1,062 research outputs found

    USSR Space Life Sciences Digest. Index to issues 1-4

    Get PDF
    This document is an index to issues 1 to 4 of the USSR Space Life Sciences Digest and is arranged in three sections. In section 1, abstracts from the first four issues are grouped according to subject; please note the four letter codes in the upper right hand corner of the pages. Section 2 lists the categories according to which digest entries are grouped and cites additional entries relevant to that category by four letter code and entry number in section 1. Refer to section 1 for titles and other pertinent information. Key words are indexed in section 3

    USSR Space Life Sciences Digest, issue 1

    Get PDF
    The first issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 49 Soviet periodical articles in 19 areas of aerospace medicine and space biology, published in Russian during the first quarter of 1985. Translated introductions and table of contents for nine Russian books on topics related to NASA's life science concerns are presented. Areas covered include: botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, endocrinology, gastrointestinal system, genetics, group dynamics, habitability and environmental effects, health and medicine, hematology, immunology, life support systems, man machine systems, metabolism, musculoskeletal system, neurophysiology, perception, personnel selection, psychology, radiobiology, reproductive system, and space biology. This issue concentrates on aerospace medicine and space biology

    USSR Space Life Sciences Digest, issue 8

    Get PDF
    This is the eighth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 48 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables. Additional features include reviews of two Russian books on radiobiology and a description of the latest meeting of an international working group on remote sensing of the Earth. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 33 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, group dynamics, habitability and environment effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, personnel selection, psychology, reproductive biology, and space biology and medicine

    USSR Space Life Sciences Digest, issue 6

    Get PDF
    This is the sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include a table of Soviet EVAs and information about English translations of Soviet materials available to readers. The topics covered in this issue have been identified as relevant to 26 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, health and medical treatment, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism., microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, reproductive biology, and space medicine

    USSR Space Life Sciences Digest, issue 3

    Get PDF
    This is the third issue of NASA's USSR Space Life Sciences Digest. Abstracts are included for 46 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the second third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for seven Russian books on six topics related to NASA's life science concerns are presented. Areas covered are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, exobiology, gravitational biology, habitability and environmental effects, health and medical treatment, immunology, life support systems, metabolism, microbiology, musculoskeletal system; neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space physiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given

    Late- and Post-glacial history of the East Branch of the Penobscot River, Maine, USA

    Get PDF
    Between ~20 and 15 ka the Laurentide Ice Sheet retreated from the edge of the continental shelf, ἀrst to the Maine coast and then across Maine to the northern reaches of the Penobscot Lowland. The Lowland, being isostatically depressed, was inundated by the sea. As ice then retreated into Maine’s western mountains, valleys through the mountains became estuaries. In the estuary now occupied by the Penobscot River’s East Branch, ten ice-marginal deltas were built during pauses in this part of the retreat. By 14 ka the ice had retreated far enough to expose land in the valley bottom between the ice front and the sea, and the Penobscot River was (re)born. This occurred near the present conᴀuence of the Seboeis River and the East Branch. The river gradually extended itself northward as the ice retreated and southward as relative sea level fell. Braidplains were formed and incised, leaving terraces. High initial discharges eroded the eastern ᴀanks of the esker and deltas, redepositing silt, sand, and gravel all the way to the present head of Penobscot Bay. By ~10 ka the discharge had decreased, the river was adjusting to on-going differential isostatic rebound, and finer sediment was accumulating, forming the present floodplain.

    General lower bounds for evolutionary algorithms

    Get PDF
    Evolutionary optimization, among which genetic optimization, is a general framework for optimization. It is known (i) easy to use (ii) robust (iii) derivative-free (iv) unfortunately slow. Recent work [8] in particular show that the convergence rate of some widely used evolution strategies (evolutionary optimization for continuous domains) can not be faster than linear (i.e. the logarithm of the distance to the optimum can not decrease faster than linearly), and that the constant in the linear convergence (i.e. the constant C such that the distance to the optimum after n steps is upp er b ounded by C n ) unfortunately converges quickly to 1 as the dimension increases to infinity. We here show a very wide generalization of this result: al l comparison-based algorithms have such a limitation. Note that our result also concerns methods like the Hooke & Jeeves algorithm, the simplex method, or any direct search method that only compares the values to previously seen values of the fitness. But it does not cover methods that use the value of the fitness (see [5] for cases in which the fitness-values are used), even if these methods do not use gradients. The former results deal with convergence with respect to the number of comparisons performed, and also include a very wide family of algorithms with resp ect to the number of function-evaluations. However, there is still place for faster convergence rates, for more original algorithms using the full ranking information of the population and not only selections among the population. We prove that, at least in some particular cases, using the full ranking information can improve these lower bounds, and ultimately provide sup erlinear convergence results

    Late glacial and Holocene history of the Penobscot River in the Penobscot Lowland, Maine

    Get PDF
    When the Laurentide ice sheet retreated rapidly (~150 m/a) across the Penobscot Lowland between ~16 and ~15 ka, the area was isostatically depressed and became inundated by the sea. Silt and clay were deposited, but no significant moraines or deltas were formed. The Penobscot River was reborn at ~14 ka when ice retreated onto land in the upper reaches of the river’s East Branch. As isostatic rebound exceeded sea level rise from melting ice, the river extended itself southward. Between ~13.4 and 12.8 ka, it established a course across marine clay and underlying glacial till in the Lowland. Its gradient was low as differential rebound had not begun. Discharge, however, was higher and the river transported and deposited outwash gravel. During the cold, dry Younger Dryas, ~11 ka, eolian sand began to accumulate in dunes in the Lowland. Some of this sand, along with fluvial sediment from the headwaters, was redistributed into terraces along gentler stretches of the river and into a paleodelta in Penobscot Bay. Eolian activity continued to ~8 ka and aggradation in terraces until ~6 ka. The climate became wetter and warmer after ~6 ka, the dunes were stabilized by vegetation, the river began to downcut, and braiding became less intense. Pauses in the downcutting are reflected in discontinuous strath terraces. In due course, the river reencountered the old outwash gravels, marine clay, glacial till, and, in a few places, bedrock. Its profile is now stepped, with gentle, gravel-bedded reaches between bedrock ribs that form rapids

    Late glacial and Holocene history of the Penobscot River in the Penobscot Lowland, Maine

    Get PDF
    When the Laurentide ice sheet retreated rapidly (~150 m/a) across the Penobscot Lowland between ~16 and ~15 ka, the area was isostatically depressed and became inundated by the sea. Silt and clay were deposited, but no significant moraines or deltas were formed. The Penobscot River was reborn at ~14 ka when ice retreated onto land in the upper reaches of the river’s East Branch. As isostatic rebound exceeded sea level rise from melting ice, the river extended itself southward. Between ~13.4 and 12.8 ka, it established a course across marine clay and underlying glacial till in the Lowland. Its gradient was low as differential rebound had not begun. Discharge, however, was higher and the river transported and deposited outwash gravel. During the cold, dry Younger Dryas, ~11 ka, eolian sand began to accumulate in dunes in the Lowland. Some of this sand, along with fluvial sediment from the headwaters, was redistributed into terraces along gentler stretches of the river and into a paleodelta in Penobscot Bay. Eolian activity continued to ~8 ka and aggradation in terraces until ~6 ka. The climate became wetter and warmer after ~6 ka, the dunes were stabilized by vegetation, the river began to downcut, and braiding became less intense. Pauses in the downcutting are reflected in discontinuous strath terraces. In due course, the river reencountered the old outwash gravels, marine clay, glacial till, and, in a few places, bedrock. Its profile is now stepped, with gentle, gravel-bedded reaches between bedrock ribs that form rapids

    A modified electromagnetism-like algorithm based on a pattern search method

    Get PDF
    The Electromagnetism-like (EM) algorithm, developed by Birbil and Fang [2] is a population-based stochastic global optimization algorithm that uses an attraction-repulsion mechanism to move sample points towards optimality. A typical EM algorithm for solving continuous bound constrained optimization problems performs a local search in order to gather information for a point, in the population. Here, we propose a new local search procedure based on the original pattern search method of Hooke and Jeeves, which is simple to implement and does not require any derivative information. The proposed method is applied to different test problems from the literature and compared with the original EM algorithm.(undefined
    corecore