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FLOW FIELDS WITH AN IMPINGING SHOCK

Terry L. Hoist and John C. Tannehill
Iowa State University

SUMMARY

A time-marching finite-difference method has been used to solve the

compressible Navier--Stokes equations for the three-dimensional wing-leading-

edge shock impingement problem. The bow shock was treated as a discontinuity

across which the exact shock jump conditions were applied. All interior

shock layer detail such as shear layers, shock waves, jets, and the wall

boundary layer are automatically captured in the solution. The impinging

shock was introduced by discontinuously changing the freestream conditions

across the intersection line at the bow shock. A special storage-saving

procedure for sweeping through the finite-difference mesh has been developed

which reduces the required amount of computer storage by at least a factor

of two without sacrificing the execution time. Numerical results are

presented for infinite cylinder blunt body cases as well as the three-
1

dimensional shock impingement case. The numerical results are compared
i

with existing experimental and theoretical results.
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I. INTRODUCTION

i

i;
3
}

When an extraneous shock strikes the bow shock of a blunt body, a
is	 —
i'

complicated flow pattern results which may contain imbedded shock waves,

shear layers, expansion fans or supersonic jets. In addition, large in-

creases in wall heat transfer and pressure can occur and have been mea-

sured experimentally by many investigators. Impinging shock flow fields

may occur on hypersonic aircraft or reentry vehicles such as the Space

Shuttle.

A. Classification of Shock Impingement
r

The different flow fields which can result have been categorized by

Edney [l] into six basic types of shock interference patterns. These

patterns are shown in Figures l -6. Imp.inging shock strength, freestream

Mach number, body shape, and position of impingement (with respect to the

subsonic flow region on the blunt body) are the primary factors in deter-
3

mining the type of shock impingement.

f	 A Type I interference pattern (shown in Figure 1) occurs when the

'	 impinging shock strikes the bow shock well above the upper sonic line.

is
In this case the impinging and bow shocks are of opposite families. The

6
shear layer emanating from the intersection point does not strike the

is	 body and therefore, does not contribute to increases in wall pressure or
c,

`	 local heating. However, the transmitted impinging shock can strike the

I	 body. If strong enough, this transmitted shock can cause boundary layer

separation or transition from laminar to turbulent flow. Increases in

I
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wall pressure and heat transfer can then result from this shock-boundary

layer interaction. Heating amplifications as large as ten can result

from a Type I interference.

A Type II interference pattern (shown in Figure 2) occurs when the

impinging shock strikes the bow shock just above the upper sonic line.

In this case the impinging and bow shocks are also of opposite families.

The transmitted impinging shock strikes the body surface resulting in

possible boundary layer separation or transition. In addition, two shear

layers are formed which may strike the body to cause additional heating

and pressure peaks. The shear layer emanating from point B is very weak

and can cause only small heating and pressure amplifications. On the

other hand, the shear layer emanating from point A is strong and can

cause large increases in heating and pressure. Heating amplifications as

large as five can be expected from a Type II interference.

A Type III interference pattern (shown in Figure 3) occurs when the

impinging shock strikes the bow shock just inside the upper sonic line.

A shear layer emanates from the intersection point and strikes the body

causing large increases in heat transfer and wall pressure at this point.

This shear layer separates regions of subsonic and supersonic flow. The

supersonic flow is turned parallel to the body by an oblique shock which

exists between the bow shock and the body. Heating amplifications as

large as ten can be expected for a Type III interference.

When flow conditions for the Type III case become such that the

oblique shock no longer is able to turn the flow parallel to the body,

a Type IV shock interference is formed and is shown in Figure 4. This
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interference pattern occurs when the impinging shock strikes the near

normal part of the bow shock. Imbedded in the subsonic portion of the

blunt body flow is a supersonic jet which is terminated by a normal jet

bow shock just above the body. The 'Type IV interference pattern pro-

daces the largest heating and pressure peaks due to the jet impingement

upon the body. Heating peaks as high as 13 times the undisturbed stag-

nation value and pressure peaks as high as 8 times the undisturbed stag-

nation value have been measured [2].

A Type V interference pattern (shown in Figure 5) occurs when the

impinging shock strikes the bow shock just below the lower sonic line.

This case is nearly a mirror image of the 'Type II case, except the imping-

ing and bow shocks are of the same family and a thin supersonic jet eman-

ates from the impingement point (point B) instead of a shear layer. Heat-

ing amplifications as large as five can be expected for a Type V inter-

ference.

A 'Type VT interference pattern (shown in Figure 6) occurs when the

impinging shock strikes the bow shock well below the lower sonic line.

This interaction is analogous to the Type I case except that the impinging

and bow shocks are of the same family and an expansion fan is transmitted

instead of a shock. The interaction of the expansion fan and the wall

boundary layer results in a small decrease in the wall pressure and heat

transfer.

Further details about the different shock interference patterns are

given in the original work by Edney. In addition, an informative discus-

sion on shock interference classification is given by Keyes and Rains [2].
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A two-dimensional shock interference geometry is shown in Figure 7a.

This geometry can produce any of the six interference patterns. The im-

pinging shock is planar and oriented such that thft intersection line is

parallel to the axis of the cylinder, causing the flow in each z-plane to

be identical. This geometry is important because it qualitatively models

tk-e flow field in many three-dimensional cases.

A more physically realistic geometry occurs when a planar impinging

shock intersects a circular cylinder as shown in Figure 7b. This con-

figuration can occur when the bow shock from the nose of a vehicle strikes

the wing leading edge bow shock. A fully three-dimensional calculation

must be performed to obtain this flow field. The sweep angle of the cyl-

inder is a critical parameter in this case because it controls the inter-

ference pattern type. For zero or small sweep angles a Type IV interfer-

ence pattern will result. For moderate sweep angles (around 30
0) a Type V

interference pattern will occur. For larger sweep angles a Type VI inter-

ference pattern will result. Because swept forward wings generally do

not exist, Types I, II, and ITT are not considered for the wing leading

edge case. Further discussion about this geometry and some of its flow

field detail is presented in the following section;,

B. Literature Review

1. Experimental shock impingement studies

The large number of publications appearing in the literature on

shock intf.rference is indicative of the amount of work being done in this

area. Because of the complexity of the problem, most studies have been

E
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(a) TWO-DIMENSIONAL	 (b) THREE-DIMENSIONAL

Figure 7. Shock impingement geometries.
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experimental or have used a highly simplified model in a theoretical

analysis.

Edney [13, Keyes and Hains [2], and Korkegi [3] provide an extensive
survey of the literature on the shock interference problem. References

i	 [1] and [4-291, which are reviewed by Keyes and Hains, represent the bulk

of the experimental effort from 1961 to 1972. Many different experi-

mental approaches have been used to study the problem of shock interfer-

ence. The hemisphere and leading edge impingement geometries have re-

ceived most of the attention. The effects of Reynolds number, Mach num-

ber, impinging shock strength, and sweep angle have been recorded through

various pressure, heat transfer, and flow visualization measuring tech-

piques, The scatter in the experimental data is unusually large, espe-

cially the peak values of heat transfer and pressure. This can be attrib-

uted to the very small region over which an impingement interaction

occurs, making accurate measurements difficult.

As described earlier, Edney in 1968 published a classical paper on

shock impingement in which six basic shock interference patterns were
i
I	 classified (see Figures 1-6). In addition, new techniques for heat trans•

fer measurement were developed which improved the accuracy of the peak

heating measurements. In addition to heat transfer measurements, pressure

measurements and Schlieren photographs were obtained for hemispheres,

leading edge fins, wedges, and flat-faced cylinders.

Keyes ,,zd Hains [2] and Hains and Keyes [30] published the results

of extensive experimental investigations of shock impingement. All six

impingement types due to Edney were investigated. Planar shocks were

Q
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allowed to impinge upon the bow shocks surrounding both hemispherical

and swept fin models. Heat transfer measurements were made by using a

phase-change coating technique. This technique has the Fbiiity to detect

heating peaks over very narrow regions. The heat transfe- results,

however, are subject to numerous and often large sources of srror associ-

ated with the measurement of 1) thermophysical properties of the model

material, 2) melt temperature, 3) melt time, 4) initial model temper-

ature, and 5) adiabatic wall temperature distribution. Peak heat trans-

fers of 17 times the undisturbed stagnation values and peak pressures of

8 times the undisturbed stagnation pressures were measured for the most

critical (Type IV) hemispherical case. In an, additional re port by Keyes

[311, off-center-line heating rates were measured for both hemispheres

and swept fins. Heating-rates higher than the undisturbed stagnation

value due to shock impingement were found over significant portions of

the off-center-line body surface.

Doughty et al. [,321 determined angle of attack effects on shock

impingement heating rates by testing several delta-wing space shuttle

models. The same phase-change"coating technique was used in this inves-

Ligation as was used in references [21 and [301. At low angles of attack
O	 3(20 ), the heating rate increases (due to shock impingement) were re-

stricted to the vicinity of the wing leading edge. Pleating rates on the

windward side of the trailing edge were almost unaffected by the shock

impingement. At moderate angles of attack (40°} increased heating rates

due to shock impingement were experienced over a very large portion of
l-
#.;	 the windward side of the wing. No mention was made of the heating rates 	 J

on the leeward side of the wing.

1

y
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I Other recent experimental studies were performed by Bertin and

Hinkle [331, Palko [341, and Craig and Ortwerth [351. Bertin and Hinkle

used a double wedge model to approximate the wing leading edge problem.

Palko conducted an extensive series of experiments also on the wing lead-

ing edge problem. Stagnation line pressure and heat transfer measurements

and Schlieren photographs were obtained for systematic variations of

freestream Mach number, leading edge sweep angle, and impinging :4aock

strength.

Craig and Ortwerth investigated the leading edge shock impingement

p.*oblem but with a different impinging shock orientation. The orientation

studied was that of the two-dimensional type shown in Figure 7a. This

orientation exactly duplicates the type of flow fields shown in Figures

1-6. Pressure and heat transfer measurements and Schlieren photographs

were obtained.

2. Theoretical shock impingement studies

Many authors from references [4-291 have offered theoretical models

and methods of peak heating prediction. Most of these authors, however,

j	 do not present a conclusive understanding of the shock impingement prob-

lem. The results, therefore, are in most cases not satisfactory [2].

Edney established flow models for each of the six shock interference

patterns. By determining the nature of the shock interference flow-

fields, Edney established the mechanisms which produce the pressure and

heating peaks. These peaks are caused by one or more of the following

phenomena: 1) shock-boundary layer interaction, 2) free shear layer

attachment, and 3) supersonic jet impingement. From these flow models
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semiempirical methods for predicting the approximate flow fields were

developed. Edney presented two methods, a graphical method and a numeri-

cal method.

The graphical approach, referred to as the heart diagram method, is

based on a plot of pressure versus flow deflection angle and can be used

.	 to describe the flow fields for each of the six shock interaction types.

The numerical method presented by Edney utilizes the oblique shock

relations and an iterative procedure. Types I and VI can be solved

exactly while Types II through V require semiempirical values for certain

characteristic lengths.

Crawford [361 improved Edney's graphical approach by removing the

iteration procedure. This was accomplished by plotting a family of

pressure deflection curves with the pressure ratio on a logarithmic

scale and flow deflection on a linear scale.

Bramlette [371 improved Edney's numerical scheme with two simplify-

ing assumptions. This modified technique can only be applied to Type III

and Type IV interactions, but removes the iterative portion of the solu-

tion without sacrificing the accuracy.

Many authors have presented correlations for peak heating due to

shock-boundary layer interactions and free shear layer attachment [35-431.

The most useful shock-boundary layer correlation, developed by Markarian

[3$] and used for shock impingement problems by Keyes and Morris [431, is

based upon the inviscid pressure rise across the interaction region. The

basic expression is given by

is

	 7.

t

fr

i'

f^
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h
2 = C 2

u	 ( P̂u )m

where hp and hu are the peak and undisturbed values of the heat trans-

fer coefficient, respectively, pp and pu are the peak and undisturbed

values of wall pressure, respectively, and C and m are empirical con-

scants which depend upon the nature of the boundary layer (i.e., lami-

nar, transitional, or turbulent).

The boundary layer reattachment correlation for peak heating, pre-

sented by Bushnell and Weinstein [421, was used by Keyes and Morris for

the shock impingement free shear layer attachment problem.

Keyes and Hains [21 and Hains and Keyes [ 301 present the results of

an extensive theoretical study of all six types of shock impingement.

The flow models introduced by Edney and the peak heating correlations

described above have been utilized and extensively compared with experi-

mental results. 'These theoretical methods for each impingement type have

been coded into computer programs and are listed along with detailed

descriptions in reference [441. These theoretical methods provide fast,

easily obtainable, and in most cases (where real gas effects are negligi-

ble and good flow visualization photographs are available) adequate an-

swers for the peak heating and pressure values resulting from the shock

impingement. However, many disadvantages for these theoretical methods
a

exist [21: 1) The models used are local, two-dimensional models and do

not include three-dimensional effects. 2) The calculations are based

upon flow visualization photographs or other empirical sources. 3)

Shear 'Layer growth or oblique jet impingement are not included.

1.1
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4) Gas chemistry is not included.

Bertin et al. [451 presented a theoretical study of shock impinge-

ment ('Types V and VI) on a double wedge model. Real gas effects were

included. The method utilized oblique shock relations. Included were

perfect gas results, variable gamma ('y) results and results for air in

chemical equilibrium in which all properties were obtained by a table

look-up scheme. Because of real gas effects, Bertin et al. [451 con-

cluded that extrapolation of wind tunnel data to flight conditions may

yield inaccurate results (e.g., in the case of the Space Shuttle).

3. Numerical shock impingement studies

The numerical schemes for computing blunt body flow fields have had

a pronounced effect upon shock impingement numerical solutions. There-

fore, a brief discussion of blunt body numerical solutions is presented

first.

Many schemes have been developed to solve the classical blunt body

problem in a supersonic flow. Discussion and classical theory on the

blunt body problem can be found in "Mayes and Probstein [461. Daywitt rand

Anderson [471present a review of blunt body solutions in which special

attention is given to the time-dependent, finite-difference approach.

Two basic variations utilizing the tine-dependent approach have been

developed. The simplest is the so-called "shock-capturing" technique

[48-501. In this technique the detached bow shock is automatically coi

puted with no a priori knowledge of its location or even existence.

The later technique is the so-called shock-fitting" technique [5:

r_ The bow shock in this approach is assumed to be a boundary of the
{
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computational mesh across which the exact shock jump conditions

(Rankine-Rugoniot relations) are applied.

Another study [523 presented a viscous blunt body solution for a

gas in chemical nonequilibrium. The time-dependent shock fittin;

approach was used in conjunction with the Navier-Stokes equations. In

this approach, not only the inviscid flow field, but also the boundary

layer and the chemical species concentrations were computed.

other numerical techniques for blunt body flows exist, but are not

discussed here. Instead, the topic is changed to blunt body flows with

an impinging shock.

TanneI'till and Holst [531 and 'Tannehill et al. [543 both obtained

two-dimensional shock impingement solutions using the time-dependent

approach. In both papers, the complete Navier-Stokes equations were

solved. The geometry used is shown in Figure 7a.

The first paper obtained a low Reynolds number solution simulating

high altitude conditions by using the shock capturing approach. In addi-

tion, a preliminary study of fitting the bow shock and capturing all

shock layer detail was presented.

The second paper presented several moderate Reynolds number solutions

u ti j iZiitg the shock fitting method. The impinging shock was introduced

by discontinuously changing the freestream conditions at the bow shock.

Holst et al. L55J presents a brief discussion of the present res r

This completes the literature review. A brief presentation of t

methodology used in the present study for computing shock impingement

flow fields is presented in the next section.

I
11

f
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C. Present Methodology

In the present study the three-dimensional wing leading edge shock

impingement flow field is numerically computed by using a tune-dependent

finite-difference method. The choice of a numerical method to solve shock

impingement flow fields seems well suited because of the complicated type

of problem involved.

The three-dimensional formulation is important. The inclusion of the

third dimension provides a "relief effect" which can drastically alter

two-dimensional results.

The time-dependent approach was chosen because a subsonic region may

exist along the stagnation plane of the wing leading edge. Even if the

cross-flow velocity is supersonic before impingement, a subsonic region

may form after the impinging shock has been introduced. Since the gov-

erning time-dependent equations remain a hyperbolic-parabolic set for

both subsonic and supersonic flows, all cases can be solved as an initial-

value problem where the steady-state solution is approached asymptotically

with time.

A standard approach for the numerical solution of a blunt body prob-

lem is to first compute an inviscid solution using the Euier equations

and then with the resulting pressure distribution compute a boundary layer

solution. This approach is invalid for the present case because of the

various types of boundary layer interactions caused by the shock impinge-

ment. The Navier-Stokes equations, however, are valid in such situations

and have been chosen in the present study. In particular, the laminar,

compressible form of the Navier-Stokes equations have been chosen.



20

Because of the possible existence of shock waves in the computational

domain, a conservative form of the governing equations has been used.

The bow shock has been treated as a boundary of the computational

domain across which the exact shock jump conditions (Rankine-Hugoniot

relations) have been applied. This is the so-called "shock fitting"

procedure. All interior detail such as shear layers, shock waves, super-

sonic jets, and the wall boundary layer are automatically captured. This

is the so-called "shock capturing" procedure. The bow shock is strong

enough to make an entirely captured solution impractical. On the other

hand, fitting any additional shock layer detail (such as the transmitted

shock) is generally too complicated (because of the transmitted shock-

boundary layer interaction). Therefore, fitting the bow shock and cap-

turing all shock Layer detail seems to be a good approach for solving

the problem at hand.

For the shock impingement problem, a distinct advantage for numerical

methods exists over theoretical or experimental methods. Scale effects

must be considered when extrapolating experimental data to flight condi-

tions. Present theoretical methods require empirical inputs. However,

numerical methods are able to predict flow fields for flight conditions

without empirical inputs. This is a particular advantage for numerical

methods when real gas effects enter the-problem.

Descriptions of the governing equations, the numerical method, and

the numerical results are given in the following sections of this report.

The results consist of a series of blunt body infinite cylinder solutions

and a three-dimensional wing leading edge shock impingement solution.
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The present results are compared with theory and experimental results

when possible.



A. Wavier-Stokes Equations in Cylindrical Coordinates
i
4
F	 -

', The equations governing the flow of a compressible, viscous fluid

in the absence of body forces and electromagnetic effects, and written

in weak conservation-law foxai using three-dimensional cylindrical coor-

dinates. are given by [56,57]

au+a-! a+ +D- 0	 2.1
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PuA

Puru O - Tr0

G =	puP+p - r	 2.4

P u 0 u - Oz

(p+E)u 0 - Tr0 r - T 00u0 T 
0zuz + q0

Puz

Puruz 	 Trz

H _ r Pu 0 u - 
T 6z	 2.5

PU2 + P	
Tzz

(p+E)uz - T rz ur - T 6z u0 - Tzzuz + qz

0

_ (Pu g + p _ T0A)

D =	 pu0ur - T rn	 2.6

0

0

U2 + u2 + u2
E= p e+ r	 2	 z	 2.7

The Navier-Stokes expressions for the components of the stress
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To complete this set of equations two perfect gas equations of

state are used. In addition, Sutherland ' s equation and a constant
I

Prandtl number assumption are used to compute coefficients of viscosity

(µ) and thermal conductivity (k). The resulting equations are given by

p = pe(y- 1)	 2.11

p = p gRT	 2.12

µ = c1T3/2/(c 2  + T)	 2.13

k = cp p/Pr	 2.14

where for air in the perfect gas range the constants have the following

values:

gR = 287,024 m2 /sec 2 o 

c 1 = 1.2585 x 10 -8 N-sec/m2 - oK1/2

c 2 = 110.4 oK
	

2.15

cp = 1004.585 m2 /sec 2 - oK

Pr = 0.72

B. Independent Variable Transformation

Equations 2.1 through 2.10 are transformed from the physical domain

(r, 0, z, 0 into the computational domain (^, TG C, T) using the following

independent variable transformation:
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r	 -r
gf

rs - rb

2.16

= g(z)

T = t

The derivatives associated with this transformation are given by

1 _ df 30

ar
_

rs - rb ax a^

as df 1"x	 a +^
ae

r
6x	 $ e rs - rb	 ag all

2.17
r 1-x	 d +^

ax ax	 s z rs - rb	 a az	 3

i'

^= of 1-x +-
at

r
cx	 s ` r s - rb	 a aT

where rs is the bow shock radius, rb is the body radius, rs, and rsz

are the shock slopes in the A- and z-directions, respectively, rs t is

the radial shock velocity, and x is defined by

r -r
x = r s _ r	 2.18

s	 b
i

3

This transformation maps the z-plane between the bow shock °ind the

blunt body into a rectangular region, stretches the radial distribution

`	 of grid points according to the function f, and stretches the axial dis-

tribution of grid points according to the function g.
f.
F

-	 f

1

I?

1".

is

r;

i•

{{
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The function f chosen for all cases considered here is given by

rrM I

=Cl fR±
nx^	 1 CpC^

f (x)	 2.19
_X=0

where

c = 1n ±
+- 1	

2.20kp- 1 )

The first and second derivatives of the radial stretching function

(f) are given by:

of =	 2R/c
c^ ( F+ X) 0- x)	 2.21

?'2 f _ 1	 i 	 1
2.22

^2 
r c ,-x) 2 ($+x)2

Equation 2.19 refines the grid near the body and thus permits

better boundary layer resolution. Figure 8 is a plot of the f stretch-

ing funct• icn for various values of which controls the amount of re-

finement. The practical range for is between 1 and 2 with smaller

values giving larger amounts of refinement. When 0 is set equal to
zero no radial stretching, of the mesh occurs.

The function g chosen for all cases considered here is simply that

of a linear distribution (no stretching of the mesh) and is given by

q (z) = z	 2.23
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()z = 1.0	 2.24

`	 2
{	 = 0.0	 2.25

The physical domain of the problem is shown in Figure 9a without

an impinging shock for clarity. The computational domain which results

after the independent variable transformation has been applied is shown,

in Figure 9b. The grid distribution appearing in a typical 0-plane in

the physical domain is shown in Figure 10a. The grid distribution in

a typical n-plane, which is the computational counterpart of the physi-

cal 9-plane, is shown in Figure 10b. These two figures illustrate what

the independent variable transformation does to the physical domain.

No matter how the physical domain changes or alters its shape during

the computation, the computational domain retains its rectangular box

shape with uniform mesh spacing throughout.

C. Governing Equations in Computational Domain

The final form of the governing equations after the independent

variable transformation has been applied is given by

+ ^ + ^^+ 2 4- D = 0	 2.26

where

s	 ^

s
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where the function f-1 (§) represents the inverse of f. For the present

f (Equation 2.19) the inverse is given by

C 	
cx

(^ ) _ e
	- 1	 2.36
ecX + 1

in addition Equations 2.7 and 2.11 through 2.15 must be included

and are unaltered by the transformation.

Equations 2.26 through 2.34 represent the full three-dimensional

Navier-Stokes equations valid for compressible, lanunar, Lime-dependent

flows. These equations are solved by a numerical finite-difference

procedure which is presented in the next section.
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III. NUMERICAL ME-TROD

A. finite -Difference Scheme

Equation 2.25 is solved . by MacCormack's explicit finite-difference

method [60g, which is composed of the predictor -corrector sequence given

in Equations 3.1 and 3.2.

predictor step

n+	 ^'l	 AT n	 n	 ^T n	 n
Ui , j ,k	 Ui ,j) k 	 Ag. i+l,j,k - 

Fi
^ j , k	 ATl Gi ^ j+ l , k - G2.j,k)

3.1
AC ( i .,j,k+l - Hi)j>k' - QTDi,j,k

corrector step:

n+l_ I	 n	 n=rT AT	 n+ H+_
Ui , j , k	 2[Vi,j,k + Di , j , k A	 fi)j^k - Fi-1,j,k

3.2

AT 	 n+l	 n+l AT	 n+ l n+1 n"j'

- A^ (Gi,j,k - 
Gi

, j - 1 ,k) - AC (Di lilk - Hi,j^k-J - ATDi^j^k

where Fi k = F(U
n
 

k1
, F 

n+T	
F(U n+I ), 

etc. The i,j,k subscripts
^7 	̂ L,j^	 i,j,k	 `` 1,j,k

and the n superscript correspond to the discretized position in the

finite-difference mesh in the t-, ij-, C-, and T-directions such that

t = i At, Tj= j An, C = kAC, and T= nAT. A bar above the n superscript in-

dicates a predicted value. forward differences arl- used in the predic-

tor step to approximate the Wag, aG/a T^ and aH/aC derivatives while

backward differences are used for these terms in the corrector step.

In the predictor step backward differences are used to approximate the
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shear stress and heat flux derivatives appearing in the F, G, H, and D

components while in the corrector step forward differences are used.

This differencing procedure maintains second-order accuracy in both

space and time [61].

The computational module for MacCormack's method in three spacial

dimensions is shown in Figure 11, Both the predictor and corrector

step modules are shown. The symbol o is used to indicate mesh peinLs

at which values for F, G, H, or D are required and are used in differ-

ences approximating the 6F /6^, aG/arb and ax/6C derivatives. The sym-

bol + is used to indicate mesh points requiring values for u r
, UO2 

uZ,

or T and are used in differences approximating the shear stress and

heat flux derivatives. Note that in both the predictor step (Equation

3.1 and Figure lla) and the corrector step (Equation 3.2 and Figure 11b)

information from only three k-planes is required (k -1,k,k + 1). In the

predictor step (Equation 3.1) the subscripts k and k + 1 appear explic-

itly while the subscript k - 1 is implicitly imbedded in the shear stress

and heat flux derivatives. In the corrector step (Equation 3.2) the

subscripts k -1 and k appear explicitly while the subscript k+ 1 is im-

plicitly imbedded in the shear stress and heat flux derivatives.

For the present study MacCormack's method is applied to the finite-

difference mesh in four steps: 1) partial-predictor step, 2) completor-

predictor step, 3) partial-corrector step, and 4) completor-corrector

step. These steps are shown in Equations 3.3-3.6.

I

f

i

4
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partial- redictor step:

, ► 	 _ ^3 (r"'	 n 	 ^'rIn	 n
UPP ;:k = Ui,j,k	 A^	 i+l,j,k - ri,J, k	 Art Gi,j+l,k - Ci,j,k

pr n	 n	 3.3
+ AC Hi ,J,k - ArDI,J,k

completor-predictor step:

n+	 PP _ Q'^ n	 3.4
Ui ,3l k - Ui ,J, k	 A^ Hi>j,k+l

partial-corrector step:

PC	 n	 AF n+T	
3.5

Ui,3,k = Ui , j , k + AC Hi, j,k-1

completer-corrector step_:

n^	 1 pc_ n+ - & ,r	 n^	 _
(F

n^T

Ui^^, It +Ui ,J, k	2 Ui , j , k A	 i,J,k i-1,],k

- Ar ( nom'
-

n+_I

- 1 , k)

1 - AT n+7 n+	 3.6
^i,Art	 j,k Gi ,.1 HililkA^

-	 Ar^i,j,
k

where the pp superscript designates the partial-predictor step result

and the pc superscript designates the partial-corrector step result.

All other notation is identical with the notation used in the standard

MacCormack method. Note that when steps 1 and 2 (Equations 3.3 and 3.4)

are combined the standard MacCormack predictor step (Equation 3.1) is

obrO oed and that when steps 3 and 4 (Equations 3.5 and 3.6) are com-

bined the standard MacCormack corrector step (Equation 3.2) is obtained.
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After each completed predictor or corrector step the U vector 

P Ul 

PUr U2 

U - r(rs - rb) puS .. U3 3.7 

puz U4 

E Us 

is decoded to obtain the primitive variables (p, U 'uS' u ,e) in the r z 

fo llowing manner: 

3.8 

2 2 2 
e = U5/U1 - (ur + Us + uz)/2 

P - U1/r(rs - r b) 

In all four steps shown in Equations 3.3 - 3.6 information from only 

two k-planes is required in any single step. This aspect of the modi-

fied MacCormack method allows for a unique, storage-saving sweeping pro-

cedure. Thie procedure is described in detail in the next section. 

B. Application of the Finite-Difference Scheme 
(Sweeping Procedure) 

MacCormack's method is usually coded to compute predicted values 

at each grid point over the entire finite-difference mesh before the 

I 

I 
j 
, 

J 

I 
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corrector step calculation is initiated. This requires storage for

both the predicted and corrected solution arrays during the computa-

tional process. In addition, many codes store other intermediate re-

sult arrays over the entire finite-difference mesh. For two-dimen-

sional problems this extra storage may not be a critical restriction.

For three-dimensional problems these extra arrays may require large

quantities of bulk storage causing significant penalties in program

efficiency.

The storage restriction associated with MacCormack's method for

three-dimensional problems has been to a large extent alleviated in

the present study. A special technique for sweeping through the

finite-difference mesh has been developed which requires storage for

only a single three-dimensional solution array. Besides the single

three-dimentional solution array several smaller two-dimensional arrays

(k-planes) are required to store intermediate results. This special

sweeping procedure is shown in Figure 12 where it is displayed in five

separate diagrams (steps 1 -5). For this presentation it is assumed

that the computer memory is divided into two types: 1) a larger,

slower access large core memory (LCM), and 2) a smaller, faster access

small core memory (SCM). Data exchange between small and large core

memory is efficiently achieved by using block transfer. This is the

basic architecture of many computing systems such as the CDC 7600, CDC

STAR and Burroughs IL,LIAC IV. The three-dimensional solution array re-

sides in LCM and appears at the top of each of the diagrams in Figure 12.

The intermediate result arrays reside in SCM and appear below the three-

k	 1
f
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Figure 12. Diagram of the three -dimensional sweeping procedure.
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dimensional solution array in each of the diagrams. These arrays are

indicated as planes in Figure 12 with operations between them being

indicated by arrows. Each plane represents a set of five arrays, one

array for each of the primitive variables (p, u r , u e, uz , e). The basic

sweeping direction is the k-direction (z-direction).

The first step of the sweeping procedure is shown in Figure 12a.

First, two planes of the n level solution (a total of ten arrays) are

read into SCM from the k =1 and 2 planes of LCM. From the data in

these two planes the k =2 plane of partial-predictor values is com-

puted. A secondary sweeping procedure is used to obtain these partial-

predictor values. This sweeping procedure starts at the bow shock (i=l)

and sweeps through the k-plane of mesh points toward the body (i=NI).

The purpose of this planar sweeping procedure is to reduce the number

of k-plane intermediate result arrays. Boundary conditions for the

n+ I  and the n+ l level solutions at k =1 are also applied in this

step (see Figure 12a).

The next step continues the start up procedure and is shown in

Figure 12b. Since the n level plane at k =1 is no longer needed, it

is overwritten with the n level plane at k = 2. Next, a new n level

plane from LCM at It=  3 is read into SCM, keeping the number of n level

planes in SCM at two. A plane of partial-predictor values at k =3 and

a plane of completor-predictor values at k =2 can now be computed.

The completor-predictor step at k =2 uses the partial-predictor values

which were computed and saved from the previous plane at k = 2. Then,

using the k =1 and 2 planes of n+ 1 level values and the k =2 plane of

n level values, a plane of partial-corrector values at k= 2 is computed.
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Finally the n + 1 level plane at k = 1 is stored in the three-dimensional

solution array by overwriting the k = 1 plane of the n level solution.

Planes containing the n + 1 level solution in the three-dimensional solo-

'	 tion array in the diagrams of Figure 12 are shaded while n level planes

remain unshaded.

A recursive process for the general kth plane has the following
1

steps (see Figure 12c): 1) read the k + 2 plane of the n level solution

from LCM into SCM, 2) compute a plane of partial-predictor values at

k + 2, 3) compute a plane of completor-predictor values at k + 1, 4) com-

pute a plane of partial-corrector values at k + 1, 5) compute a plane

of completor-corrector values at k, and 6) store the kth plane of the

n + l level solution in the three-dimensional solution array by over-

writing the kth plane of n level solution. The recursive process

begins at k = 2 and continues until k = NK - 3 where NK represents the

maximum value of k. Note that by constantly overwriting unnecessary

planes of storage the maximum number of intermediate result planes in

SCM never exceeds seven; two for the n level solution, three for the

n +1 level solution and two for the n + 1 level solution.

The treatment for the NK - 2 plane is shown in Figure 12d. The

steps involved are identical to those described in Figure 12c, except

that since this is the last value of k for which a plane of predicted

values is to be calculated no partial-predictor values are computed.

The final step of the sweeping procedure is shown in Figure 12e.

First a boundary condition is applied to the predicted values at NK

creating enough information to compute the completor-corrector values

at NK - 1. The final plane of corrected values is then obtained from

F'

{

i- 	 y
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the same boundary condition which was applied to the predicted values.

Then both n +I level planes at NK - 1 and NK are stored in the three-

dimensional solution array by overwriting the final two planes of the

n level solution. The n+ 1 level solution is now completely stored in

the three-dimensional solution array. This completes one sweep of the

sweeping procedure as well as a single time step.

The final solution is obtained in a manner typical of the time-

s: endent approach. Using the previously outlined Procedure, the

computation is advanced in time from the initial conditions until the

solution is changing by a sufficiently small amount. At this point

the solution is said to have reached "steady state."

C. Shock ,lump Conditions

The bow shock wave is a boundary of the computational domain

across which the exact shock jump conditions are applied (Rankine-

Hugoniot equations). Exact treatment of a shock wave by such a pro-

cedure is called "shock fitting." Because the bow shock position is

not known a priori, a procedure for determining its position is in-

corporated with the application of the shock jump conditions. The

three-dimensional shock fitting procedure used in the present study

was developed from the two-dimensional procedure used by Tannehill

et al. [54]. it is similar to the method used by Daywitt and Anderson

[47] (two-dimensional, time-marching problems) and the methods used

by Thomas et al. [621 and Kutler et al. [63] (three-dimensional, steady,

space-marching problems).

i
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The three-dimensional shock jump conditions used in the present

study are applied only one plane at a time in order to be compatible

with the sweeping procedure described in the last section. The solu-

tion variables at i = 1 and along j (1 sj !-NJ) for all completor-pre-

dictor and completor-corrector planes are computed from the shock jump

conditions. Shock jump conditions as well as other boundary conditions

are not required for the partial-predictor or the partial-corrector

steps. A detailed description of the three-dimensional shock jump

procedure for a perfect gas is now presented. A similar presentation

involving a real gas in equilibrium is presented in Appendix A.

The three-dimensional shock jump procedure starts by computing the

n+ l values for the bow shock radius from the Euler predictor equation

given by

	

n+T n	 n
r s 	= r s 	 F AT sk
 J j'

is the shot:, radius, r st the radial shock velocity and AT the

rement. Equation 3.9 is used to compute the predicted values

shock radius everywhere except on the boundaries where the

g boundary conditions are used:

r	 = r
°1,k	 s2,k

r	 = 3(r.
sNJ,k	 NJ-1,k

rn	rl
s.	 s
J ' 1	J'l

3.10
(fixed for all time)

- r	
J

+ r
sNJ-2,k	 s NJ- 3,k

r	 = r
sj,NK	 sj,NK-1

i-;

{
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The next step involves the calculation of the pressure immediately

behind the bow shockn(. 1,j,k - P2
)' This is accomplished by using the

partial-predictor, completer-predictor combination given in Equations

3.3 and 3.4. The resulting predicted values are decoded into the

primitive variables (p, u r , u 03 uz ,e) by using Equations 3.7 and 3.8.

The pressure is then obtained from the equation of state (Equation 2.11).

Because Equation 3.3 is applied on a boundary (i = 1) the backward

differences used to approximate some of the derivatives in the shear

stress and heat flux terms require unobtainable information at i -1.

To correct this situation forward differences are used wherever back-

ward differences are not valid. The use of forward differences in

place of backward differences reduces the methods second-order accuracy

in the vicinity of the bow shock but does not harm the overall solution

accuracy.

The shock slopes (rs 
A 
and rsz ) at the n +1 level are calculated

next by using the following central difference formulas

jsr

		

^ s6)

n+ 	 57 ^

	

j,It	 rsj+l,k

i

n+ 1	 n+T

- rsj,k+l

r 
n+1 

/2 60 	 3.11
sj-1,k

r E+	 /2 6z	 3.12sj,k,l

where A9 and 67, are the physical grid increments in the g- and z-direc-

tions, respectively. Values for the shock slopes on the boundaries

which cannot be computed from either Equation 3.11 or 3.12 are obtained

by

i

I i
i

i Sig
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(rs0)l,k	 (rs0)2,k

(rs A)NJ,k 3 (s @)NJ-1,k ( s G)NJ-2,k] + (sB)NJ-3,k
3.13

(r=
^ 	 0.0

sZ j,l

(rsz)j , NK (rsz)j, NK-1

The primitive flow field variables obtained from the modified

MacGormack's scheme applied at i =1 are now recomputed from the pressure

(p2), the shock slopes (r s0 and rsz ) and the shock jump conditions.
These conditions are derived from the Rankine-Hugoniot equations and

shock geometry considerations in Appendix B and are given by

Y-1 + p2

Y+l P.
P 2 = Aa	 3.14

P " Y+l

V = Y+1 
p m ;Î + p2	

3.15N	 2 Pm	 l P.)

ur2=ur 
^,-po,V2	

1	 3.16
P. NF(rse rs \ + r Z

P.

f

r

i'

1

1

i

t.
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-r /r
-p2 	s 	 s

u e ^ 2 
= ^` 8, -
	 3.17

^ 
P.VN 1+ r

s /rs 2 +rs2

-r
s

u 
2 = uz - 

z 2	
z	 3.18

	

z,	 a	 P rss 
N 1 + r$ /r s 2 ^- rs2

6	 z

rs = VN I+ FsIrsY+rs2 + ur2

	

t 	 z	 '
3.19

- u P,2 (rsa/r s

)

 - uz,2 r s z

where the 2 subscript indicates conditions just downstream of the bow

shock (l,j,k) at the n+ l level. V  is the component of freestream

velocity normal to the bow shock and measured in a coordinate system

fixed with respect to the bow shock (positive inward). All r s , r s q,

rsz and rst values are at the (j,k) position in space and the n+ l

level in time. The quantities p.., p" ur, ©, u0, Ca, and li
y' CO

(infinity

i

conditions) are either freestream conditions or flow conditions down-

stream of the planar impinging shock.

Before Equations 3.14- 3.19 can be applied, a test must be made

to determine which set of infinity conditions are to be used. This

test must be performed for each grid point at which shock jump condi-

tions are applied. First, the position of the intersection line be-

tween the planar impinging shock and bow shock waves must be found.

i
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The impinging shock is a fixed plane in the physical domain, and is

expressed analytically as follows

	

xint	 1	 3,20

	

rp j ,k = - tint
{k - 1) + xint cos [A0(j - 3/2)

where r is the planar impinging shock radius and x.and z inc are the
P

r- and z-intercepts, respectively, of the planar impinging shock in.

thr 0 = O o plane. Of course, the bow shock cannot be described analyti-

cally. Therefore, the description given by the t,•rc-dimensional array

of values, r s . k , must be used. For a given value of j the intersection

1 '	 1

line position is found by finding Lhe value of k for which

r	 -rr	 -r	 C0.0	 3.21

p j, k	 si j p j,k+l	 sj ^k+l

After finding which side of the intersection line that a particular

bow shock point lies, the correct set of infinity conditions required

for the shock jump relations are determined. The bow shock moves as

part of the time-dependent solution. Therefore, the position of the

intersection line is recalculated before each time step. This com-

pletes the shock jump predictor step.

The shock jump corrector step is very similar to the predictor
F

step with only two major differences. First, instead of using Equation

j	 3.9 to compute the corrected shock radius, a modified Euler formula is

used and is given by

r

3

pY

3

	

 4. 	 1	 ,	 ...	 ^.:	 a
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r n+l	 r n + QT r n +3.22
S j, k	 SJ,k	

2	 st 
k (r st)j,k

Second, when calculating the pressure behind the bow shock,

Equation 3.5 and a modified version of Equation 3.6 are used which is

given by

n+l _ i pc

Ui,Jlk 
_ 

2IU 
i,j,k

- A 
T(Gi,j,k

na-

A,1 

n+l _ p T n^	 n+r
+ 

Ui,j,k	 Ag Fi+l,j,k - Fi1J,k

3.23

n+7\ _ 0T n+3	
D. 

1
- ci

> J -1,k	 o7 `i,j,k	
aT ai

,J^k

Note that a forward difference is used to approximate the U18d deriv-

ative instead of the usual backward difference. This reduces the

method's second-order accuracy in the vicinity of the bow shock but

does not harm the overall solution accuracy.

A. Boundary Conditions

The boundary conditions must be incorporated with the sweeping

procedure presented earlier. Since only one k-plane of predicted or

corrected values is computed at a time, only one k-plane of boundary

conditions can be completed at a time. Figure 13 shows a schematic of

a typical k-plane in the physical domain with the various boundary

conditions indicated.

Along the bow shock the shock jump conditions are applied (as

previously discussed) and are given by Equations 3.14 -3.19. The

wall boundary conditions are determined by specifying an isothermal
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wall, a zero normal pressure gradient, and the no-slip condition. These

conditions are given by

(ur)Nl, j , k 2-- 0.0

(ufl)NI,j,k = 0.0

(uz)Nl,j,k = 0.0
	 3.24

eNl,j,k = c  w = e  = constant

pNI,j,k _ p NI- 1 , j , k eNI-l,j,I^

where Tw is the specified wall temperature. A perfect gas assumption

is required to formulate these boundary conditions.

The e-outflow boundary is treated with a second-order extrapola-

t;on and is given by

UNJ 
3(U 

NJ- 1 - UNJ-2) + UNJ-3
	

3.25

where U stands for any of the primitive solution variables. This

boundary condition is stable provided the outflc°.: Mach number in the

inviscid region of the shock layer is supersonic. When this boundary

condition is used near the intersection line for the shock impingement

case, numerical difficulties are experienced. The problem arises be-

cause Equation 3.25 attempts to extrapolate across the nearly discon-

tinuous region just downstream of the intersection line at i =1 and 2.

To correct this a zeroth-order extrapolation is used instead of the

second-order extrapolation along i = 1 and 2.

11	 ^
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r 	 -
is

A plane of symmetry lies equidistant between the two grid planes

at j = 1 and 2. This permits a reflective set of boundary conditions
i

at j = 1 which is giver. by

(ur)i,1,k	 (ur)i,2,k

`u8)i,l,k W ~(u8)i,2,k
3.26

(uz)i,l,k	 ^z)i,2,k

pi,l,k = Ri,2,k
L

ei,l,k = e	
3.2i^2,k 7'

Notice that all solution components are reflected in a positive manner,

except the tangential velocity component (0 A), which is reflected in a

negative manner.

Boundary conditions for the inflow and outflow planes in the z-

direction are now discussed (see Figure 14). The flow variables at

the inflow plane (I.,j,l) are held fixed for all time equal to the con-

ditions from a swept infinite cylinder solution calculated prior to the

shock impingement solution. The flow variables at the outflow boundary

are detertained using a zeroth-order extrapolation given by
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E. Initial Conditions

A swept infinite cylinder solution is calculated prior to the

shock impingement solution with freestream conditions matching the

conditions behind the impinging shock (region 1, Figure 14). The

conditions behind the impinging shock are computed using oblique shock

equations [64:.

The infinite cylinder solution is computed from the same computer

code which computes the three-dimensional shock impingement solutions.

An infinite cylinder solution, by definition, must have all z-gradients

equal to zero. Rather than impose this condition directly: by setting

all z-derivatives equal to zero and thereby changing the computer code

drastically, it is done indirectly by changing certain boundary condi-

tions. That is, the z-derivatives are still calculated but automati-

cally come out to be zero because all z-planes are forced to be identi-

cal. This identity can be achieved simply by changing two boundary

conditions. First, reference to the impinging shock is removed at the

bow shock thus taking away the z-gradients across the intersection

line. Second, the inflow z-plane (k = 1), instead of being held fixed,

is determined by a zeroth-order extrapolation given by

Ui,j,1 = Ui,j,2
	 3.29

where U stands for any of the five primitive solution variables. This

removes the z-gradient which could exist between the first two z-planes

of the solution. In addition, all z-planes of the infinite cylinder

initial condition solution must be identical. With all of these
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conditions satisfied, a mechanism for producing a nonzero z-gradient

does not exist. This procedure yields an identical infinite cylinder

solution in each z-plane of the finite-difference grid.

Because all z-planes of the infinite cylinder solution are i.denti-

cel only a single z-plane is needed to completely specify the solution.

However, because of the three-dimensional computer code's structure, a

minimum of four z-planes must be used to compute an infinite cylinder

solution. Two of these four z-planes are boundary condition planes

(k=l and k=4).

At the beginning of a three-dimensional impingement solution cal-

culation, the flow field solution in each z-plane is set equal to the

infinite cylinder solution. The shock radius array (r s ), the shock

velocity array (r st), and the shock slope arrays (r sR and r sz ) as well

as the flow .field variables are initialized in this way. The initial

condition infinite cylinder solution is also the solution maintained

as the fixed boundary condition at k = 1.

The procedure used to establish the infinite cylinder initial

condition solution is similar to the procedure used by Tannehill et al.

x'541. It involves the approximate curve fit of Billig [65] to get

the shock shape and slope, the shock jump conditions with r st set equal

to zero to get the flow variables behind the bow shock, a Newtonian

pressure distribution and wall boundary conditions to get the flow

variables on the body, and a linear variation between the bow shock

and the body to get the interior flow field.
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F. Stability

3

To insure numerical stability the time step associated with i

MacCormack's method is limited in size by the CFL condition [61,66],

which in three-dimensions is given by

J

Q^sC	
1	 3.30

ur + u8 + uZ + a
	 +	 1 + 1

Ar	

;?

rAB	 Az	 (Ar)2	 (rAD) 2 	CAz)2

where a is the speed of sound and C is an adjustable constant.

Numerical solutions involving steep flow field gradients have used

special artificial smoothing terms to remain stable [67-70]. A modi-

fied version of the fourth-order product-smoothing term first developed

by MacCormack [71] is used in the present study. The original smooth-

ing procedure can be expressed by two basic terms ( Si,3,M Si j,kj

which are given by

r
r 	 ^

S i k	 c e1K W-16i n - K 2^'n^	 3.31
^ja	 ,^i, j 	 {

i

S. k
	

` c ^(Kn+I S Û n+1 _ K n+ Z DEC n+l 1	
3.32

^i,j2k	 `	 /

where the U's are defined by Equation 2.27, the summations on A indi-

cate one term for each of the three spacial directions (i,j,k), the

c's are constant coefficients, the K's are variable coefficients de-

fined by

9

j
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n- 2 
n	 + n

n _ p i+2	 k	 pi+l,j,k P i J,k
Ki+1f n	 +2n	 + n

	

p i+2,j,k	 i+l,j,k	 Pi,j,k

and the 6A() and AI() operators are forwerd and backward differences,

respectively, defined by

SiUn u Ui+l,j,k - Ui^j^k	
3.34

E

piUn ^ U
i ,j, k - Ui-1,j, k
	3.35

i

n
When smoothing is desired, S i ^ jsk (Equation 3.31) is added to the pre-

dictor step (Equation 3.1), and 
Sl^J^k 

(Equation 3.32) is added to

the corrector step (Equation 3.2).

The variable K-coefficients are composed of a normalized second-

order difference of flow field density. The K subscript indicates

which direction the difference is in (i,j or k) and also the center

of the difference. The K superscript indicates the time level used

for the values of density. This always positive variable coefficient

is essentially zero in the smooth regions of the flow field and ap-

proaches a maximum value of one in regions of large point-wise oscil-

lations. The theoretical maximum value of the coefficient product in

front of the U-differences, namely the cK products, is one-half. The

K-coefficients can theoretically reach a value of one, causing the ci,

c j , and ck constant coefficients to be restricted to a value of one-

half or less. However, since the K-coefficients in practice are

usually much smaller than one, the constant coefficients can be much

3.33



62

larger than one-half. Of course, smaller amounts of smoothing or

smoothing in only one or two of the three spacial directions can also

be obtained. This is achieved by independently setting the constant

coefficients in each of the three directions equal to the appropriate

values,

A major difficulty arises when applying this smoothing method to

the sweeping procedure presented earlier. To obtain both the predicted

and corrected smoothing terms at a particular value of k, solution vari-

ables from five k-p lanes are needed (k + 2, k+ 1, k, k - 1, k - 2) . Pro-

viding the information from such a large number of k-planes does not

fit within the framework of the sweeping procedure. At most, infor-

mation from only three k-planes can be supplied. This leads to a

modification of MacCormack's smoothing technique which is given by

Sip k	 E c2(xn 8 ^ Un - K^AU n)
,j,	 Q=i,j

+ 
ck ^ (Ui , j ,k - 

AkUn)	 3.36

SiPj,k = ck K^ Ui,j,k+3.	
3.37

c	 _ 1	 3+ 1 n_+7r	 n+ 1

Si 1j, k W 2	 cg(	
gAU	

- K 

n+

1-1 
A1U	

j2F=i, j

+

	

	
fl (

&K 
n+1 - AkU n+^ 1	

3.38
2 c1cKk 

where all notation is as it was previously defined. When smoothing is

^ 1]
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desired, Spp	 the partial-predictor-smoother step, is added to thel
,j,

lt,

artial- redictor step	 cp	 p	 p (Equation 3.3) 5 ipj ^ k , the completer-predictor-
F

smoother step, is added to the completor-predictor step (Equation 3.4),

and Sc	 , the corrector-smoother step, is added to the completor-i, -i,k
corrector step (Equation 3.6).

Note that the modification does not alter the terms in either the

i- or j-directions, only the k-direction. Instead of using K-coeffi-

cients centered at three different k-locations (k+ 1, k, k- 1), all it's

in the k-direction are centered at k. This modification alone reduces

the number of k-planes involved to three.

All quantities in the partial-predictor-smoother step (Equation

3.36) are obtained from two k-planes (k and k -1), except Pi
i,j,k+l

which appears in the Kk coefficient. Since only the k and k -1 planes

of the n-level solution exist in SCM at this time, extra density in-

formation at k+ 1 must be obtained from LCM. These coefficients are

then saved and used in the completor-predictor-smoother step (Equation

3.37) .

Instead of breaking the corrector-smoother step into two parts,

it i- applied as one step just after the completor-corrector step.

This is because a third plane of densities (at k +1) cannot be read

into SCM from LCM to compute a partial-corrector-smoother step. Because

of the sweeping procedure, the n^T - level solution at k+ 1 has n:t

been computed yet. At the ti-..,,e the partial-corrector step is completed,

the entire n + 1. solution at k - L is saved in SCM. T'.is can be con-

sidered as a partial-corrector-smoother step even though no computations

are actually made. Then, after Lhe completor-corrector step is computed,
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the entire corrector-smoother step (Equation 3.38) is computed with all
i.

three k-planes existing in SCM.

When Equation 3.12 is used to compute the shock slopes in the z-

direction ( rs z) an unstable point -wise oscillation results in the z-

t
direction. This instability is strongest near the z-direction inflow

plane. To alleviate this problem a Knock radius smoother is applied

during the corrector step which is given by

r

rs+l	 W rs+l	 ^. a rs+ 	- 2r n+ + rS+l 	3.39
i,k new	 ,^,klold	 j,k+l	 j,k	 3,k-1

where a is an adjustable constant. When a. has a value of 0.25 the

account of smoothing which occurs corresponds to the optimal flattening

of a sawtooth curve (r s vs z distribution) into a straight line. Larger

values of a will produce "over smoothing" and if large enough (above

0.5) will actually feed the inst-ebility. Values of a smaller than 0.25

(up to an order of magnitude smaller) will allow oscillations to exist

but will still keep the procedure stable.
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IV. DISCUSSION OF RESULTS

The present method was used to compute two-dimensional blunt body,

swept infinite cylinder, and three-dimensional shock impingement solu-

tions. Results for these three problems are presented in this chapter

along with the computational statistics of the computer code. In all

cases considered in this chapter, air is assumed to be a perfect gas„

The Prandtl number (Pr), the coefficient of specific heat at constant

pressure (cp  and the ratio of specific heats (y) are held constant and

are given by

Pr = 0.72

c = 1004.58 m2 /see 
2-o  

K	 4.1
p

y = 1.40

The simplest case, that of the two-dimensional blunt body solution, is

presented first.

A. Two-Dimensional Blunt Body Solution

The two-dimensional blunt body solution was computed using the three-
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where M is the Mach number, p is the pressure, T is the temperature, and

Re  is the Reynolds number based upon the cylinder diameter. Other con-

ditions pertinent to this case were chosen to be

D = 0.025 m	 T	 1444.4 oK
w

?= 0 	 0 0

where D is the cylinder diameter, A is the cylinder sweep angle, 9 is

the radial mesh stretching parameter, and T  is the constant wale. tem-

perature. Note that a A of zero indicates no sweep and therefore, a

two-dimensional blunt body case. A $ of zero indicates no stretching

of the mesh in the radial direction. The adiabatic wall temperature

(Taw) in the stagnation region was computed to be 504.9 0  from

rL:1 2
TawWTe(1+r 2 Me )

where a denotes the edge of the boundary layer and r is the recovery

factor set equal to 0.85 for a laminar boundary layer. On comparing the

T and Taw values, it is apparent that this case has an extremely hot

wall.

The computational mesh consisted of 21 equally spaced points in

both the radial and tangential directions. The tangential outflow

boundary was located along a radial ray 83.8 ° above the stagnation

streamline. The results of this computation are shown in Figures 15 and

lb.

A plot of the pressure distribution around the cylinder is shown in

Figure 15. The circles are the current numerical results. The solid

i
E
f
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4.4
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curve is a fairing of experimental data due to Beckwith and Cohen [72].

This faired experimental curve consists of data from both two-dimensional

blunt body and infinite cylinder results over a range of Mach number.

This pressure distribution is independent of sweep angle and normal Mach

numbers ab7ve two. The dashed curve shown in Figure 15 is the result

predicted by the modified Newtonian pressure distribution given by

P	 p
w = (1 - `° cos t 0 + . 

m \	 4.5
pstag	 pstag	 stag 1

where 
pstag 

is the stagnation point pre„sure computed from the Rayleigh

pitot formula [64].

All three results are in excellent agreement in the stagnation re-

pion of the blunt body. In fact, the error between the present numeri-

cal result and the stagnation value of pressure as predicted by the

Rayleigh pitot formula is less than 0.1. percent. As expected the modi-

fied Newtonian pressure disagrees with the other two results away from

the stagnation region. The faired experimental curve and the numerical

results start disagreeing at about 9 = 50 °. This disagreement in-

creases to a maximum of about five percent error at 0 = 80 °. The

scatter of the experimental data used to obtain the faired experimental

curve in Figure 15 was about f five percent at 0 = 80 °.

A comparison of the numerically predicted shock shape with the em-

pirical result of Billig [65] is shown in Figure 16. The circular sym-

bols represent the numerical result while the empirical result is shown

as a solid curve. The error between the two results, to a large extent,
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j	 is due to the extremely hot wall. The large wall temperature heats the

boundary layer causing the fluid density near the wall to decrease.

This apparently has the effect of increasing the bow shock standoff

distance as seen in the next section on infinite cylinder solutions.

B. Swept Infinite Cylinder Solutions

The swept infinite cylinder solution (as already mentioned) was com-

puted using the three-dimensional computer code by restricting all z-gra-

dients to be zero. This was accomplished with the appropriate choice of

boundary and initial conditions. Three swept infinite cylinder solutions

were computed to establish the validity of the three-dimensional computer

code and are presented in this section. In addition, the swept infinite

cylinder solution used as the initial conditijn of the three-dimensional

shock impingement case is also presented. In all of these cases, the

computational mesh consisted of 21 mesh points in both the radial and

tangential directions. The tangential outflow boundary was in all cases

7„cated along a radial ray 83.80 above the stagnation streamline.

The specified conditions chosen for the three infinite cylinder

solutions are given in Table 1. The freestream Mach number has been

divided into two components, the normal component (M	 ) and the cross--r,
flow component (Mz'CO	 Except for the addition of a cross -flow compo-

nent of velocity, the case A conditions are identical to the two -dimen-

sional case. Because of this, the previously computed two-dimensional

i

solution was chosen a^ the initial condition for the case A infinite

cylinder solution. The time-dependent development of the uz-velocity

9



Table 1.	 Specified conditions for the infinite cylinder
solutions.

i..

Specified
Quantity Case A Case B Case C

M 6.45 6.45 6.45
w

M 5.94 5.94 5.94r,

M 2.51 2.51 2.51
z , CO

18816 isF iJ 18816ReD
, cc

pCO (N/m2) 545.8 545.8 545.8

T m (IC) 62.8 62.8 62.8
i

(rleg) 25.0 25.0 25.0

D (m) 0.025 0.025 0.025

T ('Y,) 1444.4 1444.4 411.8

Taw,stag (K)
573.2 572.0 572.5

0.0 1.2 1.2

f

i^

71
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profile along the stagnation line for case A is shown in Figure 17.

The uz-velocity profile develops from the vow shock toward the body.

Moderate oscillations occur in the radial direction during the time-

dependent process but completely disappear as the steady-state solution

is approached. Initially, the solution moves rapidly toward aceady

state, however, the final small oscillations damp out very slowly as

steady state is approached. The process essentially does not disturb

the initial solution in the rQ-plane. This suggests independence be-

tween the two-dimensional solution and the cross--flow direction solution.

The second infinite cylinder solution (case B) was computed with

exactly the same conditions as the first, but with a different radial

distribution of mesh points. The mesh was refined near the body with

the stretching parameter (p) equal. to 1.2. For this value of 8, the

first grid point off the body is located at 2.3 percent of the shock

:standoff distance as compared with five percent for an equally spaced

mesh. The mesh distribution for 21 points is tabulated in Table 2 for

several values of P . The distance between the body and the bow shock

has been normalized to one. The first and second derivatives of the

stretching transformation are also tabu llatee in Table 2.

The u z-velocity and temperature profiles near the stagnation region

(0 = 0 0 ) and the u e -velocity profile at q = 36.5 0 are shown in Figures

18, 19 and 20, respectively. The distance between the bow shock and

the body (x) is normalized to one for all profiles. For comparative

purposes the solutions for no stretching (case A) and for stretching

(case B) are both plotted. All three profile comparisons are in excel-

lent agreement.
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Table 2. Mesh point distributions for several values of the stretching parameter P.

4a 0 Q= 1.2 6= 1. 12

r - r 3f/ax 62f/bx2 r -- r of/ax 32f/ax2 df/ax a2f/,)x2r - rb

BOW SHOCK

1.00 1.00 0.0 1.000 0.70 0.00 1.000 0.62 0.00
0.95 1.00 0.0 0.928 0.70 0.07 0.917 0.63 0.08
0.90 1.00 0.0 0.857 0.71 0.14 0.840 0.63 0.16

0.85 1.00 0.0 0.787 0.72 0.22 0.764 0.65 0.26
0.80 1.00 0.0 0.718 0.74 0.31 0.687 0,67 0.37
0.75 1.00 0.0 0.651 0.76 0.40 0.614 0.71 0.49
0.70 1.00 0.0 0.586 0.79 0.51 0.545 0.74 0.65
0.65 1.00 0.0 0.524 0.83 0.65 0.480 0.79 0.84
0.60 1.00 0.0 0.465 0.87 0.80 0.419 0185 1.08
0.55 1.00 0.0 0.409 0.92 1.00 0.363 0.92 1.38
0.50 1.00 0.0 0.356 0.98 1.23 0.311 1.00 1.77
0.45 1.00 0.0 0.306 1.04 1.51 0.263 1.10 2.28
0.40 1.00 0.0 0.260 1.12 1.86 0.219 1.21 2.93
0.35 1.00 0.0 0.217 1.21 2.29 0.180 1.34 3.78
0.30 1.00 0.0 0.178 1.31 2.82 0.145 1.49 4.88
0.25 1.00 0.0 0.141 1.43 3.49 0.113 1.67 6.33
0.20 1.00 0.0 0.107 1.56 4.32 0.085 1.87 8.23
0.15 1.00 0.0 0.077 1.70 5.36 0.059 2.11 10.73
0.10 1.00 0.0 0.049 1.87 6.66 0.037 2.38 14.03
0.05 1.00 0.0 0.023 2.06 8.29 0.017 2.70 18.37
0.00 1.00 0.0 0.000 2.27 10.34 0.000 3.07 24.11

BODY
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The uz-velocity profile (figure 18) is typical of all such profiles

on the infinite cylinder regardless of the tangential position. The

inviscid portion of the profile has a constant value equal to the z-

component of freestream velocity. The boundary layer portion of the

profile changes only slightly with tangential position. This occurs

in this computation because the mesh expands (due to the shock layer

growth) at the approximate growth rate of the boundary layer.

The temperature profile {Fidvre 19) shows the extent of the hot

wall. The u 6-Velocity profile at A = 36.5 0 (figure 20) has a velocity

overshoot which is characteristic of such a hot wall solution. The
M

better boundary layer resolution of the stretched solution is apparent

in all three of the profile comparisons. However, even better resolu-

tion through more grid points or larger amounts of stretching would be

desirable fcr this solution.

The third infinite cylinder solution (case C) was computed with

exactly the same conditions as case B but with a wall temperature

slightly less than the adiabatic wall temperature (see Table 1). There-

fore, case C is a cold wall case. As pointed out earlier, the hot wall

condition seemed to caissc a slight increase in the shock standoff dis-

tance. .'s plot of the three infinite cylinder shock standoff results

along with the empirical result of Billig F65] is shown in Figure 21.

The empirical result was computed from tha normal component of the

freestream Mach number and therefore, is identical to the two-dimensional

shock standoff curve. if a hot wall increases the shock standoff dis-

tance, then a cold wall should decrease the shock standoff distance.

However, the hot wall cases considered in the previous solutions were
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extreme cases. The cold wall case under current consideration is only

a slightly cold wall being very close to the adiabatic wall temperature.

Therefore, the close agreement shown in Figure 21 between the cold wall

shock shape and the empirical curve fit is expected.

A plot of the pressure distribution around the swept infinite cylin-

der is shown in Figure 22. The three numerical solutions are represented

by symbols. The solid curve is a fairing of experimental data due to

Beckwith and Cohen F72] which was discussed earlier. The agreement is

generally quite good over the entire curve.

A u velocity profile comparison is shown in Figure 23. The hot

wall profile from Figure 20 (case B) and the cold wall profile of case C

are both plotted. Both profiles are from the same Position on the

cylinder (e = 36.5 0 ) and have identically stretched meshes. As expected,

the velocity overshoot has disappeared from the cold wall profile. Other-

wise, the two curves are almost identical.

The infinite cylinder solution used as the initial condition for

the three-dimensional shock impingement solution is presented next.

The freestream conditions chosen for this case were

Mx m = 3.77	 Pm = 2034.8 N/m2

M	 = 2.64	 T = 91.5 0K	 4.6
Z ' os	 co

ReD 
m 

= 27486
a

Other conditions pertinent zo this case were chosen to be
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These conditions were selected to permit a comparison with the experi-

ment of Keyes and Hains [2]. The inflow plane in the z-direction for

the three-dimensional shock impingement solution is fixed at the initial

infinite cylinder solution. Therefore, the freestream conditions for

the infinite cylinder solution (except Red co ) were computed to agree

with the experimental conditions on the downstream side of the impinging

shock. These conditions were computed from the given experimental free-

stream conditions and the oblique shock relations r641. The freestream

viscosity was chosen to be an order of magnitude larger than in the

experiment, thus making the Reynolds number ten times smaller. This

was done to physically thicken the boundary layer and make its resolu-

tion possible with fewer grid points. The results of this computation

are shown in Figures 24-30.

A plot of the maximum and the minimum radial shock velocity (rst)

as a function of time step number (n) is shown in Figure 2+. These

velocities should approach zero as the steady-state solution is ap-

proached. The solution moves rapidly toward a steady state initially

with large time-dependent oscillations appearing. in the final part of

the solution, the convergence is very slow and has a monotonic behavior.

Plots of the numerical wall pressure and the heat transfer distri-

butions around the swept infinite circular cylinder are shown in Figures

25 and 26, respectively. The pressure distribution in Figure 25 is com-

pared with the faired experimental pressure distribution due to BeckwithP	 P	 P	 ^

and Cotten [72]. The comparison is in general quite good. No experimen-

tal results for the heat transfer distribution are available for the

i	 LL _____	 -	 t	 __
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conditions of the current solution. However, the stagnation line value

of heat transfer can be compared with theoretical results.

The stagnation line heat transfer for a laminar boundary layer on

a yawed infinite circular cylinder can be obtained from `73]

` 
k Taw 

-T 
w  2ReD, cops tagY /2 2T mp stag pstaa - 1 1/4

gstag	 CO2D	 Iyimµ^	 , Tstagp^ p m	 4.8

where the subscript 'stag" stands for values measured along the stagna-

tion line, k is the freestream coefficient of thermal conductivity,
m

µ is the coefficient of viscosity computed from the Sutherland viscosity

law, and Taw is given as before from Equation 4.4. The value of stagna-

tion line heat transfer computed from this formula is about 15 percent

lower t1-an the corresponding numerical value. This may be the result

of not obtaining enough resolution in the boundary layer. The numeri-

cal values of wall heat transfer are computed by evaluating the slopes

of the total enthalpy profiles at the wall. The slopes are approximated

by three values of total enthalpy (i = NI, NI -1, and NI -2).  T[iis ap-

proximation is inaccurate: for coarse mesh spacings.

Another consideration for the difference between the two results is

the accuracy of the theoretical result. Beckwith and Gallagher [73] com-

pare this theory with experimental results but for Reynolds numbers two

orders of magnitude larger than the present value. In addition, only

a. limited number of comparisons were made between theory and experiment.

#	 In light of these ,nsiderations, the comparison between the theory and
ti

r	 the present numerical result seems reasonable.
E

s

{
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Contour plots of Mach number, density, pressure, and temperature

for the present infinite cylinder solution are shown in Figures 27-30,

respectively. These contour plots have been drawn by a computer plotter

and are displayed in the physical plane. No characteristic blunt body

sonic line is shown in Figure 27 because the z-component of Mach number

in the shock layer is by itself supersonic. The boundary layer can

clearly be seen in Figures 27, 28 and 30. Note the unusually large

boundary layer thickness in the stagnation line region which is charac-

teristic of an infinite cylinder solution. The general validity of the

zero normal pressure gradient assumption can be seen from the pressure

contours shown in Figure 29. The stagnation line region of Figure 29,

however, does seem to suggest a nonzero normal gradient in pressure.

This concludes the infinite cylinder solution presentation. The

results for the three-dimensional shock impingement solution are pre-

sented in the next section.

C. Three-Dimensional !lock Impingement Solution

An infinite cylinder solution was used to obtain the initial con-

ditions for the three-dimensional wing-leading-edge shock impingement

solution. The flow field variables in each z-plane of the three-dimen-

sional initial solution were set equal to the flow field variables from

the infinite cylinder solution. The planar impinging shock was intro-

duced by discontinuously changing the freestream conditions across the

intersection line. The solution was advanced in time by using the
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numerical procedure previously described until the wall pressures were 

changing by sufficiently small amounts. 

The freestream conditions chosen for this three-dimensional shock 

impingement computation were 

M. .. 5.38 p = 559.1 N/m2 
r," '" 

M. .. 2.51 T .. 59.6 oK 4.9 
Z,CIO '" 

R;" CD = 19344 A = 10 0 

where e is the angle that the planar impinging shock makes with respect 

to the freestream velocity vector. For this set of freestream condi-

tions, the pressure ratio acrDSS the impinging shock (PR) has a value 

of 3.6. The flow field conditions, which result after the freestream 

flow passes through the impinging shock, must be identical to the free-

stream conditions used for the inf~nite cylinder solution. Other condi-

tions pertinent to this case were 

D ~ 0.025 m T = 394 oK 
w 

A = 25 0 T aw 
= 460 oK 

~= 1.12 0.25 
4.10 

u= 

c = c. = c
k = 1.0 

i J 

where ais the smoothing coefficient for the (previously presented) bow 

shock smoother (see Equation 3.39) a"d ci ' cj' and ck are the coeffi­

cients for the 4th-order product smoothing terms used in conjunction 

with the (previously presented) £lnite difference method (see Equations 

J 

I 
I 
I 
I 
I 
I 

J 
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3.31 and 3.32). The sweep angle (}.) given in Equation 4.10 corresponds 

to a Type V interaction. 

The three-dimensional computation was broken up into two parts. 

First, a coarse solution was computed in which the computational mesh 

consisted of 21 grid points in all three of the spacial directions. A 

plot of wall pressure at two different stagnation line locations (mid-

point and ouj:flow) versus time step number for this coarse solution is 

shown in Figure 31. Note the large fluctuations which occur initially 

in the solution. The solution appears ~~nverged after approximately 

400 time step iterations. 

Second, a refined solution was computed in which the computational 

mesh consisted of 21 points in both the radial and tangential directions 

apd 41 points in the cross-flow direction. The coarse solution was used 

to obtain an initial condition for the refined solution. A linear in-

terpolation was used to generate an additional z-plane of values between 

each already existing z-plane. Thus, the size of the physical domain 

in going from the coarse solution to the refined solution did not change. 

Instead, the number of grid points in the z-direction wa,~ doubled (AZ 

was halved) to improve the solution. No other changes were made. A 

plot of wall pressure at two different stagnation line locations (mid-

point and outflow) versus time step number is shown in Figure 32. The 

large fluctuations in the initial portion of the solution are much 
, 

smaller than for the previous case with the coarse mesh. This is 

probably due to the more exact initial condition solution. The solu-

tion appears converged after approximately 400 iterations. 

i 
j 

1 
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I 
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Because of the bow shock smoothing technique employed in the three-

dimensional case, the radial shock velocities (rs t) were not able to

approach zero in the vicinity of the intersection line. The shock

smoothing technique, which removed erroneous numerical oscillations

from the bow shock in the z-direction, also removed all desired physi-

cal "kinks." The physics of the three-dimensional problem tried to

restore the physical kinks by developing large shock velocities. The

boar shock, of course, did approach a steady-state position as the non-

zero shock velocities and the shock smoothing approached equilibrium.

The conditions given by Equations 4.9 and 4.10 were all chosen

(except for ReD ^ m) to agree with the experiment of Keyes and Rains [2].

As with the infinite cylinder solution, the viscosity was chosen to be

an order of magnitude larger to physicalT7 thicken the boundary layer

and make its resolution possible with fewer grid points. In addition

to increasing the boundary layer and shear layer thicknesses, this

change also affected the wall shear stress and heat transfer values.

Therefore, nondimensional ratios should be used when comparing these

quantities with the experiment.

A comparison of the stagnation plane shock shapes is shown in

Figure 33. The solid curve is the experimental result of Keyes and

Rains [2] taken from a Schlieren photograph. The symbols represent

present numerical results and are plotted in such a manner that the

experimental and numerical positions of the impinging shocks agree

exactly. The experimental results were obtained by allowing a plan;

impinging shock to strike the shock layer on a finite swept cylinder

The intersection point along the stagnation plane was only three cen
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meters downstream from one end of the cylinder. The shock standoff

distance for the initial numerical z-plane is therefore, much different

than the corresponding value of the experimental result. When these

curves are examined in light of this difference the comparison seems

quite good. Note the effect of the bow shock smoothing in the numeri-

cal result. The physical kinks which appear in the experimental 5chlieren

photograph did not develop to the full extent in the numerical result.

A comparison of the stagnation line wall pressure is shown in

Figure 34. The symbols represent the experimental results of Keyes and

Hains [2] and were obtained from static pressure ports in conjunction

with electrical strain-gage pressure transducers. The solid curve

represents the present numerical result. The z-direction position of

the numerical pressure distribution curve was determined from the shock

shape comparison of Figure 33. The general trend of the comparison is

quite good. However, the peak value in the experimental curve, which

is caused by a boundary layer interaction with the transmitted shock,

is not reproduced in the numerical results. A, small peak does occur in
i

the numerical results indicating that the transmitted shock is partially

formed.

i
+! e

A comparison if the stagnation line heat transfer is presented in
I	 3

1

Figure 35. The symbols represent the experimental results of Keyes 	 3

and Hains [2] obtained from the phase-change coating technique. The

solid curve is the present numerical result. A peak in the heating rate

is measured for both the numerical and experimental results although

the heights of the peaks are not in good agreement. The coarse grid,



8.0.0	 1.0	 2.0	 3.0	 4.0	 5.0	 6.0	 7.0

DISTANCE ALONG BODY, z, cm

Figure 34. Stagnation line wall pressures.

2.

2.

a
JcL N

d"

O

waD
WW
sn
W-5- 0.

0,

O

Y

l`\

00

7	 °
o ° 00 ° 0

r	 O	 O
Oz

O KEYES AND HAINS EXPERIMENT (Re
D,

 180 000)

PRESENT NUMERICAL RESULTS (Re = 19344)
D,,,

0^ °OO
I	 0 O O

raa

5F---

oL



2.4

2.0

m
inN

1.6
h

0

1.2w
a-
Ln
Z

^- 0.8

0.4

0.0 L-
0.0

— PRESENT NUMERICAL RESULTS ( ReD,- = 19344)

O KEYES AND HA1NS EXPERIMENT (Re D,W = 180000)

0	 6.0

i
Figure 35. Stagnation line heat transfer rates.

1.0	 2.0	 3.0	 4.0	 5.

DISTANCE ALONG BODY, z, cm

101

00

0 0

000



+	 i	 3	 !	 3

102

numerical smoothing, and increased physical viscosity probably all

contributed to the poor resolution of the transmitted shock and there-

fore, to the poor agreement.

More insight into the numerical solution can be obtained from con-

tour plots of the important solution variables. Contour plots of Mach

number, density, pressure, and temperature are shown for selected z-

plane and 6-plane 'Locations in Figures 36-50. Each of these contour

plots was drawn with a computer plotter. The Mach number, density,

pressure, and temperature increments were 0.05, 1.03 x 10
-2

 kgr;n3,

957.6 N/m2 , and '.1.11 01Z, respectively. The sketch in the upper left-

hand corner of each contour plot figure identifies the approximate lo-

cation of the plane being plotted. For clarity all plots are shown in

the physical domain.

Mach number contour plots at k = 8, 14, 20, 28, and 36 are shown

in Figures 36, 37, 38, 42, and 43, respectively. This series of contour

plots shows the effect of shock impingement at various z-plane locations.

The stagnation plane impingement point is between k ^ 11 and 12. There-

fore, the Mach number contour plot at k= 8 (Figure 36) shows no sign

of the impinging shock. The next five Mach number contour plots show

the development of a strong shear layer which is the result of the

impinging shock. The shear layer, which is seen in cross-section, em-

anates from the bow shock and approaches the body.

In addition to Mach number, z-plane contour plots of density,

pressure:, and temperature at k = 20 are shown in Figures 39-41, respec-

tively. The shear layer is apparent in both the density and temperature

contour plots but not pressure. An intersection point between the

f
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Figure 36. z-plane Mach number contours for a swept circular cylinder under
the influence of an impinging shock (k = 8).
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Figure 41. r-plane temperature contours for a swept circular cylinder under
the influence of an impinging shock (k = 20).
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planar impinging shock and the bow shock ie quite apparent in several

of the z-plane contour plots (k =14, 20, and 28). Of course, no inter-

section point appears in the z-plane contour plots at k =8 or 36, be-

cause the range of the intersection line only extends from k =12 to

k= 30. The effect of the zeroth-order extrapolation on the g-outflow

boundary condition at i =1 and 2 is seen in most of the z-plane contour

plots (bow shock vicinity of the R--outflow). As pointed out earlier,

this boundary condition was employed to prevent extrapolation across

the sharp gradient in the flow near the intersection line. Although

it succeeds in this respect, it also introduces an inconsistent region

in the flow field.

Mach number contour plots at A = 2.1 
0 (j = 2, stagnation plane),

10.7 0 ( j = 4) , 27.9 0 ( j = 8) , and 62.3 0 ( j = 16) , are shown in Figures
44, 48, 49, and 50, respectively. The flow field structure is best

studied from these 6-plane contour plots. The strong shear layer pro-

duced by the shock impingement appears as a dark band of coalesced con-

tour lines. a'his shear layer emanates from the bow shock near the in-

tersection line, approaches the body, and finally, passes through the

z-outflow boundary.

A secondary coalescence of contour lines (Figure 441 which repre-

sents another (weaker) shear layer, lies between the bow shock and the

first shear layer. An inspection of the numerical output shows that

the flow field between these two shear layers is subsonic. This region

of subsonic flow e:,ists only for small values of 0. The extent of the

subsonic flow region can be seen in the z-plane Mach number contour

plots (Figures 37, 38, 42, and 43). Further inspection of the
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numerical output reveals a weak jet existing just above the weak shear

layer. Both the jet and the weak shear layer follow the stronger

shear layer (in a parallel manner) through the z-outflow boundary.

In addition to Mach number, G-plane contour plots of density,

pressure, and temper-:.ture at A = 2.1 0 (j = 2, stagnation plane) are

shown in figures 45-47, respectively. As expected, the strongest shear

layer is apparent in both the density and temperature $-plane contour

plots but not the pressure.

A feature of the flow field which is apparent in the density and

pressure 6-plane contour plots is the initial formation of the trans-

mitted shock. The darkest coalescence of density or pressure contours,

which is approximately perpendicular to the body represents a very

sharp expansion. The vertical contour lines immediately downstream of

the sharp expansion are the beginnings of a transmitted shock. Still

further Jownstream is another (weaker than the first) expansion. The

sharp expansion, followed by a slight pressure jump and then another

expansion can best be visualized by referring back to Figure 34 which

is a plot of stagnation line wall pressure.

other noteworthy aspects of the 6-plane contour plots include the

boundary layer, the thickening of the shock layer for increasing values

of 6, and the approximate validity of the zeroth- ,order extrapolation

for the z-outflow boundary condition.

A Schlieren photograph of a Type V shock impingement on a swept

circular cylinder is shown in Figure 51. This experimental result is

due to Keyes and Rains [2]. The conditions given in Equations 4.9 and
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4.10 (except, of course, the frcestream Reynolds number) were chosen

to match this experiment. Note the existence of the transmitted shock,

the shear layer, and the jet. The development of the shock layer from

i	 the end of the cylinder is also shown in this photograph.

The failure of the numerical method to more adequately predict the

transmitted shock is due largely to the coarse mesh. Another contrib-

uting factor is the bow shock smoothing which keeps the two bow shock

kinks from forming. This in turn directly affects the shock layer de-

tail especially the transmitted shock.

Contour plots of the wall pressure and heat transfer are shown in

Figures 52 and 53, respectively. The overall effect of the shock im-

pingement at the wall is seen quite vividly from these figures. The

peak in the heat transfer moves around the body in much the same

fashion as the intersection line on the bow shock. The effects of the

shock impingement are largest at the stagnation line and diminish in

the tangential direction until little change from the infinite cylinder

solution is experienced at the O-outflow boundary.

D. Computational Statistics

The two most important computational statistics associated with

the solution of any problem by a finite-difference technique are the

execution time and the storage requirements. The execution time, for

the most part, determines the cost of the computation. The storage re-

quirement determines the size of the computer needed for the computa-

tion. The storage requirement directly limits the computational mesh and
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Figure 52. Wall pressure contours on a swept circular cylinder under the
influence of an impinging shock.
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Figure 53. Wall heat transfer contours on a swept circular cylinder under
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I

very possibly the quality of the solution (especially for three-dimen-

sional problems). Statistics such as these are examined in this

section.
i

The computational statistics of the solutions presented in this

report are given in Table 3. The number of time steps per case varies

over a large range because. of the different levels of desired conver-

gence. Vor instance, the infinite cylinder solution (used as the ini-

tial condition for the three-dimensional shock impingement solution)

was carried to a much higher level of convergence than the other infi-

nite cylinder cases.

As previously mentioned, the large core memory (LCM) is used to

store the three-dimensional solution array. Therefore, the required

amount of LCM is proportional to the grid size. The small core memory

(SCM) is used to store the program and the intermediate result arrays.

The amount of storage listed in Table 3 does not include buffer storage

or any storage allotted to the system.

The final statistic shows how much execution time is required on

a per time step per grid point basis. The last two values in this

category (three-dimensional solutions) are higher than the others

because proportionall-- they contain a smaller number of boundary con-

dition points. All execution times are for a Ccntrol Data Corporation

7600 Computer.

The small amount of storage required for the three-dimensional
3

solution (only 131K words), is an achievement since the solution array

I	
by itself required. 90K words. With the savings in storage produced by



Table 3. Computational statistics.

Infinite Minder Cases Three-DimensionalTwo-
Dimensional Initial Shock Impingement

' Case Condition Coarse Fine
Case A Case B Case C Case Mesh Mesh

i	 Time steps 900 700 800 600 1500 750 400
E

--	 No. of runs 6 6 3 3 14 14 13

Storage
5CM (K words) 30 30 30 30 35 41 41
LCM (K wo_:ds) 11 11 11 11 9 46 90

N
Mesh
dimensions 2lx2lx5 2lx2lx5 2lx2lx5 2lx2lx5 21221x4 21x21x21 2lx21x41

Execution
475 371 410 310 550 2832 2797time (sec)

Execution time
per time step

0.24 0.24 0.23 0.23 0.21 0.41 0.39per grid pt.
(msec)

s
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the sweeping procedure, larger more productive computational meshes can

be used.
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V. CONCLUDING REMARKS

A time-marching finite-difference method has been used to compute

the three-dimensional wing-leading--edge shock impingement problem.

The bow shock was treated as a sharp discontinuity across which the

exact shock jump conditions (Rankil ne-Hugoniot relations) were applied.

The impinging shock (assumed planar) was introduced by discontinuously

changing the freestream conditions across the intersection line at the

bow shock. The compressible Navier-Stokes equations were used for this

three-dimensional computation. The present method does not require

any prior information about the shock impingement flow field to be com-

puted, as is the case with previous semiempirical approaches. In

addition, since the shock layer flow field is automatically "captured"

in the same manner in each computation, it is possible, in principle,

to compute all three types of wing-leading-edge shock impingement

with the same computer code.

A special storage-saving procedure for sweeping through the finite-

difference mesh has been developed. This sweeping procedure reduces

the required amount of computer storage by at least a factor of two

without sacrificing the execution time. This savings in storage allows

for larger more productive computational meshes which is especially

useful for three-dimensional computations.

The shock impingement solution presented in this study demonstrates

the feasibility of three-dimensional time-dependent computations in-

volving the Navier-Stakes equations. At the time of this writing, only

one other time-dependent solution of the three-dimensional Navier-Stokes

i

k
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equations is known to exist F741. The computational demands associated

with this problem, however, affect the quality of the present three-

dimensional solution. The artificially reduced Reynolds number and

the relatively coarse mesh are both limitations resulting from these

computational demands. As a result of this study, however, it is felt

that these limitations can be removed with the present method and with

currently available advanced computers.

3
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VI, RE-COMMENDATIONS FOR FURTHER STUDY

Several recommendations corverning the extension of this work can

be suggested. First, a new version of the shock smoothing technique

(the old version is given by Equation 3.39) could greatly improve the

results. Obviously this new technique should eliminate the oscilla-

tions in the bow shock, but, should not interfere with any physical

"kinks" which might appear in the bow shock.

The alleviation of the bow shock oscillations could also be

achieved in the shock slope calculation without the addition of any

numerical smoothing. For instance, the use of a one-sided difference

formula in place of the central difference formula to compute the shock

slope might relieve the numerical instability causing the oscillations

and therefore, remove the need for a bow shock smoother. One-sided

formulas which could be used for this purpose are given by

(r(rsj,k+l
sz)j,k 	

- r 
sj k / 

Az	 6.1

= (4r	 - r	 - 3r	 /2 Lz	 6.2
(rs,)j,k
	

\ s j,k+l	 sj,k+2	 S.l^k}
j

where Equation 6.1 is a first-order forward-difference formula and

Equation 6.2 is a second-order forward-difference formula. Both first-

and second-order backward-difference formulas or alternating forward-

backward formulas could also be tried.

Second, more grid points could improve the resolution of the shock

layer detail. By increasing the number of grid points in the radial

_IEEI

iu
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direction, better boundary layer resolution could be achieved malting

an accurate solution at higher Reynolds number possible. If the number

of grid points in the cross-flow direction were increased, better reso-

lution of the transmitted shock could be achieved. Because of the

storage-saving procedure used in this study, the use of more grid points

is possible and could be very beneficial. In addition, the resolution

of the transmitted shock could be greatly improved by clustering the

grid points in the cross-flow direction near the intersection line.

Third, a better comparison with experiment could be obtained if

the inflow boundary condition in the cross--flow direction could be made

to more adequately match the experiment. This could be achieved by

using a different inflow boundary condition or by comparing with an

experiment in which the impinging shock strikes the bow shock suffi-

ciently far downstream from the blunted end (about six diameters).

Fourth, different shock interference patterns (Types IV and VI)

could be computed by varying the sweep angle ( X ) . The Type IV inter-

ference pattern might be extremely difficult to compute because of the

subsonic cross-flow Mach number.

Finally, other problems related to the present problem are given

by the following: 1) Shock impingement with real gas effects, including

both chemical equilibrium and chemical nonequilibrium. 2) Shock im-

pingement where the body is a hemisphere. 3) A wing leading edge solu-

tion in which the body is more accurately modeled as a wing

able body radius, taper, angle r^' Atack, ote .).

i	 E

}	 L
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IX. APPENDIX A: REAL GAS SOLUTION PROCEDURE,

Presented in this appendix is the solution procedure (including

i
the shock jump conditions) when real gas effects are included. The

fluid is assumed to be air in chemical equilibrium. The solution pro-

? cedure is identical to the procedure used for a perfect gas case .44th

the following two exceptions: First, all thermodynamic properties of

the fluid are determined from curve fits designed especially for use

i,	 with finite-difference methods [74,751. The curve fits available are

indicated by

p = p ( e , p)

a = a(e, p)

T = T(e,p)	 A.1

t
h = h ( p , p)

I
T = T( p , p)

where p is the pressure, e is the internal energy, p is the density,

a is the speed of sound, T is the temperature, and h is the static

enthalpy, These curve fits are valid for temperatures up to 25,000 0 
and densities from 10

-7
 to 10 3 amagats.

Second, the expressions for p2 and VN in the shock jump conditions

F	 (Equations 3.14 and 3.15) are not valid when the fluid is assumed to

j
be in chemical equilibrium across the bow shock. Closed-form analyti-



1

does not exist. Therefore, for the real gas case, an iterative proce-

dure is required.

The freestream density (p CO), the freestream pressure (p .?, and

the freestream static enthalpy (h 
J are all known and held constant,

just as in the perfect gas case. The pressure just downstream of the

bow shock (p 2) is computed by exactly the same technique used in the

perfect gas case. The iteration procedure, which is used to determine

P2 and VN , begins at this point. The density ratio (DR = p ,
/p 2) is

the basic iteration parameter. Both lower and upper bounds for the

density ratio (DR in and DR lax) must be computed at the start of the

iteration and are given by

DR . = 0.0	 A.2
min

P 2 Y+ 1 + 1

DR	 ^ ^'

	

A.3
max	

1 + 
p

	

YY_	 P2
m

Notice that the upper bound density ratio (Equation A.3) is obtained

from the perfect gas formula.

Next, the exact value of the density ratio (DR) is approximated by

DR = (DR	 -+- DR	 )/2	 A.4
	min	 max

Using this density ratio, a value for V  is computed from

__	 p 2 - pug
VN 	 p J1+DR)	

A.5

f
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which is an exact shock jump relation. Next, a value for h 2 is

computed from the curve fit formula

h2 = h ( p2' P2)	 A.6

With these values of VN and h23 the density ratio is recomputed from

DR
	 F2

- 2 hl 2 h2 + 1	 A. 7
VN

which is another independent relation obtained from the shock jump

conditions. At this point a convergence test, which involves a com-

parison between 'DR -DRcom and a predetermined error tolerance, is

made. If the test is passed, the iteration is stopped, and the current

values of P 2 and VN are used to compute the velocity components (u r,2'

u 6,2 , and u z,2 ) and the radial shock velocity (rs t) from Equations

3.16 -3.19. If the test fails, either DR
min	 max

or DR	 is updated

according to the following scheme:

If DR	 > DR	 then DR . = DR	 A.S
com	 min

If DRcom C DR	 then DR ax = DR	
A.9

With the newly computed value for either DR
min	 max

or DR	 the process

given by Equations A.4 -A.9 is repeated until the convergence test is

satisfied.

During the iteration process a special problem associated with

Equation A.7 may occur. If the density ratio given by Equation A.4 is
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far enough from the desired result the radical in Equation A.7 will

be negative. This situation is alleviated by returning to Equation A.4

with DR 
ax 

set equal to the current value of DR.

The process just presented is known as a bisection type of itera-

tion. Convergence is guaranteed providing that the final value for DR

lies between the initial values of DR min and DR 
ax. 

Because this rou-

tine only halves the solution interval for each iteration, many itera-

tions are required to obtain reasonable accuracy. To reduce the number

of iterations a linear interpolating procedure for obtaining improved

density ratio approximations has been added. A schematic of this pro-

cedure is shown in Figure Al where the density ratio

``

 values lie along

the horizontal axis and the errors (ER = IDR -DR com b lie along the
vertical axis. Notice that both the minimum and maximum density

ratios and the corresponding errors for these density ratios are indi-

cated in Figure Al. Improved approximations for DR are obtained by

replacing Equation A.4 with

DR	 - DR .
DR = DR . + ER	 max	 min	 A.10

min	 min ER+ ER
min	 max

where ER
min	 max

and ER	 are determined from

min I DRmin - DRcom I	 A.11

ER 
maxI 

D 
max 

-DR 
coml 	

A. 12

The use of this linear interpolating scheme may speed up the iteration

process by as much as three times.
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The zero normal pressure gradient boundary condition which was

used to compute wall values of density if given by

PNI PNI-1eNI-1/eNI
	 A.13

where the subscripts NI and NI-I represent the values at the wall and

one grid row above the wall, respectively. This boundary condition was

used in the real gas computation, even though its formulation requires

a ; • fect gas assumption. For physically realistic c,)ld wall solutions

in the real gas range, however, the temperature i n the vicinity of the

wall (i.e., in the lower part of the boundary layer) is probably low

enough to make this boundary condition valid.

Sutherland's viscosity law, in conjunction with a constant Prandtl

number assumption, were us%d to compute the coefficients of viscosity

(Et) and thermal conductivity (k). These assumptions are generally not

valid for real gas ca.lcuiations. However, other alternatives, such as

curve fit approximations (for µ and k), are not available at the present

time.

The above real gas procedure was used in conjunction with the

previously presented finite-difference procedure to compute a sample

infinite cylinder solution. Because of the inaccurate method for

computing the real gas transport properties, the solution computed with

the real gas procedure was chosen to be in the perfect gas range. Com-

parisons made between the real gas solution and the corresponding per-

fect gas solution were very good. The real gas computation required
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than the perfect gas computation. By this rrEeans the real gas procedure

was tested. Before any effective real gas computations can be made

with this procedure, a fast approximate method for evaluating the

transport properties of air in the real gas regime must be found.

`q
v

_Ij
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3

X. APPENDIX B: SHOCK JUMP CONDITIONS

The derivations of the three-dimensional shock jump conditions as

well as the three-dimensional radial shock velocity equation are pre-

sented in this appendix. The resulting equations are in a form con-

venient for computer application. Figure B1 shows a sketch of the

local shock-fixed coordinate system (i N ,iT ,iB) along with the standard

cylindrical coordinate system (I
A
	 $,I Z).

A. Three-Dimensional Shock Jump Conditions

The resultant velocity vector on the downstream side of the b:)w

shock (V 2) may be expressed as the vector sum of '-he freestream veloc-

ity vector (V } and some arbitrary velocity vector increment (AV) as

given in Equation B.I.

V2 s = Vm s + AV 	 B.1

Equation B.1 is written in the shock-fixed coordinate system (see

Figure B1). Vm 
s 
and V2 

s 
are given by

>	 >

Vm, s uN, W N + uT, ^ T + uB, W B
	 B.2

VZ ^ s = uN ^^I + uT ^ ZIT + uB?2I	 B.3

where uN co , uT 
 
	 and uB are the components of Vm 

s 
in the shock

normal, tangent, and binormal directions, respectively, and 
uN,2' 

uT 
2'

t

.......................	 .
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Figure 81. Shock-fixed and body-fixed coordinate SySiemS.
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and uB 
2 
are the components of V 2 ^ 5 in the shock normal, tangent and bi-

normal directions, respectively.

Unon substitution of Equations 13.2 and B.3 into Equation B.1 and

applying the fact that tangential components of velocity pass through

shock waves unaltered yields

AV  = (U N,2 - uN,co N	 B.4

Note that the arbitrary velocity vector increment (AV s^ is normal to

the bow shock as expected.

The relative velocity equations for the V2 and V 
m 
velocity vectors

between the shock-fixed and the body-fixed coordinate systems can be

written as

V2,s = V2,b - 
VS/b	 B.5

V	 B.6V^ s = Vm,b 
W Vs/b

where Vs/b is the relative velocity of the bow shock with respect to

N
the body and VZ M and V^ 

b 
are given by

>	 >

- 	 n	 n	 n
V 21 = ur,23.r + u 0,2 1 9 + uz,2 I z

Vco,b = urn 
w r + u e, ^ A + uZ' M z	 B.8

where ur,2, 
'A , 2' 

and uz 
2 
are the components of V 2 b in the body coor-

dinate system and ur m, u ^, and uZ 
m 

are the components of V 
co, b 

in

the body coordinate system. Substitution of Equations B.4, B.5

{

B.7
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and B.6 into Equation B.1 yields

A
V2,b = VGo,b + (uN ^ 2

 - uN,=)iN

By taking components of Equation B.9 in th y: r-, 9-, and z-directions

yields

ur^2 = V 2 ^ b• ir = ur^-Q + (uN,2 - uN ^ w)(iN ir;
	

B. 10

u 0,2 = V2 b* 1 0= 	 u0, m + (u N,2 - u
N,co

)( IN • 10)	 B.li

uzS2 = V2)b • iZ = uzIm+ (u N,2 - 
uN,a,)

( IN' z)	 B.12

The three components ur 22 u 
P , 2 ,  and u z 2 are the desired velocity

components just downstream of the bow shock in the body coordinate

system. More useable expressions for the second terms on the right

hand sides of these three equations must now be found.

The general expression for the boar shock surface is given by

r  = f (0, z)	 B.13

or written in a different way

F(r,n,z) = r  - f(q,z) = 0	 B.14

An outward unit normal vector to the shock surface can be found by

using

I  = d	
B.15

E

: 4

B.9
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wher y GIC v( operator in cylindrical coordinates is defined by

q() _ _6 () i + 1 ^ i + Aili	 B. i6

	

^r r r ^ A A ^	 z

which yields

A	 Ir	 (rs /r s )1 9 - 
rsz zz

z --	 ^	 B.17
N

1 + (rs /r s )
2 + (rsz)2

Taking components of Equation B.17 in the r-, A-, and z-directions

yields

iN'r =	 1	 B.18

1 + (rs 
A
/r s ) 2 + (rsz) 2

A n	 -rs r,/rs	 8.19

1 + (rs A/rs) 2 + (rsz) 2

I I	
-rs z	

B.20

1	
2	 2+ (rs,/rs) + (rsz)

Next, an expression for (u N,2 - u N'M ) in terms of freestream quan-

tities and the pressure just downstream of the bow shock (p 2 ) is de-

sired. To this end the Rankine -14-zgoniot equations are used and are

given by [58 J

22

p m + A ^N,m_ p2 + P2uN,2 B.21

J
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P CO
u
N, w ^ P 2uN,2 
	 B. 22

Combination of these two equations yields

p w — p2uN ^ 2 - uN^c ` P^uN,^
	

B.23

Substitution of Equations B.18, B.19, B.20, and B.23 into Equations

B.10, B.11, and B.12 yields the shock jump conditions for the velocity

components in body-fixed coordinates, which are given by

ur 2 = ur ^^ + 
P C* 

 
P 2 	 1
B.24

>	 Poi 
N,m I + (rs,/rs ) 2 + (rsz)2

p=_ P 2	 -rs ^/rs
U 9 ^ 2 = u P ^ . 

+P m N	

B. 25

1 + {rs A/rs) 2 + Crsz) 2

P - p2	 -rsz
U 2 uz m + u

	
B.26Z

>	 >	
P co N,	 I+ ors n/rs) 2+ (rsz) 2

To complete this set of shock jump conditions expressions for uN W

and P 2 in terms of freestream quantities and p 2 are needed. The ex-

pression for uN is usually written in terms of another quantity
,m

defined by

i ) = -U	 B.27VN	 J^ s .(-

For the case of a real gas where the flow is everywhere in chemical

I
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equilibrium, including across the bona shock, cloned-form expressions

for V  and p2 do not exist. Appendix A deals with this case by uti-

lizing curve fits for the properties of air and an iteration procedure

to compute V  and P2'

For the case of a perfect gas, closed-form expressions for VN and

p Z are av • ,'lable X54,64]. By using these expressions and the new

definition for VN , the entire set of three-dimensional shock jump

conditions can be stated as

Y_1p2
Y+1 +pm

P2 _ 
pm p 2 Y — 1 

+ l
p W Y+ 1

B.28

_ ^±1
V—	 2

p oo Y— 1
1 +

p2
p m Y+ p m

B.29

B.30
_	 pm - p2 	 1

ur,2 y ur, W — V
p 
m N 1+ (rs ^/rs) 2+ (rs,) 

2

r r

	

u 2a 2 r 
ue,m+ pQ 

-V2	 s	 s
s.^+^

A, N 1+ (rs 
6/rs)2 

+ (rs 2	
a
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B. Three-Dimensional Radial
Stock Velocity Equation

Figure B2 shows a sketch of a segment of the bow shock at time t

and t+ At and some of the key notation used in this derivation. The

relative velocity equation for the freestream velocity vector {V

between the shock-fixed and the body-fixed coordinate systems is given

by Equation B.6. The freet;tream velocity component normal to the bow

shock, measured in shock-fixed coordinates, and positive inward (V 
N)

can be written with the aid of Equation B.6 as

V  = VCSs •( -]-N) = 01 co, b - Vs/b). (- N)
	

B.33

Equation B.33 may be simplified by using Equation B.8, B.18, B.19, and

B.20 to yield

-u	 + u	 (rs /r ) + u rs	 _
_	 r, W	 q,	 (^ s	 zP ^ z	

B. 34
VN ^	

2 2	
} V s/b^ '_N

1 + (rs/ r s) f (rsz)

At this point reference to Figure B2 is necessary to obtain a more

useful relationship for the last term of Equation B.34. Note that Vs/b

is the component of r st it in the shock normal direction which yields

Vs/b = (rst it iN) 1N	 B.35

where rs t is the desired radial shock velocity. Substituting this

result into Equation B.34 and simplifying with the aid of Equation B.18

yields



V5A

^,	 A
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J r 0 1 Lrvr l I J
S

Figure B2. Notation used in the derivation of the three--dimensional
radial shock velocity equation.
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-u m + u CO(rs /r ) + u rsZ + rs tr
V =	

+	
^'	

6 
s	 B.36

N

F
r

(.r
s 

9
/r s) 2 + (rsZ) 2

Solving this expression for rst yields the final result which is given

by

rst = V 
	 I + (rs 6/r3 

2	 2) + (r sZ) + ur 
co

- u 
61 CO

(rs a/r s ) - uz i COrs,	 B.37




