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I. INTRODUCTION

Recently, much attention has been directed toward developing the Euler formula-
tion for various applications in transonic aerodynamics. However, little effort has
been made to compare the speed, accuracy, and robustness of these new Euler codes
with the full-potential (FP) formulation. The purpose of this paper is to make such
a quantitative comparison using a number of transonic airfoil cases.

The computed results are from four transonic airfoil computer codes: (1) TAIR
[1,2); (2) FLO36 {3]; (3) ARC2D [(4,5]), and (4) FLOS2R [6]. Codes (1) and (2) are FP
codes, and codes (3) and (4) are Euler codes. The FP codes (TAIR and FLO36) use fully
implicit iteration algorithms (AF2 and ADI, respectively); the convergence speed of
FLO36 1s further enhanced by a multigrid convergence acceleration process. The first
Euler code (ARC2D) uses a fully implicit ADI iteration scheme; the second (FLOS52R)
uses an explicit Runge-Kutta time-stepping algorithm, which 1s enhanced by a multi-
grid convergence acceleration scheme.

The TAIR and ARC2D codes were each run using two types of grids. One grid was
generated numerically, using an elliptic (Laplacian) solver [2], and the second was
generated from an algebraic routine [7]. The FLO36 and FLO52R codes were run using
an 1internally generated grid of the circle plane mapping variety.

The comments and conclusions reached in this study will be expressed generally,
that is, 1in terms of FP versus Euler. The reader should bear in mind that these con-
clusions have been reached using the four specific codes mentioned above. We
expect the results presented herein to be tvpical, but other codes that use dif-
ferent spatial or 1iteration algorithms may produce somewhat different results.

II. RESULTS

Figure 1 1s a plot of lift coefficient versus the average mesh spacing on the
airfoil. The airfoil 1s a NACA 0012, and the flow conditions are M, = 0.63 and
a = 2.0°. As the grid was refined, the ratio of the number of grid points along the
airfoil to the number of grid points away from the airfoil was held fixed. The outer
boundary was placed at 12 chords from the airfoil. A study, which consisted of plot-
ting the lift versus distance to the outer boundary, was conducted; it verified that
this distance was sufficient to remove outer boundary effects. The TAIR and FLO36
codes produce lift asymptotes of 0.3326 and 0.3333, respectively, and the ARC2D and
FLO52R codes produce asymptotic values of 0.3357 and 0.3342, respectively.

Theoretically, all results for the two formulations should reach the same
asymptotic value for a subcritical case. The Lock solution (obtained through the
Hodograph method and considered "exact') (8] yields 0.335 as the value of the lift.
However, Lock extends the NACA 0012 airfoil to a sharp trailing edge at x/c = 1.0089,
but does not normalize to unit length. In the present results, the NACA 0012 airfoil
1s both extended and renormalized to unit length. If the Lock result 1s renormalized,
consistent with the present results, the 1lift coefficient would become 0.3321. This
tends to suggest that the FP codes are 1in better agreement with the "exact" solution
for this subcritical case.

Figure 2 is a plot of percent error in the 1lift coefficient versus CPU time 1n
seconds on the Cray XMP computer for the conditions of Fig. 1 (NACA 0012, M, = 63,
a =2.0°). The timings from all codes are based on converging the lift to an accu-
racy of 10™* (four decimal digits). The time-step and convergence acceleration
parameters from all codes (in general) have been set at default values; that is, a
minimal amount of "tuning' has been included. Thus, the convergence rates are not
optimal, but are representative of the convergence rates that would be found in prac-
tical applications. Startup times, including initialization and grid generationm,



have been subtracted from each timing. The error 1is computed by first constructing
the asymptotic values of the lift coefficient (as done in Fig. 1). Then the error 1s
simply the absolute value of the difference between the asymptotic value and the value
of the converged 1lift at a specific level of grid refinement. From Fig. 2 (also

Fig. 1), it can be observed that the FP formulations are slightly more accurate than
the Euler formulations, especially for the coarser grids. On the coarse grids, the
Euler codes are more expensive than the FP codes by an average factor of about 17,
based on CPU time. For the finer grids, this factor decreases to about 11.

Figure 3 displays a plot of 1lift coefficient versus the average mesh spacing for
a transonic case with a moderate strength shock, NACA 0012, M, = 0.75, and a = 1.0°,
No attempt was made to construct a lift error versus CPU time, as was done in Fig. 2,
since, as can be seen in Fig. 3, some of the curves turn over on themselves, making
the error measure potentially misleading. We point out here that the asymptotic
characteristics of both the FP and Euler formulations are grid-dependent (also appar-
ent in Fig. 1). The algebraic and Laplacian curves for both the FP and Euler formu-
lations show different trends and levels of accuracy. The TAIR (algebraic) and TAIR
(Laplacian) results approach their limits from different directions. The level of
accuracy for the Euler results is typically less for the algebraic grids, whereas the
reverse 1s true for the FP results. The FP results all approach the same asymptotic
limit to within an error of about 1%. The Euler results also approach an asymptotic
limit, but the error is significantly less. Another observation from Fig. 3 1is that
the level of accuracy owing to grid effects can be of the order of the differences in
equation formulations (FP versus Euler) for these cases 1in which the FP is valid.

Utilizing the nonisentropic full-potential formulation [9] 1in TAIR yields the
middle set of curves in Fig. 3. By adding entropy effects to FP formulation, the
solutions were improved to within about 4% of the Euler formulation, which it is
agreed 1s the more valid formulation for supercritical cases.

The CPU time at convergence versus the average surface mesh spacing 1s plotted
in Fig. 4 for the conditions shown in Fig. 3 (NACA 0012, M_ = 0.75, a = 1°). This
y1elds a rough estimate of the cost of running each code for different grid sizes,
without providing definitive information on the cost to obtain a desired level of
accuracy. In general, the Euler codes are more expensive than the FP codes — by a
factor of 10 based on CPU time and twice that based on operation count. An interest-
1ng observation 1s that both the ARC2D (Euler) and TAIR (FP) codes converge faster on
the Laplacian grid than on the algebraic grid. In fact, the difference between TAIR
(algebraic) and TAIR (Laplacian) convergence times 1s qulite large (as much as a factor
of 4). The cause for this behavior is not known for certain, but it may be that the
stretching 1s too rapid in the algebraic grids. Because the FP formulation 1is based
on a second-order PDE, it is more likely to be adversely affected by a grid that is
nonsmooth or rapidly stretched.

Figure 5 1llustrates the asymptotic lift behavior for a strong shock case
(RAE 2822, M, = 0.75, o = 3.0°). Note that these conditions are considered to be
beyond the valid range of the full-potential formulation, and only the TAIR and ARC2D
codes were run for this case. The FLO codes were not used, a result of the difficulty
of the case and the lack of user experience. It can be seen that the results for the
TAIR code (algebraic and Laplacian grids) both reach the same asymptotic value of
lift. The value obtained is about 1.69, which is grossly in error relative to the
Euler results. Thus, the FP formulation 1s unacceptable for this calculation. The
asymptotic values for the ARC2D code (algebraic and Laplacian grids) are in good
agreement producing an asymptotic value of lift coefficient near 1.12. The effect
of the FP entropy correction is seen to make a major difference in the FP solution,
producing errors of a level comparable to those in the previously discussed case
(NACA 0012, M, = 0.75, @ = 1°). This improvement in 1lift is also reflected in a com-
parable improvement in the surface-pressure distribution, for the nonisentropic FP
pressure distribution is in good agreement with the Euler pressure distribution.

Figure 6 presents a comparison of CPU time versus grid refinement for the RAE
case. Again we note about an order of magnitude difference in CPU time for FP over
Euler. For this case, which is admittedly difficult for isentropic FP, the conver-
gence rates are strongly affected by the different grids. Again, the nonisentropic
formulation helped improve the convergence speed of TAIR (Laplacian).



Figure 7 presents a plot of the convergence speed ratio (Euler to FP) versus the
average surface mesh spacing for the NACA 0012, M, = 0.75, a = 1° case. The con-
vergence speed ratio is plotted based on two criteria: (1) CPU time, and (2) total
operation count. Each data point plotted in Fig. 7 is obtained by means of a simple
arithmetic average of the results for each formulation, three Euler and five FP (see
Fig. 4). Although not monotonic, useful information can be obtained from these
curves. The average convergence ratio based on total operations fluctuates from
about 9 to 16, and based on CPU time the fluctuation is 4 to 8. The reason for the
difference in average convergence speed ratio based on CPU time relative to total
operation count is assoclated with vectorization efficiency. That is, the Euler
codes are highly vectorized on the Cray XMP, but the FP codes are not. The Euler-
to-FP speed ratio, based on CPU time, could be higher if the FP codes were more effi-
ciently vectorized. However, the possible improvement in FP vectorization efficiency
is difficult to estimate, since the AF2 algorithm in two dimensions cannot be vector-
1zed as efficiently as the classical ADI-like implicit schemes or explicit methods.
(Note that the AF2 algorithm in three dimensions does not have this disadvantage.)

In Fi1g. 8, an attempt 1s made to shed some light on an interesting controversy
1in which the Euler and FP formulations are involved: the proper level of solution
convergence. Because of the differencing of the dependent variable ¢ to obtain the
pressure distribution, truncation error is added to any FP solution. Since this
error adds to the lack-of-convergence error (theoretically), the FP solution must be
converged more tightly than the Euler solution for the same level of accuracy 1in the
lift calculation. Figure 8 shows a plot of error in lift versus rms error in the
dependent variable (Epg), pressure for the Euler formulation, and ¢ for the FP
formulation. The exact definitions for these two different types of error are dis-
played in Fig. 8. The two curves shown in Fig. 8 were produced from the NACA 0012,
Mo = 0.75, o = 1° case. Initially, the test case was run until tight convergence
was obtained. Then, the converged dependent variables and converged 1lift coefficient
were saved and the case was rerun. The curves shown in Fig. 8 were obtained by plot-
ting the lift error versus the rms dependent-variable error every 50 1terations. Con-
vergence 1in this case for FP and Euler solutions were about 300 and 1600 1terations,
respectively. This explains the difference in number of data points plotted for each
code. For this case, the FP solution does need to be converged more tightly for the
same error in lift. For a lift error of about 107", the FP solution needs to be
dropped about an order more in rms error.

ITII. CONCLUSIONS

A study 1involving four transonic airfoil computer codes, two FP and two Euler,
has been performed. The major conclusions of the study are as follows: (1) the FP
codes are faster than the Euler codes by about an order of magnitude based on CPU
time on the Cray XMP; (2) the FP formulation loses accuracy as transonic flow develops,
but entropy corrections yileld FP solutions comparable to those of the Euler; (3) grid
coarseness and type can be significant in affecting both accuracy and convergence
characteristics; (4) the FP formulation must be more tightly converged than the Euler
formulation for comparable levels of accuracy in the lift coefficient; and (5) in
general, good accuracy for adequate meshes can be obtained with both formulations,
irrespective of the solution method.
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