2,181 research outputs found

    Anaerobic digestion of whole-crop winter wheat silage for renewable energy production

    No full text
    With biogas production expanding across Europe in response to renewable energy incentives, a wider variety of crops need to be considered as feedstock. Maize, the most commonly used crop at present, is not ideal in cooler, wetter regions, where higher energy yields per hectare might be achieved with other cereals. Winter wheat is a possible candidate because, under these conditions, it has a good biomass yield, can be ensiled, and can be used as a whole crop material. The results showed that, when harvested at the medium milk stage, the specific methane yield was 0.32 m3 CH4 kg–1 volatile solids added, equal to 73% of the measured calorific value. Using crop yield values for the north of England, a net energy yield of 146–155 GJ ha–1 year–1 could be achieved after taking into account both direct and indirect energy consumption in cultivation, processing through anaerobic digestion, and spreading digestate back to the land. The process showed some limitations, however: the relatively low density of the substrate made it difficult to mix the digester, and there was a buildup of soluble chemical oxygen demand, which represented a loss in methane potential and may also have led to biofoaming. The high nitrogen content of the wheat initially caused problems, but these could be overcome by acclimatization. A combination of these factors is likely to limit the loading that can be applied to the digester when using winter wheat as a substrat

    Pseudorapidity distributions of charged particles from Au+Au collisions at the maximum RHIC energy, Sqrt(s_NN) = 200 GeV

    Get PDF
    We present charged particle densities as a function of pseudorapidity and collision centrality for the 197Au+197Au reaction at Sqrt{s_NN}=200 GeV. For the 5% most central events we obtain dN_ch/deta(eta=0) = 625 +/- 55 and N_ch(-4.7<= eta <= 4.7) = 4630+-370, i.e. 14% and 21% increases, respectively, relative to Sqrt{s_NN}=130 GeV collisions. Charged-particle production per pair of participant nucleons is found to increase from peripheral to central collisions around mid-rapidity. These results constrain current models of particle production at the highest RHIC energy.Comment: 4 pages, 5 figures; fixed fig. 5 caption; revised text and figures to show corrected calculation of and ; final version accepted for publicatio

    Do national resources have to be centrally managed? Vested interests and institutional reform in Norwegian fisheries governance

    Get PDF
    Corporatism -with its privileged access, restricted participation and centralized structures - has a long history in Norwegian fisheries governance. Co-management – understood as a decentralized, bottom-up and more inclusive form of fisheries governance - has not been considered a relevant alternative.. Why does corporatism still prevail in a context where stakeholder status in fisheries governance globally – both in principle and practice - has been awarded environmental organizations, municipal authorities and even consumer advocacy groups? Why then have alternatives to the corporatist system of centralized consultation and state governance never been seriously considered in Norway, in spite of the growing emphasis on fish as a public resource and fisheries management as human intervention in geographically confined and complex ecosystems? We suggest that thismay have to do with the fundamental assumptions behind Norwegian fisheries governance that since fish is a national resource, it must be centrally managed. We argue that this is an assumption that may be contested

    Adenosine Triphosphate (ATP) as a Metric of Microbial Biomass in Aquatic Systems: New Simplified Protocols, Laboratory Validation, and a Reflection on Data From the Literature

    Get PDF
    The use of adenosine triphosphate (ATP) as a universal biomass indicator is built on the premise that ATP concentration tracks biomass rather than the physiological condition of cells. However, reportedly high variability in ATP in response to environmental conditions is the main reason the method has not found widespread application. To test possible sources of this variability, we used the diatom Thalassiosira weissflogii as a model and manipulated its growth rate through nutrient limitation and through exposure to three different temperatures (15°C, 20°C, and 25°C). We simplified the ATP protocol with hot‐water or chemical extraction methods, modified a commercially available luciferin‐luciferase assay, and employed single‐photon counting in a scintillation counter, all of which increased sensitivity and throughput. Per‐cell ATP levels remained relatively constant despite changes in growth rates by approximately 10‐fold in the batch culture (i.e., nutrient limitation) experiments, and approximately 2‐fold in response to temperature. The re‐examination of related literature values revealed that average cellular ATP levels differed little among taxonomic groups of aquatic microbes, even at the domain level, and correlated well with bulk properties such as elemental carbon or nitrogen. Fulfilling multiple cellular functions in addition to being the universal energy currency requires ATP to be maintained in a millimolar concentration range. Consequently, ATP relates directly to live cytoplasm volume, while elemental carbon and nitrogen are constrained by an indeterminate pool of detrital material and intracellular storage compounds. The ATP‐biomass indicator is sensitive, economical, and can be readily standardized among laboratories and across environments

    Quark Gluon Plasma an Color Glass Condensate at RHIC? The perspective from the BRAHMS experiment

    Full text link
    We review the main results obtained by the BRAHMS collaboration on the properties of hot and dense hadronic and partonic matter produced in ultrarelativistic heavy ion collisions at RHIC. A particular focus of this paper is to discuss to what extent the results collected so far by BRAHMS, and by the other three experiments at RHIC, can be taken as evidence for the formation of a state of deconfined partonic matter, the so called quark-gluon-plasma (QGP). We also discuss evidence for a possible precursor state to the QGP, i.e. the proposed Color Glass Condensate.Comment: 32 pages, 18 figure
    • …
    corecore