research

Comparison of the full potential and Euler formulations for computing transonic airfoil flows

Abstract

A quantitative comparison between the Euler and full potential formulations with respect to speed and accuracy is presented. The robustness of the codes used is tested by a number of transonic airfoil cases. The computed results are from four transonic airfoil computer codes. The full potential codes use fully implicit iteration algorithms. The first Euler code uses a fully implicit ADI iteration scheme. The second Euler code uses an explicit Runge Kutta time stepping algorithm which is enhanced by a multigrid convergence acceleration scheme. Quantitative comparisons are made using various plots of lift coefficient versus the average mesh spacing along the airfoil. Besides yielding an asymptotic limit to the lift coefficient, these results also demonstrate the truncation error behavior of the various codes. Quantitative conclusions regarding the full potential and Euler formulations with respect to accuracy, speed, and robustness can be presented

    Similar works