7,188 research outputs found

    An implicit algorithm for the conservative, transonic full-potential equation with effective rotated differencing

    Get PDF
    A new differencing scheme for the conservative full potential equation which effectively simulates rotated differencing is presented. The scheme was implemented by an appropriate upwind bias of the density coefficient along coordinate directions. A fast, fully implicit, approximate factorization iteration scheme was then used to solve the resulting difference equations. Solutions for a number of traditionally difficult transonic airfoil test cases are presented

    Comparison of the full potential and Euler formulations for computing transonic airfoil flows

    Get PDF
    A quantitative comparison between the Euler and full potential formulations with respect to speed and accuracy is presented. The robustness of the codes used is tested by a number of transonic airfoil cases. The computed results are from four transonic airfoil computer codes. The full potential codes use fully implicit iteration algorithms. The first Euler code uses a fully implicit ADI iteration scheme. The second Euler code uses an explicit Runge Kutta time stepping algorithm which is enhanced by a multigrid convergence acceleration scheme. Quantitative comparisons are made using various plots of lift coefficient versus the average mesh spacing along the airfoil. Besides yielding an asymptotic limit to the lift coefficient, these results also demonstrate the truncation error behavior of the various codes. Quantitative conclusions regarding the full potential and Euler formulations with respect to accuracy, speed, and robustness can be presented

    Numerical computation of three-dimensional blunt body flow fields with an impinging shock

    Get PDF
    A time-marching finite-difference method was used to solve the compressible Navier-Stokes equations for the three-dimensional wing-leading-edge shock impingement problem. The bow shock was treated as a discontinuity across which the exact shock jump conditions were applied. All interior shock layer detail such as shear layers, shock waves, jets, and the wall boundary layer were automatically captured in the solution. The impinging shock was introduced by discontinuously changing the freestream conditions across the intersection line at the bow shock. A special storage-saving procedure for sweeping through the finite-difference mesh was developed which reduces the required amount of computer storage by at least a factor of two without sacrificing the execution time. Numerical results are presented for infinite cylinder blunt body cases as well as the three-dimensional shock impingement case. The numerical results are compared with existing experimental and theoretical results

    Predictions for the First Parker Solar Probe Encounter

    Full text link
    We examine Alfv\'en Wave Solar atmosphere Model (AWSoM) predictions of the first Parker Solar Probe (PSP) encounter. We focus on the 12-day closest approach centered on the 1st perihelion. AWSoM (van der Holst et al., 2014) allows us to interpret the PSP data in the context of coronal heating via Alfv\'en wave turbulence. The coronal heating and acceleration is addressed via outward-propagating low-frequency Alfv\'en waves that are partially reflected by Alfv\'en speed gradients. The nonlinear interaction of these counter-propagating waves results in a turbulent energy cascade. To apportion the wave dissipation to the electron and anisotropic proton temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating as described by Chandran et al. (2011). We find that during the first encounter, PSP was in close proximity to the heliospheric current sheet (HCS) and in the slow wind. PSP crossed the HCS two times, namely at 2018/11/03 UT 01:02 and 2018/11/08 UT 19:09 with perihelion occuring on the south of side of the HCS. We predict the plasma state along the PSP trajectory, which shows a dominant proton parallel temperature causing the plasma to be firehose unstable.Comment: 16 pages, 5 figures; accepted for publication in the Astrophysical Journal Letter

    Future prospects for the development of cost-effective Adenovirus vaccines

    Get PDF
    Vaccination is one of the most efficient tools for disease prevention, and a continuously growing field of research. However, despite progress, we still need more efficient and cost-effective vaccines that would improve access to those in need. In this review, we will describe the status of virus-vectored vaccine technology with a focus on adenoviral-based vaccines. Adenovirus (Ad) vaccines have proven to be efficient in military vaccinations against Ad4 and Ad7 and as highly efficient vectored vaccines against rabies. The question of how other adenovirus-based vaccines can become as efficient as the rabies vaccine is the underlying theme in this review. Here, we will first give an overview of the basic properties of vectored vaccines, followed by an introduction to the characteristics of adenoviral vectors and previously tested modifications of the vector backbone and expression cassettes, with a focus on how they can contribute to increased vaccine cost-effectiveness. Finally, we will highlight a few successful examples of research that have attempted to improve the use of adenoviral-based vaccines by improving the transgene immunogenicity
    corecore