referenced CNN networks: ZF Net [57] or 
VGG16 [26]. In this research, we chose VGG16, which corresponds to the best per-
formance results given the network layer configuration that the literature reports on the 
use of this architecture.

The VGG16 based model is pretrained with the ImageNet dataset. After down-
loading, both networks (RPN and ODN) are retrained in the PASCAL VOC 2007 
dataset (Fig. 5) [58]. Based on the dataset used for retraining, the ODN is able to 
classify detections on 20 categories as follows:
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Fig. 5. Examples of each category in PASCAL VOC 2007 dataset [58].

For this experiments all classes different to bus, car or motorbike, are renamed as 
“unknown” to obtain comparative metrics for the results evaluation. As a preliminary 
step for video detection and classification, the user defines a ROI within which the 
detection and classification takes place.

4 Experiments and Results

We selected a video sequence of a real urban environment took in Medellín Colombia, 
over a secondary street of two lanes. The sequence consists of 1812 RGB frames 
(640 � 480), during daylight and good weather conditions. The sequence includes 36 
different cars to detect (including sedan, VAN or taxis), 7 motorbikes and 1 Bus, which 
is the class assigned to a detected truck.

An XML-coded ground truth was obtained by means of ViPER [59] tool for 
annotation, and is used to compare the results of the two models. We use the perfor-
mance metrics reported in [60]. These metrics have been extended to take into account 
the multiclass nature of the experiment.

The evaluations for Faster R-CNN are performed based on the NMS parameter 
threshold, used to reduce the redundancy on proposed regions. This threshold corre-
sponds to the IoU overlap of the proposed regions. Results described in Table 1 and 
Fig. 6, show that decreasing the IoU threshold criteria increases the correct detection 
rate in total and for each class analyzed, but at the same time increases the False Alarm 
Rate. Best results correspond to a NMS threshold of 0.6 with a F1-Score of 0.76.

Table 1. Rates of Faster R-CNN results. NMS (non maximal suppression) – CDR: correct 
detection rate, Bikes: CDR for motorcycles, Cars: CDR for cars, Bus: CDR for buses or trucks. 
DFR: Detection Failure Rate. FAR: False Alarm Rate. PR: Precision. RC: Recall. F1:F1-score.

NMS threshold CDR CDR bikes CDR
cars

CDR buses DFR FAR PR RC F1

0.30 0.75 0.26 0.83 0.33 0.25 0.38 0.62 0.75 0.68
0.40 0.73 0.21 0.81 0.32 0.27 0.31 0.69 0.73 0.71
0.50 0.72 0.18 0.80 0.33 0.28 0.22 0.78 0.72 0.75
0.60 0.70 0.13 0.78 0.29 0.30 0.16 0.84 0.70 0.76
0.70 0.65 0.09 0.74 0.23 0.35 0.13 0.87 0.65 0.75
0.80 0.61 0.06 0.70 0.07 0.39 0.10 0.90 0.61 0.73
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Fig. 6. Faster R-CNN rates results.

Meanwhile, working with the AlexNet classifier in conjunction with the GMM 
background subtraction, results are obtained in terms of the parameters of the back-
ground subtraction algorithm. First, the history parameter is evaluated against a fixed 
Mahalanobis distance of 128. History corresponds to the number of frames (LoH) that 
constitutes the training set for the background model. The best results obtained are for a 
history of 500 frames (F1 = 0.57). Fixing this number, we then proceed to change the 
Mahalanobis distance parameter (Tg). This parameter is a threshold for the squared 
Mahalanobis distance that helps decide when a sample is close to the existing com-
ponents. A smaller Tg value generates more components. A higher Tg value may result 
in a small number of components but they can grow too large. The best result is 
obtained with LoH of 500, and Tg of 20, achieving a CDR of 0.66 with a FAR of 0.32 
(Fig. 7 and Tables 2, 3).

Fig. 7. Alex Net rates results
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The results obtained show that Faster R-CNN outperforms Alex Net+GMM model,
not only in the correct detection rate obtained while producing less false detections, but
also in time spending in the analysis. Both model were analyzed on a Windows 10
Machine with a core i7 7th generation, 4.7 GHz, and 32 GB of RAM, using an NVidia
Titan X (Pascal) 1531 MHz GPU, achieving close to real time in Faster R-CNN model
(40 ms per frame) while AlexNet+GMM took almost 100 ms per frame.

5 Conclusions and Future Work

This paper has compared the performance of two deep learning models for vehicle
detection and classification in urban video sequences. Although the AlexNet model is
used for feature extraction in an ad-hoc set of examples oriented to urban scenarios, the
pre-trained Faster R-CNN model achieves better results in correct detections according
to F1-score measure. It is important to remark that the Faster R-CNN model does not
use any dynamic attributes for vehicle detection whereas GMM background subtraction
used in AlexNet model. In fact, as the merge rates (MR) result shows, GMM

Table 2. Rates of Faster R-CNN results. NMS (non maximal suppression) – CDR: correct
detection rate, Bikes: CDR for motorcycles, Cars: CDR for cars, Bus: CDR for buses or trucks.
DFR: Detection Failure Rate. FAR: False Alarm Rate. MR: Merge Rate. PR: Precision. RC:
Recall. F1:F1-score.

LoH CDR CDR bikes CDR
cars

CDR buses DFR FAR MR PR RC F1

100 0.32 0.45 0.29 0.24 0.66 0.43 0.02 0.57 0.34 0.41
200 0.46 0.60 0.41 0.47 0.51 0.36 0.02 0.64 0.49 0.54
300 0.50 0.57 0.45 0.68 0.47 0.33 0.01 0.67 0.53 0.57
400 0.51 0.53 0.46 0.68 0.46 0.36 0.01 0.64 0.54 0.57
500 0.52 0.53 0.47 0.66 0.44 0.36 0.01 0.64 0.56 0.58
600 0.51 0.51 0.47 0.67 0.45 0.38 0.01 0.62 0.55 0.56

Table 3. Rates of Faster R-CNN results. NMS (non maximal suppression) – CDR: correct
detection rate, Bikes: CDR for motorcycles, Cars: CDR for cars, Bus: CDR for buses or trucks.
DFR: Detection Failure Rate. FAR: False Alarm Rate. MR: Merge Rate. PR: Precision. RC:
Recall. F1:F1-score.

Tg CDR CDR bikes CDR
cars

CDR buses DFR FAR MR PR RC F1

16 0.64 0.50 0.66 0.22 0.36 0.42 0.08 0.58 0.64 0.61
20 0.66 0.50 0.68 0.24 0.33 0.38 0.08 0.62 0.67 0.64
32 0.68 0.53 0.69 0.29 0.31 0.33 0.07 0.67 0.69 0.67
40 0.67 0.53 0.67 0.32 0.32 0.31 0.06 0.69 0.68 0.68
48 0.66 0.54 0.65 0.37 0.33 0.31 0.06 0.69 0.67 0.67
64 0.64 0.55 0.62 0.45 0.35 0.30 0.05 0.70 0.65 0.66
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background subtraction still has issues with stationary vehicles and occluded scenarios.
In Faster R-CNN, the RPN component results could be improved providing some
urban context information as restriction size of the regions.

For future work, we intend to improve the results of the RPN component of the
Faster R-CNN model enriching it with traffic context information, and improve the
classification component with feature extraction using a Deep Architecture as AlexNet,
ZF or VGG, with a wider set of urban road user classes (e.g. trucks, vans, cyclists,
pedestrians).
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