Technical University of Denmark

Environmental radioactivity in Denmark in 1988 and 1989

Aarkrog, Asker; Bøtter-Jensen, L.; Chen, Q.J.; Dahlgaard, H.; Hansen, H.; Holm, E.; Lauridsen, B.; Nielsen, Sven Poul; Søgaard-Hansen, J.

Publication date: 1991

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Aarkrog, A., Bøtter-Jensen, L., Chen, Q. J., Dahlgaard, H., Hansen, H., Holm, E., ... Søgaard-Hansen, J. (1991). Environmental radioactivity in Denmark in 1988 and 1989. (Denmark. Forskningscenter Risoe. Risoe-R; No. 570).

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

DK 91000 81

Environmental Radioactivity in Denmark in 1988 and 1989

A. Aarkrog, L. Bøtter-Jensen, Chen Qing Jiang, H. Dahlgaard, Heinz Hansen, Elis Holm⁺, Bente Lauridsen, S.P. Nielsen and J. Søgaard-Hansen

+University of Lund, Sweden

Risø National Laboratory, Roskilde, Denmark July 1991 **Risø-R-570**

Riso-R-570

Environmental Radioactivity in Denmark in 1988 and 1989

A. Aarkrog, L. Bøtter-Jensen, Chen Qing Jiang, H. Dahlgaard, Heinz Hansen, Elis Holm⁺, Bente Lauridsen, S.P. Nielsen and J. Søgaard-Hansen

+University of Lund, Sweden

Risø National Laboratory, Roskilde, Denmark July 1991 Abstract. Strontium-90, radiocesium, and other radionuclides were determined in samples from all over the country of air, precipitation, stream water, lake water, ground water, drinking water, sea water, soil, sediments, dried milk, fresh milk, meat, fish, cheese, eggs, grain, bread, potatoes, vegetables, fruit, grass, moss, lichen, sea plants, total diet, and humans. Estimates are given of the mean contents of radiostrontium and radiocesium in the human diet in Denmark during 1988 and 1989. Tritium was determined in precipitation, ground water, other fresh waters, and sea water. The γ -background was measured regularly by TLD's and a NaI detector. The marine environments at Barsebäck and Ringhals were monitored for ¹³⁷Cs and corrosion products (⁵⁸Co, ⁶⁰Co, ⁶⁵Zn, ⁵⁴Mn).

During 1988 and 1989 the expanded programme initiated after the Chernobyl accident in 1986 was brought back to the pre-Chernobyl level.

ISBN 87-550-1720-7 ISSN 0106-2840 ISSN 0106-407X

Grafisk Service, Risø, 1991

Contents

Abbreviations and Units 5

1. Introduction 7

2. Facilities 8 2.1. Detectors 8 2.2. Data Treatment 8

3. Environmental Monitoring at Risø, Barsebäck, and Ringhals 9

3.1. Environmental Monitoring at Riso

3.2. Marine Environmental Monitoring at Barsebäck and Ringhals 9

9

4. Fallout Nuclides in Abiotic Samples 32

- 4.1. Air 32
 4.2. Precipitation 32
 4.3. Fresh Water 33
 4.4. Sea Water 33
 4.5. Soil 34
 4.6. Marine Sediments 34
 5. Danish Food and Various Vegetation 92
 5.1. Cows Milk 92
 5.2. Other Milk Products 92
 5.3. Cereal Grain 92
- 5.4. Bread 93
 5.5. Potatoes 93
 5.6. Vegetables and Fruits 93
 5.7. Meat, Fish, Eggs, and Various Vegetable Foodstuffs 93
 5.8. Total Diet (Consumption Data) 94
 5.9. Total Diet (Production Data) 94
 5.10. Grass 94
 5.11. Sea Plants 94
 5.12. Lichen and Moss 95
 5.13. Mushrooms 95
- 6. Strontium-90 and Radiocesium in Humans 161
- 6.1. Strontium-90 in Human Bone 161
- 6.2. Radiocesium in the Human Body 161
- 6.3. Radionuclides in Human Milk 161
- 6.4. Human Urine 162

7. Tritium in the Environment 181

- 7.1. Introduction 181
- 7.2. Assay of Tritium in Low-Level Amounts 181
- 7.3. Summary of Results 181

8. Measurements of Background Radiation in 1988 and 1989 182

- 8.1. Instrumentation 182
- 8.2. State Experimental Farms 182
- 8.3. Risø Environment 182

- 8.4. Gylling Næs Environment 182
- 8.5. Great Belt and Langeland Belt Areas 182
- 8.6. The Baltic Island of Bornholm 182

9. Conclusion 194

- 9.1. Environmental Monitoring at Riso, Barsebäck, and Ringhals 194
- 9.2. Fallout in the Abiotic Environment 194
- 9.3. Fallout Nuclides in the Human Diet 194
- 9.4. Strontium-90 and Cesium-137 in Humans 195
- 9.5. Tritium in Environmental Samples 195
- 9.6. Background Radiation 195

Acknowledgements 196

Appendices

- Appendix A. Calculation of Revised Models for ¹³⁷Cs in Danish Grain 197
- Appendix B. Statistical Information 199
- Appendix C. A Comparison Between Observed and Predicted Levels in the Human Food Chain in Denmark in 1988 and 1989 200
- Appendix D. Fallout Rates and Accumulated Fallout (mCi ⁹⁰Sr km⁻²) in Denmark 1950-1989 205

References 212

Abbreviations and Units

I: joule: the unit of energy; 1 I = 1 Nm (= 0.239 cal)Gy: grav: the unit of absorbed dose = 1 J kg^{-1} (= 100 rad) Sv: sievert: the unit of dose equivalent = 1 J kg^{-1} (= 100 rem) **Bq:** bec uerel: the unit of radioactivity = 1 s^{-1} (= 27 pCi) cal: calorie = 4.186] rad: 0.01 Gv rem: 0.01 Sv Ci: curie: 3.7×10^{9} Bq (= 2.22×10^{12} dpm) exa: 1018 **E**: P: Deta: 1015 T: tera: 1012 G: giga: 10⁹ M: mega: 106 k: kilo: 10³ m: milli: 10-3 μ. micro: 10-6

- n: nano: 10-9
- p: pico: 10-12
- f: femto: 10⁻¹⁵ a: atto: 10⁻¹⁸

pro capite: per individual TNT: trinitzotoluol; 1 Mt TNT: nuclear explosives equivalent to 10⁹ kg TNT.

yr-1: per year (a-1)

- cpm: counts per minute
- dpm: disintegrations per minute
- OR: observed ratio
- CF: concentration factor
- FP: fission products
- µ R: micro-roentgen, 10⁻⁶ roentgen
- S.U.: pCi 90Sr (g Ca)-1
- O.R.: observed ratio
- M.U.: pCi 137Cs (g K)-1
- V: vertebrae
- m: male
- f: female
- nSr: natural (stable) Sr

eqv. mg KCl: equivalents mg KCl: activity as from 1 mg KCl (~0.96 dpm = 0.016 Bq; 1 g K = 30.65 Bq)

S.D.: standard deviation:

$$\sqrt{\frac{\sum(\bar{x}-x_i)^2}{(n-1)}}$$
$$\sqrt{\frac{\sum(\bar{x}-x_i)^2}{n(n-1)}}$$

S.E.: standard error

- U.C.L.: upper control level
- L.C.L.: lower control level
- S.S.D.: sum of squares of deviation: $\Sigma(\vec{x} \cdot x_i)^2$
- f: degrees of freedom
- s²: variance
- v²: ratio of the variance in question to the residual variance
- P: probability fractile of the distribution in question
- η : coefficient of variation, relative standard deviation
- anova: analysis of variance
- A: relative standard deviation 20-33%
- B: relative standard devition >33%, such results are not considered significantly different from zero activity
- B.D.L.: below detection limit

In the significance test the following symbols were used:

- : probably significant (P > 95%)
- ** : significant (P > 99%)
- ***: highly significant (P > 99.9%)

1. Introduction

ll.

The present report is the thirty-second of a series of periodic reports (Riso Reports 1957-1989) dealing with measurements of radioactivity in Denmark. The organization of the material in the present report corresponds to the report of last year. However, this report covers two years: 1983 and 1989. The tables (and figures) representing 1988 are marked with an A and those from 1989 with a B. Tables and Figures are placed after the text in each chapter, and the text has been reduced compared to previously. After the introduction and a chapter on organization and facilities, there follows a chapter on environmental monitoring around nuclear facilities (Riso, Barsebäck, and Ringhals). Chapter four deals with fallout nuclides in the abiotic environment, i.e. air, water, and soil. Chapters five and six comprise fallout nuclides in the human diet, various vegetation and human tissues. Chapter seven is devoted to a general discussion of environmental tritium studies. External radiation is treated in chapter eight. The names of the authors of each chapter appear at its head.

1.2.

The methods of radiochemical analysis (Osmond et al. 1959, Bryant et al. 1959, Harley 1972) and the statistical treatment of the results (Hald 1958, Vestergaard 1964) are still based on the principles established in previous reports (Riso Reports 1957-1989).

1.3.

The detailed tables of the environmental monitoring programme for Risø National Laboratory appear in semiannual reports: Radioactivity in the Risø district January-June 1988, July-December 1988, January-June 1989 and July-December 1989 which are available from Risø Library.

1.4.

The report contains no information on sample collection and analysis except in cases where these procedures have been altered.

1.5.

In 1988 and 1989 the personnel of the Environmental Control Section of the Health Physics Department consisted of three chemists (incl. one guest scientist), one biologist, one physicist, ten laboratory technicians, three sample collectors, and two laboratory assistants. The group for Electronics Development and Maintenance gave assistance with the maintenance of counting equipment.

1.6.

The composition of the average Danish diet used in this report is identical with that proposed in 1962 by the late Professor E. Hoff-Jørgensen, Ph.D.

2. Facilities

By S.P. Nielsen

2.1. Detectors

The samples are measured as follows:

Alpha (239Pu, 244Am and 209Po): 22 semiconductor detectors connected to multichannel analyzers (512 channels per detector) and another two for total alpha counting.

Beta (⁹⁰Y and ⁹⁹Tc): Six "multidetector"-systems each containing 5 sample cov: sters and a common anticoincidence shield are used.

Gamma (natural and fallout isotopes): A total of li germanium detectors in 10 cm lead shields are used for gamma spectrometric measurements. Four detectors are connected to a hard-wired multichannel analyze and 7 to MCA-cards in personai computers. The efficiencies of the detectors are in the range 4-40% relative to a $3^{"} \times 3^{"}$ Nal(Tl) detector. An $8^{"} \times 4^{"}$ Nal(Tl) detector and a detector unit with three $4^{"} \times 4^{"} \times 16^{"}$ Nal(Tl) crystals are used in an underground shielded room for gamma-spectrometric whole-body measurements.

2.2. Data Treatment

Measured spectra are transferred to a Unisys A6 computer for evaluation.

A program system STATDATA (*Lippert* 1975) is developed for registration and treatment of environmental measurements including multichannel analyzer spectra. To date, approximately 110 000 sets of results have been registered covering the period from 1957.

3. Environmental Monitoring at Risø, Barsebäck, and Ringhals

by H. Dahlgaard

3.1. Environmental Monitoring at Risø

From the four semiannual reports: Radioactivity in the Riso district January-June 1988, July-December 1988, January-June 1989 and July-December 1989, the results of the environmental monitoring at Riso are presented. The reports are available from the Riso Library.

The various anthropogenic radionuclides measured outside the Riss area came from non-Riss sources.

3.2. Marine Environmental Monitoring at Barsebäck and Ringhals

The radiological monitoring of the marine environment around the two nuclear power plants at Barsebäck and Ringhals in Sweden (Risø Reports 1957-1989) was continued throughout 1988 and 1989. At the end of 1989 the samplings in Barsebäck and Ringhals have been brought to an end.

Figures 3.2.1.1 and 3.2.1.2 show the sampling locations.

3.2.1. y-Emitting Radionuclides in Brown Algae

Tables 3.2.1.1 and 3.2.1.2 show the radionuclide concentrations found by γ -spectrometric analysis in brown algae sampled near Ringhals in 1988 and 1989. Monthly data on radionuclides in seaweed from Barsebäck and Ringhals are reported in Chapter 3.2.5. The data are expressed on the basis of dry weight. Dry matter contents are given.

Table 3.2.1.3 shows a comparison of the 3 fucoids Fucus vesiculosus, Fucus serratus, and Ascophyllum nodosum. The levels of significance of differences from unity are indicated.

3.2.2. y-Emitting Radionuclides in Benthic Invertebrates and Fish

Table 3.2.2.1 shows results of the γ -countings on benthic animals and fish from Ringhals and Barsebäck in 1988 and 1989. The dose commitment to a hypothetical critical individual consuming 20 kg Mytilus edulis soft parts (fresh weight) yearly would be less than 1 μ Sv yr⁻¹ based on mussels from Ringhals, location 95 (Table 3.2.5.4). This dose is insignificant compared to natural background doses.

consumption of 100 kg flatfish meat would give approximately 1-2 μ Sv from radiocesium based on data in Table 3.2.2.1. The cesium isotopes come mainly from the Chernobyl accident.

3.2.4. y-Emitting Radionuclides in Sea Sediments

Results from sediment samples collected at Barsebäck and Ringhals with the HAPS bottom corer are shown in Tables 3.2.4.1 and 3.2.4.2.

At both power plants the ⁴⁰Co that has been detectable in the sediments for several years has been compared with the reported annual discharges from Tables 3.2.5.2 and 3.2.5.10. The total amount of ⁴⁰Co accumulated in the sediments at Ringhals location 2 and Barsebäck location 38 expressed as Bq m⁻² has been divided for each year with the total amount of ⁶⁰Co discharged from each power plant (GBq, decay corrected) summed up till the year of sampling. The result is a transfer factor from the total accumulated discharge to one square meter of sediment at the specified location, i.e. Bq m⁻²/GBq or m⁻² × 10⁻⁹.

These sediment transfer factors are shown in Figs. 3.2.4.1 and 3.2.4.2. These transfer factors based on total accumulated discharges do nc² show a clear decreasing tendency, as they should if a significant part of the sedimented cobalt was remobilized. Thus, the results indicate an irreversible sedimentation of cobalt.

3.2.5. Monthly Time Series at Ringhals and Barsebäck

For historical reasons the monthly data sets are reported in this chapter.

Ringhals Results

Tables 3.2.5.1-3.2.5.8 give the Ringhals data. The concentrations of anthropogenic gamma emitters as well as of ⁷Be in Fucus outside the northern cooling water intake channel was as discussed in the previous report lower than in Fucus sampled in the channel even if the last site is 200 m further away from the power plant. Table 3.2.5.5 gives annual average values for the ratio.

Barsebäck Results

Tables 3.2.5.9-3.2.5.13 give the Barsebäck data.

Fig. 3.1.1. Sampling locations at Riso National Laboratory. 1-5: locations for rain bottles (0.03 m² each), ion-exchange columns (0.06 m² each), and grass samples.

Fig. 3.2.1.1. Sampling locations at Barsebäck. Arrows indicate cooling water intake and outlet.

Fig. 3.2.1.2. Sampling locations at Ringhals. 14 indicates fishing trucks. Arrows indicate cooling water intake and outlet.

Station No.**	7	7	6	6	5	8	8	9•	9*	13*
% dry matter	23.2	23.7	23.2	24.6	24.3	19.5	23.3	21.8	20.0	19.1
Species	Fu.ve.	Fu.se.	Fu.ve.	Fu.se.	Fu.se.	Fu.ve.	Fu.se.	Fu.ve.	Fu.se.	Fu.ve.
Distance from outlet in km	0.2	0.2	1.9	1.9	4.1	4.8	4.8	1.1	1.1	4.1
⁵⁴ Mn 57Co	10.5 3.0	12.8	2.1	2.6	2.1	1.1 A	1.30	4.1	5.3 0.79	Α
58Co	250 166	330 240	37 34	48 57	30 34	16.3 11 8	25 23	108 53	185 92	22 8 9
65Zn		18.8	168	4.1	120		20		5.1 A	
¹³⁴ Cs	6.1	6.6	4.9	3.9	4.1	3.9	4.0	6.2	7.2	5.0
¹³⁷ Cs ¹⁴¹ Ce	22 5.1	22 6.1	21	16.9	18.9	18.0	17.0	21	24	18.7
¹⁴⁴ Ce	12.7	14.0							9.9	

Table 3.2.1.1.A. Radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus servatus (Fu.se.) collected at Ringhals 8 June 1988. (Unit: Bq kg⁻¹ dry matter)

* Locations south of the outlet; the other locations were situated north of the outlet.

**Cf. Fig. 3.2.1.2.

	_						
Station No.**	6	6	5	5	8	8	9*
% dry matter	17.3	17.7	17.4	19.2	17.0	17.8	18.2
Species	Fu.ve.	Fu.se.	Fu.ve.	Fulse.	Fu.ve.	Fu.se.	Fu.se.
Distance from outlet in km	1.9	1.9	4.1	4.1	4.8	4.8	1.1
⁵⁴ Mn ⁵⁸ Co ⁶⁰ Co ¹³⁴ Cs ¹³⁷ Cs	1.52 A 10.4 35 2.8 17.2	1.40 A 10.4 35 2.9 16.6	7.6 23 2.7 15.6	10.7 31 2.2 15.2	8.5 21 3.2 21	0.61 A 5.8 14.8 4.5 22	1.35 A 17.0 54 2.8 17.7

Table 3.2.1.1.B. Radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus serratus (Fu.se.) collected at Ringhals 12 May 1989. (Unit: Bq kg⁻¹ dry matter)

* Locations south of the outlet; the other locations were situated north of the outlet. **Cf. Fig. 3.2.1.2.

Station No.**	7	6	5	8	9•
% dry matter	19.9	19.8	19.4	20.2	23.7
Species	Fu.se.	Fu.se.	Fu.se.	Fu.se.	Fu.se.
Distance from outlet in km	0.2	1.9	4.1	4.8	1.1
⁵⁴ Mn ⁵⁷ Co	3.6 0.5 B	2.8	2.4 A	1.47 A	14.3 1.15 A
58Co	101	70	56	52	170
⁶⁰ Co ⁶⁵ Zn	121	76	48	33	450 21
^{110m} Ag	4.9	3.2 A	3.0	1.93	6.0
¹³⁴ Cs	2.1	2.8	2.5	2.0	2.7 A
¹³⁷ Cs	12.0	15.4	13.1	10.1	12.1

Table 3.2.1.2.A. Radionuclides in Fucus serratus (Fu.se.) collected at Ringhals 15 December 1988 (Unit: Bq kg⁻¹ dry matter)

*Locations south of the outlet; the other locations were situated north of the outlet. **Cf. Fig. 3.2.1.2.

Table 3.2.1.2.B. Radionuclides in Fucus vesiculosus (Fu.ve.), Fucus servatus (Fu.se:) and Ascophyllum nodosum (As.no.) collected at Ringhals 31 October 1989. (Unit: Bq kg⁻¹ dry matter)

Station No.**	7	7	7	5	5	8	8	9*	13•	13*
% dry matter	23.2	21.8	2 1.7	23.8	20.8	21.5	19.8	19.1	20.6	21.5
Species	Fu.ve.	Fu.se.	As.no.	Fu.ve.	Fulse.	Fu.ve.	Fu.se	Fu.ve.	Fu.ve.	Fu.se.
Distance from										
outlet in km	0.2	0.2	0.2	4.1	4.1	4.8	4.8	1.1	4.1	4.1
⁵⁴ Mn	22	16.7	5.4	3.4	2.5 A	3.2	2.5	15.7	3.7	2.2 A
57Co	1.0 A	•						1.0 A		
58Co	138	136	62	35	39	37	46	197	37	41
60Co	350	350	200	61	76	50	81	325	47	49
⁶⁵ Zn	16.0	9.7 A					14.4			
110mAg	3.6	7.7 A	6.6	2.8 A	2.5	2.3 A	2.3 A			
¹³⁴ Cs	2.1	2.5 A	2.0	1.64	1.43	1.58	1.95	1.68	2.2	2.2
137Cs	8.8	15.6	13.7	9.6	10.6	11.8	15.0	11.1	13.4	15.1

*Locations south of the outlet; the other locations were situated north of the outlet. **Cf. Fig. 3.2.1.2.

Isotope	F	u.ve./Fu.se.	Fu.	ve./As	.no.
e0Co	0.82**	*±0.039 (n=43)	1.32*	±0.12	(n = 18)
58Co	0.84**	± 0.033 (n = 42)	2.43***	±0.25	(n = 16)
⁵⁴ Mn	1.02	$\pm 0.056 (n = 36)$	3.60***	±0.30	(n = 9)
65Zn	0.85*	$\pm 0.061 (n = 28)$	1.23	±0.17	(n = 16)
^{110m} Ag	1.38*	$\pm 0.138 (n = 23)$	1.13	±0.17	(n = 12)
¹³⁷ Cs	1.00	$\pm 0.029 (n = 42)$	1.35***	±0.07	(n = 16)
131]	0.94	(n = 1)	1.2		(n = 1)
95Zr	0.89	(n=1)			
¹²⁴ Sb	0.70	(n = 1)	1.3		(n = 1)
57Co	1.68	$\pm 0.780 (n = 2)$	0.8		(n = 1)
¹³⁴ Cs	0.98	±0.037 (n = 18)	1.5	±0.04	(n = 2)
¹⁰³ Ru	1.29	$\pm 0.249 (n=5)$	2.5	±1.17	(n = 2)
¹⁰⁶ Ru	1.25	$\pm 0.261 (n = 5)$	2.3	±0.38	(n = 2)
¹⁴⁴ Ce	0.69	$\pm 0.218 (n=2)$			
¹⁴¹ Ce	0.83	(n = 1)			
The error te	rm was 1	S.E.			

Table 3.2.1.3. Ratios of activity concentrations on dry weight basis in Fucus vesiculosus (Fu.ve.), Fucus serratus (Fu.se.) and Ascophyllum nodosum (As.no.) collected at Ringhals 1978-1989

Species	Flatfish meat	Flatfish meat	Flatfish meat	Cod meat	Lumpsucker meat	Buccinum* undatum meat	Mytilus* edulis meat	Mytilus* edulis meat	Mytilus* edulis meat	Mytilus" edulis meat
Date	May 24	June 8	Nov 30	Nov 30	May 24	June 8	June 8	June 8	Dec 15	Dec 1
Location	Barsebäck	Ringhals	Barseback	Barsebäck	Barsebäck	Ringhals	Ringhals	Ringhals	Ringhals	Barseback
Station No.4	30	14	30	30	30	14	7	13	6	26
% dry matter	-			•	-	20.7	12.6	11.5	16.8	12 2
Depth in m	15-22	11-14	6-10	6-10	15-22	11-14	0.5	0.6	0.6	03
58Co							94	42 B	10 3	
ၜၖင၀							66	12.6	9.0	11.8
⁶⁵ Zn							14.7			
110mAg						8.7				
134Cs	0.82	0.42	1.38	1.23	0.086				0.8 B	57
¹³⁷ Cs	3.7	2.9	6.4	7.1	0.43	2.8	7.3	5.1	3.4	148

Table 3.2.2.1.A. Gamma-emitting radionuclides in benthic animals and fish collected at Ringhals and Barsebäck in 1988. (Unit: Bq kg⁻¹ fresh)

 $\Delta Cf.$ Figs. 3.2.1.1 and 3.2.1.2.

*Unit: Bq kg-1 dry matter

Table 3.2.2.1.B. Gamma-emitting radionuclides in benthic animals and fish collected
at Ringhals and Barsebäck in 1989. (Unit: Bq kg ⁻¹ fresh)

Species	Flatfish meat	Flatfish meat	Lumpsucker meat	Mytilus edulis* meat	Cancer pagurus* total	Buccinum un-* datum meat
Date	May 12	May 19	May 19	May 12	May 12	May 12
Location	Ringhals	Barsebäck	Barsebäck	Ringhals	Ringhals	Ringhals
Station No.△	14	30	30	6	14	14
% dry matter	-	•	-	15.0	38.4	21.1
Depth in m	20	7-12	7-12	0.7	20	20
58Co 60Co 110mAg				1.3 B 7.2	1.15 3.6	1.18 2.4
¹³⁴ Cs ¹³⁷ Cs	0.20	0.70 4.0	0.20 A 0.87	0.86 A 4.6	0.43 A 2.3	2.1

^ACf. Figs. 3.2.1.1 and 3.2.1.2.

*Unit: Bq kg-1 dry matter

Table 3.2.2.2. Activity ratios on dry weight basis, Myttlus edulis soft part (from Tables 3.2.2.1.A and B) to Fucus vesiculosus (from Tables 3.2.1.1.A and B) collected at Ringhals in 1988 and 1989

Location	Date	⁶⁰ Co	58Co	65Zn	137Cs	110mAg	54Mn	95Zr	¹⁴⁴ Ce	¹³⁴ Cs
7 13	June 8 1988 June 8 1988	0.40 1.42	0.38 1.91		0.33 0.27					
Mean S.E. n	1988	0.91 0.51 2	1.14 0.77 2		0.30 0.030 2					
6	May 12 1989	0.21	0.125		0.27	-				0.31
Mean S.E. n	1977-89	0.39 0.057 26	0.35 0.082 21	1.12 0.140 22	0.34 0.032 17	0.75 0.156 8	0.160 0.068 4	0.22 0.05 3	0.60 0.05 4	0.44 0.14 2

Table 3.2.4.1.A. Gamma-emitting radionuclides in sediment samples collected at Barsebäck, 55°45'N 12°52'E, location 38, in 1988. (Area: 0.0145 m²)

Date	Layer in cm	⁶⁰ Co Bq kg⁻¹ dry	⁶⁰ Co Bq m ⁻²	¹³⁴ Cs Bq kg ⁻¹ dry	¹³⁴ Cs Bq m ⁻²	¹³⁷ Cs Bq kg ⁻¹ dry	¹³⁷ Cs Bq m ⁻²
May 25	0-3 3-6 6-9 9-12 12-15	11.9 5.7	102 60	4.8	41	76 63 32 15.9 6.0	650 670 370 200 76
	0-15		Σ 162		Σ41		Σ 1970
Dec 1	0-3 3-6	10.9 8.5	80 53			61 50	450 310
	0-6		Σ 133				Σ 760

Table 3.2.4.1.B. Gamma-emitting radionuclides in sediment samples collected at Barsebäck, 55°45'N 12°53'E, location 38, in 1989. (Area: 0.0145 m²)

Date	Layer in cm	54Mn Bq kg-1 dry	54Mn Ba m-2	⁶⁰ Co Bq kg-1 dry	⁶⁰ Co Bq m ⁻²	^{:25} Sb Bq kg ⁻¹ dry	¹²⁵ Sb Bq m-2	¹³⁴ Cs Ba kg ⁻¹ dry	¹³⁴ Cs Bq m ⁻²	^{:37} Cs Bq kg ⁻¹ dry	^{- 37} Cs Bq m-2
May 20	0-3 3-6 6-9 9-12 12-15			15.9 12.7 3.8	111 129 46	10.0 5.6 A	70 57 A	8.7 4.6 0.23 A 1.3 B	61 47 2.8 A 16 B	79 72 59 34 22	550 730 710 420 280
	0-15				Σ 290		Σ 127		Σ 127		Σ 2700
Nov 17	0-3 3-6 6-9 9-12 12-15	0.99A	11.5 A	15.1 14.4 7.2 4.0 1.0 A	108 158 84 48 11.8 A	10.2 A 5.2 A	72 A 57 A	7.2 3.9 1.32 A 0.68 A	51 42 15.4 A 8.0 A	80 74 68 58 35	570 820 790 680 410
	0-15		Σ 11.5		Σ 410		<u> </u>		Σ116	_	Σ 3300

Fig. 3.2.4.1. Total accumulated discharge of ${}^{60}Co$ (GBq, decay-corrected) from Barsebäck (\Box) and transfer factor to one square meter of sediment at location 38 (**B**) calculated as Bq m⁻²/GBq.

Fig. 3.2.4.2. Total accumulated discharge of ${}^{60}Co$ (GBq, decay-corrected) from Ringhals (\Box) and transfer factor to one square meter of sediment at location 2 (\blacksquare) calculated as Bq m⁻²/GBq.

Risø-R-570

Date	Layer ir: cm	⁶⁰ Co Ba kg-1 dry	©Co Ba m-2	¹²⁵ Sb Ba kg ⁻¹ dry	125Sb Ba m-2	¹³⁴ Cs Bq kg ⁻¹ dry	134Cs Ba m-2	⁷³⁷ Cs Bq ky ⁻¹ dry	¹³⁷ Cs Bq m-2
June 8	0-3	11.2	148			26	34	19.6	260
	3-6	74	172			1.09	25	176	410
	6-9							7.7	320
	9-12							3.1	112
	12-15							1.82	78
	0-15		Σ 320				Σ 5 9		Σ11 80
Dec 16	0-3	26	270	6.4 A	68 A	5.0	53	38	410
	3-6	21	360			1.42	25	41	730
	6 -9	10.2	270					29	760
	9-12	2.1	75					17.9	6 30
	12-15							9.2	330
	0-15		Σ 9 80		Σ 68		∑ 78		Σ 2900

Table 3.2.4.2.A. Gamma-emitting radionuclides in sediment samples collected at Ringhals, 57°15'N 12°04'E, location 2, in 1988. (Area: 0.0145 m²)

Table 3.2.4.2.B. Gamma-emitting radionuclides in sediment samples collected at Ringhals, 57°15'N 12°^4'E, location 2, in 1989. (Area: 0.0145 m²)

Date	Layer in cm	⁶⁰ Co Ba kg-1 dry	60Co Ba m-2	125Sb Ba kg-1 dry	¹²⁵ Sb Ba m-2	™34Cs Ba kg-™ dry	134Cs Bq m-2	¹³⁷ Cs Ba kg- ¹ dry	¹³⁷ Cs 8q m ⁻²
May 12	0.3	16.0	350	3.2 A	70 A	1,34	29	18.8	410
	3- 6	11.2	280	4.0 B	98 B	1.26 A	32	21	510
	6-9	3.5	121			0.97 A	34 A	14.0	480
	9-12							58	240
	12-15							29	135
	0-15		Σ 750		∑ 168		Σ 95		<u> 1780</u>
Oct 31	0-3	19.1	370	3.1 B	59 B	1.2+	24	15.0	290
	3-6	6. 9	220					14.5	470
	6-9	2.2	87					7.7	310
	9-12	0.79	36					3.6	163
	12-13							20	24
	0-13		Σ 710		Σ 59		Σ 24		Σ 1260

Isotope	neL	Feb	March	Apni	May	June	July	Aug	<u>51</u> **	Oct	Nov	Dec
5°Cr	7 7 × 10 ⁴	1 6 × 10 ⁴	7 9 × 10?	3.5 × 10 ²	8 3 × 10 ⁸	59×10	4 T × 10 ⁹	46 - 10 ³	1 6 × 105	1.4 × 107	66 × 10 [±]	1 2 - 10 ²
5"\:n	1.4×10 ⁸	1.4 × 10 [#]	1.6 × 10 ⁴	1.3 × 104	1.7 × 10 ⁸	1 6 × 10 ⁶	5 0 × 10ª	41 - 10 [±]	4.0 \ 10	33×10 ⁸	4.5 ~ 105	15 - 10 ⁸
57Co	5.9 - 104	1 7 × 10 ⁷	7 3 × 10 ⁶	43×104	91×10 ⁶	1 4 × 107	5 5 × 107	37 107	3 9 - 10*	4 0 × 10 ⁷	48 = 10"	36 - 107
9Co	1.6 × 109	14×109	5.4 × 10 ⁸	2.2 × 10 ⁸	2 9 × 109	32×109	23×1010	1 3 × 10 ¹⁰	1 2 × 1010	1 3 × 10 ¹⁰	7 6 × 10 ^e	55×10*
59F€	6 T × 10?	6 3 × 10 ⁷	1 8 × 10 ⁷	54×10 ⁸	3 5 × 107	2 0 × 107	1 6 × 10 [#]	2 3 × 10 ⁸	1.6 \ 104	1 8 × 10 [#]	2 3 × 10 ⁴	1 6 × 107
enCo	1 7 × 10 ⁹	55×109	3 3 × 109	2 2 × 10 ⁹	26×109	2 2 × 10 ⁹	59×109	64×109	49×109	34×109	6.9×10^{9}	93 - 109
eszn	8 2 × 107	6.6×10^{7}	58×107	26×107	39×107	37×107	33×107	1.2 × 10*	84×107	3.3×10^{7}	8.0 × 10?	1 2 × 10 ⁴
110mAg	4.0×10^7	14×10 ⁰	4.2 × 10 ⁷	54×107	34×10^7	3.2 × 10 ⁷	7 7 × 10 ⁷	2 0 × 107	3.2 × 10 ⁶	17×10 ⁰	24×10 ⁸	32 - 10*
ויני	6 9 × 10 ⁴	5.2 × 10 ⁶	00	56×10 ⁶	1.5×10 [#]	1.2×107	00	T 4 × 10 ⁶	1.5×10 ⁸	1 3 × 10?	7.0×10^5	22×105
134Cs	1.5×10 ⁶	17×10 [®]	9.9 × 107	3.7×10^{7}	4.3 × 10 ⁸	1.8×10 ⁹	2 1 × 10 ⁹	1.8 × 10 [#]	1.0 × 10 ⁹	24×10 ⁸	1.2 × 10 ⁸	37×10≢
137Cs	2 3 × 10°	2.9×10 ⁸	2 1 × 10 ⁰	7.9×10 ⁷	6.8 × 10 ⁸	25×109	3.2×10^{9}	46×10 ⁸	94×10	31×10 ⁸	27×10	24×105

-

 Table 3.2.5.J.A. Reported monthly liquid discharges from Ringhals in 1988

 (Sydkraft 1988). (Unit: Bq month⁻¹)

Table 3.2.5.1.B. Reported monthly liquid discharges from Ringhals in 1989 (Sydkraft 1989). (Unit: Bq month⁻¹)

Isotope	nsL	Feb	March	Аргії	May	June	July	Auç	Sept	Oct	Nov	Dec
\$°Cr	4 2 × 10 ⁷	9 1 x 10 ⁷	4 3 × 10 ⁷	6.8 × 10#	3.4 x 10 ⁹	1.0 × 10 ⁹	2.5 × 109	55×10*	1.6 × 10 ⁹	43×10#	4 3 - 10 ⁵	19 = 1C ^e
54Mn	4 9 × 10 ⁷	24×10 ⁸	18×10 ⁴	55×107	1.7×10 ⁸	3.3 × 10 ⁸	49×10 ⁰	2 3 × 10 [€]	77×10 ⁰	39×10	9.5 ~ 10"	13-10
57Co	7 9 × 10 ⁶	2 4 × 10 ⁷	2.6 × 107	7 3 × 10 ⁶	1 4 x 10 ⁷	3.7×10^{7}	6 8 × 10 ⁷	31+107	5.0×10^{7}	2.1×10^{7}	7 5 = 10 [‡]	1.7 × 107
54Co	1.3 × 10 ⁹	2.1 × 10 ⁹	2 2 × 10 ⁴	57×10ª	30×10 ⁹	5 6 × 109	1 9 × 10 ¹⁰	8 8 × 10 ⁴	1.4 × 1010	43 - 109	3 9 × 10º	26 10 ⁹
59Fe	00	0.0	00	0.0	1 3 × 10 [#]	38×107	46×107	5.6×10 ⁶	5 3 × 10 ⁷	36 - 107	7 4 × 10 [€]	49 - 105
€°Co	1 3 × 109	37×109	2 3 × 109	1 T x 109	6.2 × 109	94×109	1 7 × 10 ¹⁰	9 2 × 10º	T 3 x 10°0	70 - 109	2 9 × 10 ⁵	31 × 109
65Zn	2.4×10^7	2.7×10^{7}	1.1×10^{7}	2.6 × 10 ⁷	55×10^7	2.6 × 107	1 3 × 10 ⁸	8.5 × 107	2.9 × 10 ⁶	T 4 × 10 ⁸	48×10	25×107
110mAg	1 0 × 107	2.9×10^7	1 3 × 107	5 2 × 10 ⁶	2.2×10 ⁸	5.9×10 ⁷	33×10 ⁰	2 0 × 10 ⁸	4.4×10^{7}	1 + > 107	97×107	16×107
1311	93×10 ⁵	21×10	35×106	00	8.1 × 10 ⁷	1.4×107	00	32 - 107	29800	97×10 ⁵	00	00
134Cs	7 7 × 107	1.0 × 10 ⁸	37×10€	50×107	3.7×10 ⁶	2 0 × 10#	4.6 = 108	24×10 [±]	48 - 10 ⁸	14×10 ⁸	93 - 10 ⁷	T T × 10 ⁸
:):Cs	37+tu:	34×108	37 - 10 ²	1 9 × 10ª	6 2 × 10 ⁸	69 - 10 ⁸	83 - 10 ^e	4 2 · 60 [±]	24 - 10º	11-109	2 0 - 10 ²	55×10ª

isotope	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
51Cr		2.3×10 ⁹	1.3×10 ¹¹	3.9 × 10 ¹⁰	7.5 × 10 ⁹	6.0 × 10 ⁹	1.6×1010	5.5×109	1.4 × 10 ¹⁰	8.1 × 10 ⁹	1.9 × 10 ¹⁰	1.0 × 10 ¹⁰	1.3 × 1010	1.5 × 1010	1.1 × 10 ¹⁰
54Mn		3.4 × 10 ⁹	3.3×10^{10}	1.1 × 10 ¹⁰	5.2 × 10 ⁹	5.4 × 10 ⁹	4.0 × 10 ⁹	2.2 × 10 ⁹	7.8 × 10 ⁹	8.1 × 10 ⁹	5.1 × 10 ⁹	5.5×10 ⁹	4.2×10 ⁹	3.1×10 ⁹	3.1 × 10 ^e
57Co						1.6×10 [#]	1.1 × 10 ⁸	2.2 × 107	4.9 × 10 ⁷	1.1×10 ⁸	2.6×10 [#]	3.1 × 10 [₽]	5.6×10 [#]	3.1 × 10 [₽]	3.1 × 10 ⁸
58Co	0	1.5×1010	3.1 × 1011	5.1 × 10 ¹⁰	2.7×10^{10}	1.8×1010	2.6×1010	1.8 × 10 ¹⁰	5.9 × 10 ¹⁰	1.2 × 1011	6.7 × 10 ¹⁰	9.1 × 10 ¹⁰	7.3 × 1010	8.4 × 1010	6.8 × 1010
59Fe		0	1.1 × 10 ⁹	1.1×10^{10}	1.3×10 ⁹	9.9 × 10 ⁸	1.1 × 10 ⁹	1.1 × 10 ⁸	6.5×10 ⁸	6.6 × 10 ⁹	2.7 × 10 ⁹	8.0 × 10 ⁸	2.2 × 10 ⁹	1.2×10 ⁹	3.2 × 10 ⁸
80Co	4.4 × 10 ⁵	2.2 × 1010	1.1 × 10 ¹¹	9.8 × 10 ¹⁰	5.2×1010	9.3×10^{10}	6.5×10^{10}	3 3 × 1010	7.8×1u ¹⁰	1.2 × 1011	5.7 × 1010	8.6×1010	6.5 × 1010	5.4 × 1010	7.6 × 1010
65Zn		8.1 × 10 ⁹	3.8 × 1010	4.0 × 10 ¹⁰	8.5×10^{10}	4.2 × 10 ¹⁰	8.8×10 ¹⁰	2.2 × 1010	2.0×10^{10}	9.7 × 10 ⁹	3.6 × 10 [#]	4.6×10 ⁹	4.1 × 10 ^e	7.7 × 10 ⁸	8.8×10 [#]
110mAg		3.0×10 ⁸	9.3 × 10 ⁸	4.6 × 10 ⁹	1.1 × 10 ⁹	1.1×10^{9}	9.8×10 ⁸	60×10 ⁸	5.2 × 10 ⁸	5.1 × 10 ⁸	3.1 × 10 ⁸	6.0 × 10 ⁶	5.8×10 [#]	1.2 × 10 ⁹	1.0×10 ⁹
1311		2.4×10 ⁹	0	3.6 × 10 ⁷	0	2.4 × 10 ⁹	1.8×10 ⁹	3 0 × 109	3.4×10^{9}	4 8 × 10 ⁸	951	6.1 × 10 ⁸	1.7 × 10 ⁿ	3.5 × 10 ⁸	1.3×10 ⁸
134Cs			6.2 × 10 ⁹	1.2×10 ¹⁰	4.9 × 10 ¹⁰	1.5×10 ¹⁰	1.5×10 ¹⁰	2.5×10^{10}	8.8 × 10 ⁹	2.8 × 10 ⁹	1.8 × 10 ⁹	7.9×10 ⁹	4.5×10 ⁹	6.8 × 10 ⁹	2.7 × 10 ⁹
137Cs			8.4 × 10 ⁹	2.6 × 10 ¹⁰	6.6×1010	2.1 × 10 ¹⁰	2.0×10^{10}	3.3×10^{10}	1.5×10 ¹⁰	6.2×10 ⁹	3.8 × 10 ⁹	1.5×1010	7.7 × 10 ⁹	1.2×1010	8.1 × 10 ⁹

Table 3.2.5.2. Reported annual liquid discharges from Ringhals 1975-1989, (Sydkraft 1975-1989). (Unit: Bq year⁻¹)

Date	12	• 3	293	25	16	30.6	:1	37.6	29.9	1/11	30.11	Mean 1988	5 E	•
Non Fure	20 S	22 2 22 6	24 3 26 6	·93	20.0	26 B	26.9	191 778	22 E	-	23 2			
matter mulse		4:3	13.6		174	23 4	200		213		23 :			
SAMA Fuve	-	38	• 93	0 95 =	1 86 4	45	30	27	3:	-	25			
Fu se	43	30	24	7 66 A	1 66	25	26	20	28	1 05 /	1 T T 8 #			
Fulve. Fulse	-	1 30	0 82	0 57	113	7 73	117	: 32	10	-	2 11	1 26	C 155	•
siCa Fuse	-	-	058	-	-		-	-	048	038	-			
MCo Fuve	24	184	77 0	39	10 0	29	47	45	4 C	-	47			
Fu se	33	•73	134	85	117	42	54	46	56	40	ж			
Fulve: Fulse	0 75	1 05	0 82	0.46	0 85	0 69	0 89	0 97	0 7*	-	1 34	G 86	0 075	-0
4iCa Fuve	57	54	ж	:83	40	49	32	29	30		43			
Fu se	76	57	53	۲.	42	59	39	35	45	33	31			
Fulve, Fulse	G 75	; 05	6 72	0 44	095	0 83	0 82	0 84	0 67	-	ī 39	C 85	0 079	·c
stZn Fuve	70	-	-	158	_	-	-	-	-	-	÷			
Fu se	89	55	50A	294	2 3 A	-	7 5 B	: 75 A	-	-	-			
Fulve, Fulse	0 79	-	-	0 53		-	-	-	-	-	-	0 66	0 13.	2
TonAg Fulve		_	-	-		-	-	22A	284	_	26A			
Fu se	34A	27A	-	-	: :7	¥ 25	-	1 73	2 3 A	32	218			
Fulve: Fulse	-	-	-	_	-	-	-	1 26	: 20	-	1 32	' 27	6 034	э
-750 Fulve	-	-	-	-	-	3.8	-		-	-	-			
HCs Fuve	22	25	22	: 83	3∡	50	41	34	30	-	28			
Fu se	Z 9	1 45	23	1 50	31	34	50	36	30	-	Ŧ 36			
Fu ve./Fu se	0 76	1 73	0 97	1 22	1 12	: 46	0 82	0 95	: 00	-	20	1 20	0 7 30	:0
^{• J7} Cs Fu ve	104	116	'0 7	86	158	183	17 3	158	137		132			
Fu se	153	9 7	•• G	56	144	7 6 T	20 3	151	167	25	82			

Table 3.2.5.3.A. Gamma-emitting radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus serratus (Fu.se.) outside the northern cooling-water intake at Ringhals (location 98, 2.3 km north of the outlet) in 1988. (Unit: Bq kg⁻¹ dry weight)

Jan	2 :	1/2	10	30/3	15	- 6	295	31:7	31.6	2:10	•	30	New 1989	S E	N	Mean 1983-89	S E	
han ture	23 6	21.4	20 C	170	22 8	176	T *6	-	195	21 8	21 5	2- 3						
namer Pulse	21.1	20 0	20 1	18.3	21.4	27.9	196	21 9	24 1	227	223	2:1				-		
Ava fuse	21	1 86	1 80 A	142	T 06	-	30	-	T 59 A	54	-5	51						
fu se	T 95	23A	1 55 A	1 72	T 96	: 63	z :	•	7 8 7	25	50	44						
iu ve. Fiz se	1 09	0 82	1 16	0 82	0.54	•	1 41	•	0.86	21	:e 0	1 17	1 09	0139	10	1 06	7.049	
°Co fu se	0 27 J	. -	-	-	•	-	-	-	-									
Fu se	-	-	•	028	038	-	-	045	0324	0 39 /	۰ _	855						
Ke fuve	¥	25	21	175	10 7		24	-	30	-	4	67						
Fu se	41	31	23	2 1	122	120	26	54	36	51	5-	66						
u ve. ^c i, se	0 83	0.95	0 92	0 85	0 56	0.74	C 93	-	0 83	0 93	: 85	1.01	C 56	0 022		083	c 332	-
iCo fune	50	52	43	36	30	75	51	-	4	103	.05	111						
Fu se	58	54	52	45	42	27	57	136	76	130	7 2 7	136						
u ve. ^c u se	0 86	0.95	G 84	0 79	0 71	C 92	0 86	-	0 59	0 80	:72	0 80	0.87	0 031	•••	057	0 027	-
27n Fulle	-	-	-	-	-	-	-	-	-	-	•	47A						
Fu se	2 T B	-	-	-	-	-	-	•	-	44		39A						
wwe.Fu se	•	-	-	-	-	•	-	-	-	-	-	1 20	1 20		•	0 \$4	0 039	_
····Ag Fu ve	1 67		-	T 52	-	-	-	-	21	-	-	4 !						
Fu se	T 80	-	-	-	-	-	-	1 89	32	51	29	42						
u we. Fu se	0 93	•	-	-	-	•	-	-	0 65	-		0 96	085	0104	3	7 OB	0.065	
7350 Fure	158	-	-	-	-	-	29A	•	-	-	-	-		:				
MCs Fulve	0 96	161	1 45	21	23	30	31	-	1 9 1	* 66	: 76	0 95 A						
Fu se	1 95	22	1.88	27	25	31	25	-	1 74	1 194	- 92	149						
u ve/Fu se	0 50	07#	0 77	0 79	0 93	0 95	1 24		1 09	: 39	: 40	0 64	0 85	0.091	• •	1 05	0 065	
	7.6	85	85	131		149	199		•39	·· 4	÷.	90						
³⁷ Cs Fulve	13	••	• •		-													
³⁷ Cs: Fulve Fulse	173	122	106	136	139	198	15.3	2 0 A	124	35	• : 2							

Table 3.2.5.3.B. Gamma-emitting radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus serratus (Fu.se.) outside the northern cooling-water intake at Ringhals (location 98, 2.3 km north of the outlet) in 1989. (Unit: Bq kg⁻¹ dry weight)

Table 3.2.5.4.A. Gamma-emitting radionuclides in Fucus vesiculosus (Fu.ve.) and Mytilus edulis (My.ed.) collected from the northern cooling-water intake channel at Ringhals in 1988 (location 95 (local), 2.5 km north of the outlet). (Unit: Bq kg⁻¹ dry weight)

Date		Feb 1	Mar 1	Mar 29	May 2	June	June 30	Aug 31	Sep 39	Niges 1	Nex 30	Magn	S E	N
50	My et			_				14.4	179	27 1	178	1986		
mader	fu ve	195	177	21 2	163	1# 1	195	152		16 9	134			
														
Salurate	r													
		196	27 0	T R 5	18.8	170	171	192	•	20 9	27 1			
*Cr	fu ve	-	-		•	•	-	58 A	•	2# B				
34ban	Fu ve	75	54	•	43	49	62	93	-	115	56			
"Ce	Fuve	-	•	•	-	0 67 A	-	-	-	•	-			
	M- ad	_						178	3.	:16				
	Fu we	n	163		• 1	2:	55	169	4 ·	142				
My ed.	/ Fu ve					•		0 106		0 056	0 115	0 107	0 005	з
	_													
₩Cø	My ed	•	•	·	-			26	122	76	71			
	Fu 🕫	104	66	67	73	80	. 10	122	•	450	67			
My ed.	fu se	•	-	-	•	-		0 2:0	-	0 01 70	0 102	0110	0 056	3
677n	hite and	-			_									
	Fu ve	•	•			334								
									<u> </u>					
91Z,	Fu ve	-	•	•	•	•	15 5	15 9		132	•			
THR:	Fuve		-	•	-		28	23	-		71			
1638.	£.,		_	_			114						·	
			· ·	-	-	-		·		-				
106Au	Fuve	•	•	•	26 A	176A			•	•				
	My ed							208	58	40	204			
-	Fuve					26	43A	•			458			
My ed.	Fulve										0 45	0 45	o	:
1750	Fu ve	•	-	•	•	•	•			40	•			
UNCs	My ed							1 184		0 84	1 02			
	Fure	75	70	63	92	16 2	64	62A		81	384			
My ed.	Fu ve						•	0 190	•	0 103	0 27	0 187	0 047	3
<u> </u>										·				
'''C\$	My ed	•			•		•	55	70	45	47			
	Fu ve	37	30	34	43	46	24	24	•	33	22			
My ed.	Fuve	•	•	•	•	•	-	0 23	•	0 138	0 22	0 194	0 028	3

Table 3.2.5.4.B. Gamma-emitting radionuclides in Fucus vesiculosus (Fu.ve.) and Mytilus edulis (My.ed.) collected from the northern cooling-water intake channel at Ringhals in 1989 (location 95 (local). 2.5 km north of the outlet). (Unit: Bq kg⁻¹ dry weight)

Date		Jan 2	Feb 1	Mar 1	Mar 30	May 1	June 1	June 29	Aug 31	Oct 2	Nov 1	Nov 30	Mean	S E	N	Mean	\$ E	N
% dry	My ed	15.7	15.4	16.1	16.0	17.8	24 3	12.9	16.4	19.8	20.4	19.1	1983			1984		
matter	Fu ve	17.3	148	16.8	154	20 1	:27	17.9	20.0	19.6	18.8	19.3				1989		
									· · · ·									
Salinit																		
ift %e	·	23.9	20 5	20 4	17.7	18.3	179	18.1	21.6	22.9	22.2	26.6	<u> </u>					
54Mn	My.ed.			1.30 A						-	-							
	Fu.ve.	4.5 A	-	3.7	2.6	3.4		72	4.3	8.6	8.4	5.9						
My.ed/	Fu.ve.		•	0.35		•	•			-	•	-	0 35	0	1	0.35	0	1
°′C0	My.ed.	0.096	3 -	•	•			•	•	-	-							
	FU.VE	-	·		•	0428	•	-	-			-		a				
50Co	My.ed.	4.6	2.8	6.1	1.52	1.03	1 22	161	30	13.6	9.3	6.4						
	Fu.ve.	63	37	33	24	14 4	11 3	61	71	86	74	89						
My.ed/	Fu.ve.	0.073	0.076	0.188	0.064	0 072	0.107	0.26	0.43	0.158	0.1 26	0.072	0 148	0 034	11	0.157	0.026	17
600-	hine and				2.2	2.0			10.6	36	15.2							
	Firsten	7.4	5.4 66	186	3.J	28	28	151	18.6	20 139	15.3	116						
My.ed/	Fu.ve	0.022	0.081	0 30	0 051	0.041	0 071	0 180	0 174	0.196	0.111	0 068	0 1 1 7	0 025	11	0,117	00.8	20
€5Zn	My.ed	0.93 5	1 -			•			•	3.9	2.4 A	•						
Mv.ed/	Fu.ve			_												0 784	0 327	4
95ND	Fu.ve.	11.4	-	-		43			•									
106R.	My ed	334																
	Fu.ve.	3.3 A	•		- 11 9 A	- 14 1 A												
							<u> </u>											
110mAg	My.ed.	0.83		•	•	0.40 A	1 07	2.5 A	9.8	4.8	2.8	83						
	Fu.ve.	3.1 A	-	•	-	-	•	•	•	•	•	65						
My ed/	Fu ve	0.27	•	•	•	•	•	•	•	•	•	1 27	0 77	0 501	2	0 623	0 221	4
т зв	My ed	068																
	Fu.ve.	10.4		-														
My.ed/	Fu ve.	0.054	•						-				0 054	0	1	0 054	0	1
													<u>.</u>				<u> </u>	
134C\$	My ed	0.67	0.88	0.82 A	1.05	1.99	0 68	1.34 A	•	•	0.47 A	•						
44	Fulve.	4.1	3.6	3.6	6.2	8.4	4.5	52	3.0 A	1. 59 A	1.97 A	1. 68 A	0.100	00.7		A . AA	0.010	
my.ed/	ru.ve.	0.163	0.249	0.229	0.170	0.142	0 152	0 255	•	•	0.236	·		0017	8	0.196	00:6	•1
137Cs	My.ed.	4.2	4.3	5.4	6.0	64	36	4.4	3.6	3.6	3.0	20						
	Fu.ve.	20	22	22	40	50	29	25	17.4	158	15.6	13.0						
My.ed/	Fu.ve.	0.212	0.191	0.247	0 151	0 1 2 7	0 1 2 2	0.177	0.210	0.228	0.195	0.157	0.183	0.012	11	0 191	0 011	20

Table 3.2.5.5. Ratios of activity concentrations in Fucus vesiculosus samples in the northern cooling-water channel at Ringhals (locations 95 and 99) to those just outside the channel (location 98). Mean values and S.E. for 1983 - 1989 are given

	⁷ Be	40K	54Mn	58Co	60Co	65Zn	103 Ru	106Ru	110mAg	134Cs	¹³⁷ Cs
1983	2.79±0.63 (n = 6)	0.92±0.03 (n = 7)	2.43±0.58 (n = 7)	2.37 ± 0.69 (n = 7)	1.67±0.16 (n = 7)	1.12±0.08 (n = 7)			1.20±0.33 (n = 5)		1 42 ± 0 12 (n = 7)
1984	3.36±0.32 (n = 11)	0.99±0.04 (n = 11)	1.91 ±0.17 (n ≈ 11)	1.81±0.17 (n = 11)	2.03±0.28 (n = 11)	0.99±0.08 (n = 11)			0.94 ± 0.19 (n = 2)		1 81 ± 0.20 (n = 11)
1985	3.42±0.51 (n = 7)	0.91 ±0.05 (n = 10)	1.99±0.32 (n = 10)	1.82 ± 0.30 (n = 10)	2.01 ± 0.42 (n = 10)	1.05±0.14 (n = 8)			1.12±0.14 (n = 2)		1 69±0.12 (n = 10)
1986	3.67±1.07 (n = 4)	0.99±0.08 (n = 7)	2.45 ± 0.27 (n = 6)	2.30±0.43 (n = 8)	1.97±0.22 (n = 8)	0.89 ± 0.10 (n = 2)	3 38 ± 0 64 (n = 4)	2.56±0.33 (n = 3)	1.38±0.20 (n = 3)	1.99±0.19 (n = 4)	2.71 ± 0.48 (n = 8)
1987		0.84 = 0.08 (n = 7)	2.36±0.49 (n = 5)	2 30 ± 0.42 (n = 7)	2.32 ± 0.27 (n = 7)	0.72 ± 0.00 (n = 2)			2.77 ± 0.00 (n = 1)	1.94 ± 0 26 (n = 6)	1 97 ± 0 24 (n = 7)
1988	4.77 ± 0.82 (n = 8)	0.99±0.08 (n = 8)	2.61 ± 0.50 (n = 6)	1.84±0.33 (n = 8)	2.36±0.39 (n = 8)	1.62 ± 0.00 (n = 1)				2.70±0.44 (n = 8)	2.70±043 (n = 8)
1989	3.16±0.30 (n = 11)	1.02±0.03 (n = 11)	2.11 ± 0.20 (n = 9)	1.67±0.14 (n = 11)	2.21 ± 0.50 (n = 11)	0.97 ± 0.00 (n = 1)			1.72±0.13 (n = 2)	2.32 ± 0.30 (n = 11)	2 18±0 28 (n = 11)
1983- 1989	3.52 ± 0.23 (n = 47)	0.96±0.02 (n = 61)	2.20±0.13 (n = 54)	1.97±0.13 (n = 62)	2.09 ± 0.14 (n = 62)	1.01±0.05 (n = 31)	3.38±0.64 (n = 4)	2 56 ± 0 33 (n = 3)	1.38±0.15 (n = 16)	2.30 ± 0 18 (n = 29)	2 06 ± 0 12 (n = 62)

Date	Feb 1	Mar 1	Mar 29	May 2	June 1	June 30	Aug 1	Aug 31	Sep 29	Nov 1	Nov 3 0
% dry matter	17.7	:7.0	22.8	14.0	21.6	25.9	25.0	2 1.1	23.3	20.3	2 1.0
Species	Fu.ve.	Fu.ve.	Fu.ve.	Fu.ve.	Fu.ve.	Fu.ve.	Fu.se.	Fu.ve.	Fu.se.	Fu.se.	Fu.se.
58Co	-	-	-	•	-	-	2.4	1.85	2.9	2.1	1.94
60C0	5.5	5.3	3.8	4.5	3.7	2.8	3.2	2.7	3.9	4.2	4.5
106Ru	-	-	-	-	-		-	-	•	-	11.8 A
134Cs	3.7	3.2	2.7	4.3	3 .9	5.3	3.8	3.5	3.8	2.9	2.7
137Cs	13.5	14.6	12.4	21	19.6	23	19.5	18.2	17. 9	15.3	14.3

Table 3.2.5.8.A. Gamma-emitting radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus serratus (Fu.se.) collected at Stora Näss, Varberg (57°07'N 12°11'E) in 1988. (Unit: Bq kg⁻¹ dry weight)

Table 3.2.5.8.B. Gamma-emitting radionuclides in Fucus vesiculosus collected at Stora Näss, Varberg (57°07'N 12°11'E) in 1989. (Unit: Bq kg⁻¹ dry weight)

Date	Jan 2	Feb 1	Mar 1	Mar 30	May 1	June 1	June 29	July 31	Aug 31	Oct 2	Nov 1	Nov 30
% dry matter	21.3	20.0	19. 9	16.6	21.1	24.3	1 9 .8	18.9	19.9	21.4	20.0	20.2
54Mn	0.88 A	· -	•	•	-	-	-	•		-	-	-
58Co	1.23 A	· -	-	-		-	-	1.6 B	2.1 A	2.8	2.8	2.1 A
60Co	3.8	3.5	2.6	2.4	2.4	1.60	1.76	2.4 A	3.3	5.6	6.7	6,3
¹³⁴ Cs	2.2	1.57	1.97	2.7	3.0	3.3	4.1	3.2	3.1	2.2	1.86	1.58
¹³⁷ Cs	12.4	10.6	11.3	14.8	17.7	17.5	23	22	17.6	1 6.8	13.1	12.5

Table 3.2.5.9.A. Reported monthly liquid discharges from Barsebäck in 1988, (Sydkraft 1988) (Unit: Bg month-1)

Isotope	Jan	Feb	March	April	Мау	June	July	Aug	Sept	Oct	Nov	Dec
51Cr	8.6×10 ⁷	1.3×10 ⁹	- 1.3×10 ⁸	5.4 × 10 ⁸	1.1 × 10 ⁸	5.1 × 10 ⁸	3.1 × 10 ⁶	3.7 × 10 ⁷	3.7×10 ⁸	5 2 × 10 ⁸	8.7 × 10 ⁷	4.6×10 ⁸
⁵⁴ Mn	3.7 × 10 ⁷	7.2×10 ⁸	1.0×10 ⁸	3.5 × 10 ⁸	2.8 × 10 ⁸	2.3×10 ⁸	7.6 × 10 ⁸	1.8 × 10 ⁸	2.8×10 ⁸	2.4×10 ⁸	7.5 × 10 ⁷	1 5×10 [€]
58Co	5.7 × 10 ⁷	7.0 × 10 ⁸	8.0 × 10 ⁷	2.8×10 ⁸	9.9 × 10 ⁷	1.3×10 ⁸	1.5×10 ⁹	1.9×10 ⁸	6.4×10 ⁸	5.9×10 ⁸	2.0×10 ⁹	6 0 × 1 0 ⁶
⁵⁹ Fe	0	0	0	0	0	0	3.5×10^{7}	0	0	0	0	0
60Co	7.0×10 ⁶	2.8×10 ⁹	3.6×10 ⁸	2.2 × 10 ⁹	1.2 × 10 ⁹	1.5×10 ⁹	4.0 × 10 ⁹	1.0 × 10 ⁹	1.9×10 ⁹	4.3 × 10 ⁹	8.8 × 10 ⁹	1.3×10 ⁹
65 <u>7</u> n	С	9.7 × 10 ⁷	0	0	2.5 × 10 ⁷	0	3.2 × 10 ⁷	0	C	4.8×10 ⁷	0	0
110mAg	0	0	0	0	0	0	0	0	0	0	O	0
1311	0	0	0	0	0	0	0	0	1.5×10 ⁸	0	2.2 × 10 ⁸	1.3×10 ⁹
134Cs	0	1.4×10^{7}	0	1.7 × 10 ⁷	9.5 × 10 ⁶	3.1×10^{7}	0	0	2.5×107	1.7×10^7	0	0
¹³⁷ Cs	8.7 × 10 ⁶	4.9×10 ⁷	0	4.5×10^{7}	3.1 × 10 ⁷	9.3 × 10 ⁷	7.6 × 10 ⁷	4.2×10 ⁷	5.2×10 ⁷	7.5 × 10 ⁷	2 .2 × 10 ⁷	5.7 × 10 ⁷

Table 3.2.5.9.B. Reported monthly liquid discharges from Barsebäck in 1989, (Sydkraft 1989) (Unit: Bq month⁻¹)

Isotope	Jan	Feb	March	April	Мау	June	July	Aug	Sept	Oct	Nov	Dec
51Cr	1.6×10 ⁸	5.5 × 10 ⁷	3.8×10 ⁷	5.5 × 10 ⁷	6.6 × 10 ⁷	0	7.2 × 10 ⁸	1.6×10 ⁶	2.8×10 ⁸	7.1 × 10 ⁸	8.4 × 10 ⁸	5.1 × 1 0⁶
54Mn	9.2 × 10 ⁷	2.7 × 10 ⁷	7.2×10/	6.7 × 10 ⁷	3.4×10^{7}	2.4×10 ⁷	1.5×10 ⁸	7.0 × 10 ⁷	3.1 × 10 ⁸	1.9×108	7.0×10^{7}	1.3×10 ⁶
58Co	2.0 × 10 ³	3.2×10^{7}	8.9×10 ⁷	1.4×10 ⁸	4.9×10 ⁷	3.1 × 10 ⁷	2.7 × 10 ⁸	1.8×10 ⁸	1.0×10 ⁹	3.4 × 10 ⁸	1.5 × 10 ⁸	3.1×10 ⁶
⁵⁹ Fe	0	0	0	0	0	0	0	0	0	0	0	0
60Co	8.2×10 ⁸	2.6 × 10 ⁸	4.3×10 ⁸	5.1 × 10 ⁸	2.3×10 ⁸	1.6×10 ⁸	1.3 × 10 ⁹	5.5×10 ⁸	1.4×10 ⁹	1.8×10 ⁹	4.7×10 ⁸	1.9×10 ⁹
⁶⁵ Zn	8.6×10 ⁶	3.6×10^{7}	0	0	0	0	0	0	0	0	0	0
^{110m} Ag	0	0	0	1.7×10 ⁷	5.4 × 10 ⁶	0	0	0	0	0	0	0
131]	6.5 × 10 ⁸	5.8×10 ⁸	8.2×10 ⁷	3.3 × 109	1.3×10^{9}	1.5×10 ⁹	0	3.5×10 ⁸	8.5×10 ⁸	1.3×10 ⁸	2.7×10 ⁸	3.7×10 ⁸
134Cs	1.5×10 ⁷	5.3×10 ⁶	0	0	3.4×10€	3.9×10 ⁶	0	2.5×10^{7}	1.8×10 ⁸	5.1 × 10 ⁷	2.4×107	6.3×10 ⁶
¹³⁷ Cs	6.9×10 ⁷	1.9×10 ⁷	5.3×10 ⁶	4 4 × 10 ⁷	2.1 × 10 ⁷	9.5 × 10 ⁶	0	6.0×10^{7}	1.6×10 ⁸	9.3 × 10 ⁷	3.2 × 10 ⁷	5.9×10 ⁸

Table 3.2.5.10. Reported annual liquid discharges from Barsebäck 1975-1989, (Sydkraft 1975-1989) (Unit: Bq year⁻¹)

Isotope	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
SICr	1.2 × 10 ¹⁰	1 7 × 1010	1.3 × 10 ¹⁰	3 2 = 1010	1.7 × 1010	4 2 × 10 ⁹	2 7 × 10 ¹⁰	67×109	7.2 × 10 ⁹	4 7 × 10 ⁹	6 6 × 109	1 8 × 1010	1.5×10 ¹⁰	4 5 - 10 ⁹	34×10 ⁸
54Mn	56×107	2 0 × 109	2.1 × 10 ⁹	3 9 × 109	2.0 × 124	17×109	2 0 × 109	33×109	2 7 × 109	37×109	37×109	1 5 × 1010	50×109	3 4 × 10 ⁹	12 × 1 0 ≢
94Co	6.6×109	26 = 1010	1.3×1010	0°∪: × 3.4	7.8 × 109	7 2×109	6.3 × 10 ⁹	40×109	1.8×109	4 9 × 10º	26×109	90×109	86×109	5 1 × 109	2 8 × 10 ⁹
59Fe					2 4 x 10 ⁸	93+107	15 = 108	12×10 ⁰	1.3×10 ⁸	55×108	7 8 × 107	11×10 ⁹	1 1 × 10 ⁸	35×107	0
€°Co	2.6×10 ⁸	1 4 × 1010	2.8 × 1010	54×1010	2.2 × 1010	3.7 × 1010	43 × 1010	7.3×1010	4.9×1010	50×1010	4 2 × 1010	96×1010	3.2 × 1010	2 2 = 10°C	98×10°
esZn	3.7 × 10 ⁷	3 * × 109	7.0 × 10 ⁹	1.0×1010	5.5 × 109	58×109	55×109	77×109	2 6 × 109	1 2 × 10 ⁹	7 5 × 108	22 × 109	2.6×108	2 0 = 108	45 - 10"
110mAg	0	2 2 × 109	1.8 × 10 ⁹	36 - 109	8.6 × 108	29×10 ⁸	24 × 108	1.3×10 ⁸	3.8×107	57×107	o	13×107	94×106	0	22-10
1311									7.5 × 10 ⁸	2 2 × 10 ⁸	37×107	1 2 × 108	75×107	17+109	94 - 109
134Cs					0	0	4 6 × 10 ⁹	19×1010	6 5 × 109	40×109	47×108	1 2 × 10º	1.6×10 ⁸	1 T = 10 ⁸	94 - 10 ⁴
137Cs	0	0	6.5 × 10 ⁸	1.9×10 ⁷	0	0	6 T ¥ 109	26×1010	1 2 × 1010	9 2 × 10 ⁹	1 9 × 109	51×109	4.6 × 10 ^e	55-104	11-10?

Date	Feb 2	Mar 2	May 2	May 25	June 2	July 1	Aug 2	Sep 1	Sep 30	Nov 2	Dec 1	Dec 2
% dry matter	18.7	18.3	14.5	11.7	10.6	15.8	22.4	17.5	17.1	21.1	18.3	17.2
Salinity										· · · · · ·		
in ‰	7.7	15.3	8.1	•	8.5	8.4	14.0	9.0	13.4	20.6	18.6	-
54Mn	75	57	22	26	32	39	41	45	45	40	27	24
58Co	37	31	7.6	7.6	7.8	7.5	28	30	77	66	40	22
60C0	320	250	128	135	179	198	147	210	220	290	183	146
65Zn	-	7.0 A		-	-	4.9 A		-	3.8 B		-	-
131	-	-	-	•	-	-	-	-	30	2.2 A	19.4	-
134Cs	9.0	8.7	12.7	14.3	17.5	15.7	10.0	13.2	7.8	8.7	6.0	7.0
137Cs	32	32	44	50	65	61	40	53	37	35	27	31

 Table 3.2.5.11.A. Gamma-emitting radionuclides in Fucus vesiculosus collected at Barsebäck, location 25 (55°48'80N 12°54'45E) in 1988. (Unit: Bq kg⁻¹ dry weight)

Table 3.2.5.11.B. Gamma-emitting radionuclides in Fucus vesiculosus collected at Barsebäck, location 25 (55°48'80N 12°54'45E) in 1989. (Unit: Bq kg⁻¹ dry weight)

Date	Jan 3	Feb 2	Mar 2	Mar 31	May 2	May 19	May 19*	June 2	June 30	July 31	Sep 1	Oct 3	Nov 2	Dec 1
% dry matter	17.6	18.1	15.8	14.8	13.5	15.1	9.3	16.0	19.8	22.3	18.3	18.3	17.7	18.1
Salinity														
in ‰	10.5	11.5	9 .7	11.1	9.9			9.9	10.8	8.2	10.8	17.4	10.0	13.7
54Mn	31	.24	16.8	12.0	10.6	12.5	-	10.7	10.1	6.1	9.0	12.1	13.2	11.0
58Co	33	24	14.9	8.7	6.7	5.1	-	1.6 A	2.4	3.2	7.5	16.7	19.3	14.8
60Co	220	194	142	106	94	93	-	87	69	52	70	76	102	94
65 <u>7</u> n	3.6 /	ι.	-	•	-	-	-	-	-	-		-	-	
125Sb	•	-	-	1.3 B	•	-	-	2 3 B	4.7	-	6.4	-	-	-
131	-	-	•	•	-	14.2 A	55 B		-	-	•	4.8	-	•
134Cs	6.1	5.8	54	64	10.5	9.3	10.9	87	7.1	4.6	68	69	5 9	46
137Cs	27	27	28	33	49	48	55	41	36	26	37	37	35	28

Date	Feb 2	Mar 2	Mar 30	May 2	June 2	July 1	Aug 2	Sep 1	Sep 30	Nov 1	Dec 1
% dry matter	17.7	17.0	16.3	14.5	13.6	16.9	21.6	16.0	19.9	19.4	17.6
⁵⁴ Mn	-		-	-	0.8 A	0.7 A	-	1.52	-	1.3 A	0.9 B
⁶⁰ Co	4.3	3.0	2.1	2.5	1.80	1.41	2.2	2.3	3.3	3.3	3.3
^{110m} Ag	-	-	-	-	-	-	-	3.0 A	•	-	-
131	-	-	-	-	-	-	-	•	-	-	5.3
¹³⁴ Cs	10.3	11.2	8.5	12.8	14.0	15.1	10.5	12.5	8.9	8.6	7.4
¹³⁷ Cs	36	39	32	50	53	58	40	49	39	38	32

Table 3.2.5.13.A. Gamma-emitting radionuclides in Fucus vesiculosus collected at Limhamn (55°35'N 12°55'E) in 1988. (Unit: Bq kg⁻¹ dry weight)

Table 3.2.5.13.B. Gamma-emitting radionuclides in Fucus vesiculosus collected at Limhamn (55°35'N 12°55'E) in 1989. (Unit: Bq kg⁻¹ dry weight)

Date	Jan 1	Feb 2	Mar 2	Mar 31	May 2	June 2	June 30	July 31	Sep 9	Oct 3	Nov 2	Dec 1
% dry matter	16.9	15.5	14.7	15.7	12.5	16.9	16.6	18.4	19.8	21.1	19.3	1 6 .6
⁵⁴ Mn	0.8 B	-	-	0.4 B	-	-	-	_	-	-	-	-
⁶⁰ Co	3.5	2.7	2.0	2.7	1.49	1.22	-	1.36	1.38	1.36	1.41	1.20
131	2.2 A	-	-	-	-	-	-	-	-	2.0 A	-	-
¹³⁴ Cs	7.0	5.7	6.5	7.0	9.7	12.1	11.7	7.3	7.0	6.1	4.6	5.7
¹³⁷ Cs	29	28	31	35	51	61	59	37	38	35	29	34

4. Fallout Nuclides in Abiotic Samples

by A. Aarkrog and Heinz Hansen

4.1. Air

Air samples are collected at Risø and at Rønne, Bornholm. Weekly samples are measured by Ge- γ -spectroscopy and ⁹⁰Sr is determined in annual aliquots. The sampling equipment is described in Risø Report No. 421 (Risø Reports 1957-1989).

Figure 4.1.1 shows how the 90 Sr concentrations have varied in Risø air since sampling began in 1957. The level in 1989 (0.07 μ Bq m⁻³) is so far the lowest observed.

Table 4.1.2.2 summarizes the ¹³⁷Cs air concentrations throughout the years. Since Chernobyl the decrease in concentrations has become slower with time. Tables 4.1.2.1 (A & B) suggest a spring peak around March-May. From Figures 4.1.2.1 and 4.1.2.2 it appears, however, that the peak is not very prominent. It is thus an open question whether there actually is a stratospheric component of the Chernobyl fallout or whether all measured Chernobyl ¹³⁷Cs in air and precipitation now is due to resuspension.

Figure 4.1.2.4 shows how the resuspension factor for Chernobyl ¹³⁷Cs in Denmark has decreased with time. A power function seems to give the best fit to the observations.

The ¹³⁷Cs concentrations in air at Riso are about ³/₄ of those measured at Bornholm. We believe this is due to a higher local and perhaps regional (from Eastern Europe) resuspension at Bornholm.

At a few occasions shorter-lived γ -emitters from unknown sources have--been detected (Table 4.1.3), but the concentrations have been very low.

4.2. Precipitation

Precipitation is collected monthly from the ten »State experimental farms« (Figure 4.2) and from Risø (Figure 3.1.1). The samples are combined to bimonthly samples before analysis for ⁹⁰Sr and radiocesium.

Since 1987 the ⁹⁰Sr deposition in Denmark has decreased with a halflife of about 1.4 year while ¹³⁷Cs has decayed with 0.4 year halflife. Most of the ¹³⁷Cs is from Chernobyl while ⁹⁰Sr preferentially comes from global fallout. Local resuspension plays an important role as a source for the ¹³⁷Cs deposit. We still notice a relationship between the original Chernobyl fallout and the depositions in 1988 and 1989 at the various State experimental farms (*Aarkrog* 1988, *Aarkrog* 1989).

Since 1982 (Riso Reports 1957-1989) the ⁹⁰Sr deposition at Tornbygård, Bornholm, has been about twice that of the country mean and the concentration in rain has been nearly 3 times higher. However, prior to 1982 and in the "Chernobyl year", 1986, Bornholm did not differ markedly from the country mean. We believe that Bornholm has an enhanced resuspension of ⁹⁰Sr fallout compared to the remaining part of the country. The contribution from this resuspension to the activity in rain will only be observable when the fallout rate is low, i.e. about 2-3 Bq ⁹⁰Sr m⁻². This was the case in 1982-1985 and again since 1987. Before Chernobyl we have no systematic measurements of ¹³⁷Cs in precipitation from Bornholm, however, the observations since 1986 indicate that also ¹³⁷Cs shows higher concentrations in rain water from Bornholm than from the remaining part of Denmark. In order to examine whether the difference was connected to special local conditions at Tornbygård, we began sampling in 1989 at another location at Bornholm, Nexø situated in the eastern part of the island (Tornbygård is to the west). It appears from Tables 4.2.1.1.B and 4.2.1.2.B that the ⁹⁰Sr levels at Nexø were compatible with those in the remaining part of Denmark but a factor of 2.7 times lower than those at Tornbygård.

Tables 4.2.2.1.B and 4.2.2.2.B show that the ¹³⁷Cs levels at Nexø also were lower than those at Tornbygård, but only by a factor of 1.5. We conclude that Tornbygård shows an anomaly with enhanced resuspension in particular of old global fallout (⁹⁰Sr and ¹³⁷Cs ?). The phenomenon was also discussed in the previous report Risø-R-563, p. 34 (Risø Reports 1957-1989).

The washout ratio (Bq m⁻³ rain/ μ Bq m⁻³ air) calculated from monthly ¹³⁷Cs values at Risø (Tables 4.1.2.1.A & B and Tables 4.2.2.5.A & B) was 3.4 ± 2.4 (1 S.D.; n = 12) in 1°88 and 5.0 ± 5.0 in 1989, in 1987 we found 6.5.

Table 4.2.5 shows a retrospective study of ¹³⁷Cs and ³H in precipitation collected since 1963 at Funen. Compared with measured ⁹⁰Sr levels at Blang-stedgård throughout the years the ¹³⁷Cs levels may be a little too high probably due to evaporation during the storage. The geometric mean of ¹³⁷Cs/⁹⁰Sr was 2.4, the expected value is 1.6-1.7.

4.3. Fresh Water

4.3.1. Ground Water

The collection of ground water takes place annually from nine selected locations (Figure 4.3.1.1). The median ⁹⁰Sr concentrations since 1961 appear in Figure 4.3.1.2, and those from the outlier location: Feldbak in Figure 4.3.1.3.

The concentrations of 137 Cs in Feldbak ground water were 0.14 Bq m⁻³ in 1988 and 0.06 (B) in 1989. This demonstrates how efficiently ground water is protected against 137 Cs contamination, even at a location with a high transfer of 90 Sr.

4.3.2. Lakes and Streams

The sampling location for lake and stream water are shown in Figure 4.3.2.1

Since 1986 Chernobyl ¹³⁷Cs have been measured along with 30 Sr. In the period 1987-1990 the ¹³⁷Cs concentrations in lake water have shown an effective halflife of 2.7 years and those in streams have decreased with 1.8 years halflife. The corresponding halflives of 90 Sr were 3.5 and 4.1 years, respectively.

4.3.3. Drinking Water

Potable water was collected from the towns used for total diet sampling (cf. Section 5.7) in June 1989. The ⁹⁰Sr concentrations were half of those in 1987, while the ¹³⁷Cs levels were nearly twice as high in 1989 as in 1987, which may indicate a delay in the penetration of Chernobyl ¹³⁷Cs to the ground water.

4.4. Sea Water

Since 1962 samples of surface and bottom sea water have routinely been collected around Zealand summer and winter (Figure 4.4.3).

The 90Sr and the 137Cs concentrations throughout the years are shown in

Figures 4.4.1 and 4.4.2, respectively.

Since Cernobyl the Baltic Sea has been the main source to the ¹³⁷Cs contamination of Danish waters. The percentage of Chernobyl ¹³⁷Cs increased in the inner waters from 1988 to 1989 by a factor of 1.03 ± 0.02 (± 1 S.D.; n = 6) (cf. Table 4.4.3 and Figure 4.4.4), although the total ¹³⁷Cs concentrations decreased from 1988 to 1989 (cf. Figures 4.4.9 and 4.4.10).

The ⁹⁹Tc measurements (Figures 4.4.5-4.4.10) illustrate that ⁹⁹Tc enters the Danish inner waters from the North Sea by the Jutland Current.

4.5. Soil

South-East Jutland (Figure 4.5.4) received the highest amounts of Chernobyl radiocesium. The samplings from 1986 (Risø Reports 1957-1989) were repeated in 1988 and the samples were measured for radiocesium as untreated raw samples and as treated samples (drying, crushing, blending and sifting with removal of stones). The mean ratio between ¹³⁷Cs in treated and untreated samples (Table 4.5.1) was: $0.95 \pm 0.05 (\pm 1 \text{ S.D.}; n = 20)$. The corresponding ratio for ¹³⁴Cs was $0.89 \pm 0.14 (\pm 1 \text{ S.D.}; n = 17)$. Hence minor amounts of radiocesium may adhere to the discarded stones.

A soil sampling of uncultivated soils at the 10 State experimental farms was carried out in September 1989 (Table 4.5.2). A similar sampling took place in 1987. The mean ratio between 1989 and 1987 (Bq ¹³⁷Cs m⁻², 0-30 cm) for the 10 locations was: 1.31 ± 0.29 (± 1 S.D.; n = 10) and for ¹³⁴Cs (decay corrected to 26 April 1986) 0-10 cm we found 1.00 ± 0.22 (± 1 S.D.; n = 10). Hence it was not possible to ascertain any field loss (runoff etc.) of radiocesium from uncultivated soils from 1987 to 1989 (cf. Figures 4.5.1 and 4.5.2).

In order to investigate the importance of windbreak for the deposition and resuspension of radiocesium two experimental soil samplings were carried out after an idea of Marianne Wichman, FOA 4, Umeå, Sweden (Figure 4.5.3 and Table 4.5.3).

The Tagerup station did not differ very much with the distance from the windbreak. The highest Chernobyl values were observed at a distance of 10 times the height of the hedge. At Nustrup in South Jutland, where the Chernobyl fallout was nearly 20 times higher, the highest Chernobyl levels were observed at a distance of 6 times the height of the hedge. At longer distances the deposition decreased markedly. With regard to global fallout the maximum in the 0-5 cm layer occurred at a distance of 10 times the height of the hedge. These results are difficult to interpret and further studies are needed in order to explain the significance of windbreaks for the deposition and resuspension of fallout.

Tables 4.5.4 and 4.5.5 show the 90Sr levels in Danish soils collected in 1987. Compared with the theoretical mean deposit in Denmark by 1987: 1555 Bq 90Sr m⁻² (Appendix D2) the mean measured inventory to a depth of 30 cm is low by a factor of two. Hence 90Sr has penetrated to greater depth or – as suggested from the data from St. Jyndevad in Table 4.5.5 – may have disappeared with runoff.

4.6. Marine Sediments

As previously sediments have been collected by the HAPS sampler off Risø in 1988 and in 1989. The variation from year to year has been great. The contribution from Chernobyl ¹³⁷Cs to total ¹³⁷Cs has varied between 14 and 44%.
Lample type and unit	Stront	ium-90	Cesium-137	
	1968	1989	1988	1969
Air at Riso, µBq m-3	0.19	0 07	2.1	14
Air at Bornholm, µBq m-3	0.12	011	2.9	1.9
Countrywide deposition with rain, Bq m-2	0.99*	0.54=	11.9*	3.5*
Countrywide rain samples, Bq m-3	1.35*	1.02*	16.3 *	6.6
Countrywide stream water, Bq m-3	-	6.4	1.9	1.5
Countrywide lake water, Bq m-3	-	12.0	7.6	5.9
Countrywide ground water, Bq m-3	0.12	0.06	-	-
Countrywide drinking water, Bq m ⁻³	-	0.17	-	0.11
Surface sea water around Zealand, Bq m ⁻³	17.8*	15.8*	82*	\$ 0*
Bottom sea water around Zealand, Bq m ⁻³	10.4*	12.8*	61*	46*
Baltic Sea water (Bornholm), Bq m-3	221	191	106*	95*
North Sea water 50°-60°N, Bq m-3	-	15*	26*	17*

Table 4. Geometric means of Strontium-90 and Cesium-137 levels in Danish environmental abiotic samples collected in 1988 and 1989

[†]Single values.

Table 4.1.1.1. Strontium-90 in air collected at Rise in 1988 and 1989. (Unit: $\mu Bq m^{-3}$)

Year	Big air sampler
1988	0.188
1989	0.073

Table 4.1.1.2. Strontium-90 in air collected at Bornholm in 1988 and 1989. (Unit: µBq m-3)

Year	Big sampler, glass fibre filter, shunt			
1988	0.124 A			
1989	0.107 B			

36

Month	Riso		Bornholm	
		(N)		(N)
January	2.60±0.80	(4)	3.29±1.04	(4)
February	2.26±1.28	(5)	6.00 ± 7.69	(5)
March	7.10±7.33	(4)	4.72 ± 2.05	(4)
April	3.06 ± 1.28	(4)	5.05 ± 3.01	(4)
May	3.94 ± 3.65	(5)	5.28±3.96	(5)
June	2.54 ± 1.20	(4)	4.27 ± 1.29	(4)
July	0.74 ± 0.21	(4)	1.02 ± 0.26	(4)
August	1.06 ± 0.32	(5)	1.38±0.35	(5)
September	1.14±0.27	(4)	1.88±0.84	(4)
October	3.32 ± 3.33	(5)	4.94 ± 4.49	(5)
November	1.98±1.24	(4)	2.18±1.04	(4)
December	1.02 ± 0.24	(4)	1.32 ± 0.26	(4)
1988: Geometric mean	2.10		2.93	
1988: Arithmetic mean	2.56		3.44	

Table 4.1.2.1.A. Cesium-137 in air collected in glass-fibre filters by the large air sampler at Riso and Bornholm in 1988. (Unit: µBq m⁻³) (The error term is 1 S.D.)

Table 4.1.2.1.B. Cesium-137 in air collected in glass-fibre filters by the large air sampler at Riso and Bornholm in 1989. (Unit: $\mu Bq m^{-3}$) (The error term is 1 S.D.)

Month	Risø		Bornholm	
		(N)		(N)
January	1.21±0.73	(5)	1.83±0.92	(5)
February	0.98 ± 0.30	(4)	1.81 ± 0.58	(4)
March	1.18 ± 0.52	(4)	1.99±0.87	(4)
April	3.74 ± 3.90	(4)	4.66 ± 3.83	(4)
May	1.35 ± 0.69	(5)	2.09 ± 0.93	(5)
June	1.30 ± 1.01	(4)	2.97 ± 2.29	(4)
July	1.08 ± 0.74	(5)	1.61 ± 0.84	(5)
August	1.20 ± 0.33	(4)	1.44 ± 0.36	(4)
September	1.06 ± 0.27	(4)	1.73 ± 0.13	(4)
October	0.93 ± 0.40	(5)	1.32 ± 0.82	(5)
November	1.59 ± 0.84	(4)	1.42 ± 0.10	(4)
December	3.31 ± 3.03	(4)	1.60 ± 0.93	(4)
1989: Geometric mean	1.41		1.90	
1989: Arithmetic mean	1.58		2.04	

Fig. 4.1.2.1.A. Cesium-137 in air collected at Riso, Denmark in 1988.

Fig. 4.1.2.1.B. Cesium-137 in air collected at Riss, Denmark in 1989.

Fig. 4.1.2.2.A. Cesium-137 in air collected at Bornholm, Denmark in 1988.

Fig. 4.1.2.2.B. Cesium-137 in air collected at Bornholm, Denmark in 1989.

..

Fig. 4.1.2.3. Cesium-137 in air collected at Riso, Denmark. 1958-1989.

Fig. 4.1.2.4. Cesium-137 resuspension factors after Chernobyl, July 1986 - March 1990 (quarterly values). $RF = 1.4 \times 10^{-5} D^{-1.26}$.

Year	Arithmetic mean	Geometric mean
1958	155	127
1959	490	270
1960	73	60
1961	84	75
1962	850	810
1963	2400	1910
1964	1160	860
1965	390	340
1966	210	162
1967	79	63
1968	88	72
1969	91	77
1970	127	100
19 71	98	75
1972	51	43
1973	17.3	14.4
1974	72	52
1975	48	35
1976	15.5	14.8
1977	60	45
1978	116	88
1979	31	23
1980	9.0	7.7
1981	30	18.4
1982	5.7	4.7
1983	2.1	1.81
1984	1.41	1.00
1985	0.68	0.63
1986	1340	35
1987	6.1	4.7
1988	2.6	2.1
1989	1.58	1.41

Table 4.1.2.2. Cesium-137 in air collected at Risø 1958-1989. (Unit: μ Bq m⁻³)

Table 4.1.3. γ -emitters in air collected on glass-fibre filters in Denmark in 1988. (Unit: $\mu Bq m^{-3}$)

Period	Risø	Bornholm
Jan 25-Feb 2	1.2 ⁹⁵ Nb	•
	0.5 B ^{110m} Ag	-
Feb 22-29	-	12 ¹⁰⁶ Ru
March 28-April 5	0.45 A 95Nb	-
Oct 3-10	0.42 A 60Co	-
Dec 12-19	1.6 B ¹³¹	-

Fig. 4.1.2.5. Cesium-137 resuspension factors after Chernobyl. July 1986 - December 1987: RF = 5.5 × 10-8 e^{-0.0044}D Jan 1988 - March 1990: RF = 1.3 × 10-8 e^{-0.0015}D

Fig. 4.1.2.6. Wet deposition of Cs-137 relative to Chernobyl deposit.

Risø-R-570

Fig. 4.2. State experimental farms in Denmark.

Location	mm	Jan-Feb	March-April	May-June	Juiy-Aug	Sept-Oct	Nov-Dec	Weighted mean
Tylstrup	832	0.45	0.23 B	1.29 A	0.35	0.89	1.12	0.85
Kalø	616	0.87	1.21	2.6 A	2.4	1.55	1.51	1.61
Borris	1009	0.20 A	0.65	5.7	2.3	0.57	(0.91)	1.25
Askov	1059	(0.35)	0.70	1.29	0.60	0.43	0.52	0.61
St. Jyndevad	983	0.40	0.42 A	2 .1	0.82	0.75	0.50	0.78
Aarslev	566	3.6	1.78	2.5	1.85	2.6	2.3	2.3
Tystofte	502	0.32 A	1.13 A	0.47 B	0.61	0.89	0.78 A	0.65
Ledreborg	577	2.2	1.30 A	4.8	0.95	1.46	1.00	1.63
Abed	575	0.64	1.39	4.1 B	4.3	6.2	1.39	2.9
Tornbygaard	579	1.08 A	1.86	1.91	2.9	1.83	2.2	1.99
Weighted								
mean		0.85	1.05	2.3	1.55	1.47	1.13	1.35
xī: mm	730	162	82	72	178	143	93	

Table 4.2.1.1.A. Strontium-90 fallout in Denmark in 1988. (Unit: Bq m⁻³)

Table 4.2.1.1.B. Strontium-90 fallout in Denmark in 1989. (Unit: Bq m⁻³)

Location	mm	Jan-Feb	March-April	May-June	July-Aug	Sept-Oct	Nov-Dec	Weighted mean
Tylstrup	580	0.36	0.41	2.0	1.44	0.43	0.43	0.72
Kalø	473	0.87	0.32 A	1.81	1.48	0.46	0.15 B	0.77
Borris	716	0.32 A	0.44	1.17	1.07	0.43	0.18 A	0.50
Askov	634	1.10	0.64	3.3	1.17	0.28	0.43	0.97
St. Jyndevad	6 36	0.43	0.31	0.99	0.72	0.193	0.38	0.47
Aarslev	516	1.56	0.73	2.0	0.90	0.36	0.57	0.83
Tystofte	434	0.91	0.88	1.48	0.71	0.36 A	0.20 A	0.70
Ledreborg	444	0.87 A	1.20	0.68A	0.55	0.67	1.02	0.77
Abed	468	0.74 A	3.2	2.4	3.6	0.53	1.12	2.4
Tornbygaard	457	1.60	2.2	10.8	0.71	3.6	2.1	2.6
Weighted mean		0.76	0.87	2.4	1.33	0.64	0.58	1.02
x:mm	535	66	101	53	118	117	80	
Neksø	550	0.40 B	0.96	0.68 A	0.64 A	0.26	0.82	0.59
Neksø mm	550	47	68	41	163	143	88	

Location	mm	Jan-Feb	March-April	May-June	Ju!y-Aug	Sept-Oct	Nov-Dec	1988
Tylstrup	832	0.087	0.191 B	0.114 A	0.077	0.131	0.113	0.71
Kalø	616	0.137 A	0.105	0.137 A	0.33	0.148	0.112	0.97
Borris	1009	0.043	0.094	0.32	0.59	0.130	(0.116)	1.29
Askov	105 9	(0.061)	0.100	0.151	0.160	0.092	0.061	0.62
St. Jyndevad	983	0.088	0.045 A	0.23	0.20	0.143	0.058	0.76
Aarslev	566	0.30	0.119	0.24	0.30	0.31	0.154	1.42
Tystofte	502	0.045 A	0.059 A	0.041 B	0.062	0.085	0.040	0.33
Ledreborg	577	0.37	0.048 A	0.127	0.119	0.167	0.108	0.94
Abed	575	0.095	0.080	0.24 B	0.48	0.66	0.128	1.68
Tornbygaard	579	0.144 A	0.07 9	0.108	0.44	0.22	0.163	1.15
Geometric								
mean	-	0.107	0.084	0.150	0.22	0.171	0.097	0.90
Arithmetic								
mean	730	0.137	0.092	0.171	0.28	0.21	0.105	0.99

Table 4.2.1.2.A. Strontium-90 fallout in Denmark in 1988. (Unit: Bq m⁻²). (Figures in brackets are calculated)

Table 4.2.1.2.B. Strontium-90 fallout in Denmark in 1989. (Unit: Bq m⁻²)

Location	mm	Jan-Feb	March-April	May-June	July-Aug	Sept-Oct	Nov-Dec	1989
Tylstrup	580	0.037	0.049	0.138	0.102	0.059	0.034	0.42
Kalø	473	0.045	0.035 A	0.104	0.120	0.049	0.010 B	0.36
Borris	716	0.040 A	0.061	0.080	0.078	0.080	0.022 A	0.36
Askov	634	0.120	0.098	0.24	0.080	0.036	0.046	0.62
St. Jyndevad	636	0.039	0.040	0.071	0.087	0.025	0.036	0.30
Aarslev	516	0.080	0.064	0.078	0.109	0.047	0.049	0.43
Tystofte	434	0.032	0.053	0.071	0.108	0.024 A	0.014 A	0.30
Ledreborg	444	0.020 A	0.082	0.025 A	0.084	0.074	0.055	0.34
Abed	475	0.023 A	0.23	0.077	0.70	0.045	0.060	1.14
Ternbygaard	457	0.065	0.164	0.40	0.108	0.31	0.140	1.18
Geometric								
mean	-	0.043	0.073	0.098	0.117	0.055	0.036	0.48
Arithmetric								
mean	535	0.250	0.088	0.128	0.157	0.075	0.046	0.54
Neksø	5 50	0.019 B	0.065	0.028 A	0.104	0.037	0.073	0.33

Table 4.2.1.3.A. Analysis of variance of In Bq ⁹⁰Sr m⁻³ precipitation, January-December 1988 (from Table 4.2.1.1.A)

Variation	SSD	f	s²	v²	Р
Between months Between locations	7.424 17.255	5 9	1.485 1.917	4.923 6.357	> 99.5 % > 99.95%
Remainder	12.968	43	0.302		

Table 4.2.1.4.A. Analysis of variance of ln Bq ⁹⁰Sr m⁻² precipitation, January-December 1988 (from Table 4.2.1.2.A)

Variation	SSD	f	s²	v ²	Р
Between months Between locations Remainder	8.933 6.495 11.015	5 9 43	0.993 1.299 0.256	3.875 5.072	> 99.5% > 99.9%

Table 4.2.1.3.B. Analysis of variance of ln Bq 90Sr m⁻³ precipitation, January-December 1989 (from Table 4.2.1.1.B)

Variation	SSD	f	s²	v ²	Р
Between months Between locations Remainder	13.948 14.782 14.212	5 9 45	2.790 1.642 0.316	8.833 5.201	> 99.99% > 99.99%

Table 4.2.1.4.B. Analysis of variance of In Bq 90Sr m⁻² precipitation, January-December 1989 (from Table 4.2.1.2.B)

Variation	SSD	f	s²	v²	Р
Between months Between locations Remainder	10.876 10.000 14.836	5 9 45	2.175 1.111 0.330	6.597 3.370	> 99.95% > 99.5 %

Month	10 m² ion excha Bq m-²	nge sampler Bq m ⁻³	Eig	ht rain bottles Bq m ⁻²	s total area: 0.23 m² Bq m ⁻³
Jan Feb March	0.0104 0.0076 0.0078	0.121 0.164 0.21	}	0.037	0.169
April May June	0.0178 0.0105 0.0060	1.35 0.39 0.40	}	0.049	0.86
July Aug Sep	0.0111 0.0066 0.0083	0.123 0.25 0.136	}	0.072	0.40
Oct Nov Dec	0.0095 0.0088 0.0085	0.190 0.31 0.174	}	0.093	0.52
1988	Σ 0.113 (528 mm) (we	x: 0 21 eighted mean)	Σ 0.25 (636 mm)	x: 0.40 (weighted mean)

Table 4.2.1.5.A. Stronsium-90 in precipitation collected at Riso in 1988

Table 4.2.1.5.B. Strontium-90 in precipitation collected at Risø in 1989

10 m²	ion exchange	e sampler	Eight rain bottles total area: 0.23 m ²			
Month	Bq m ⁻²	Bq m⁻³	Month	Bq m ⁻²	Bq m−3	
Jan-Feb March-Apr May-June	0.0170 0.022 0.024	0.73 0.36 0.53	Jan-March Apr-June	0.036 0.124	0.46 1.62	
July-Aug Sep-Oct Nov-Dec	0.0177 0.0131 0.0088	0.124 0.194 0.23	July-Sep Oct-Dec	0.060 0.088	0.31 0.76	
1989	Σ 0.103 (380 mm) (v	$\overline{\mathbf{x}}$: 0.27 veighted mean)	1989	Σ 0.31 (463 m,n) (א	x : 0.66 weighted mean)	

Location	mm	Jan-Feb	March-April	May-June	July-Aug	Sept-Oct	Nov-Dec	Weighted mean
Tylstrup	832	3.7	7.6	10.9	3.7	4.0	3.2 A	49
Kalø	616	8 .9	22	38	20	6.9	7.4	15.3
Borris	1009	1.6 A	3.3 A	17.4	3.1	2.3	1.9 A	3.3
Askov	1059	28	39	56	21	16.2	85	35
St. Jyndevad	983	12.7	21	30	12.8	6.4	7.8	13.8
Aarslev	566	49	53	44	17.1	19.5	21	30
Tystofte	502	4.3 A	10.6	3.6	2.3 A	4.4 A	2.9 B	4.3
Ledreborg	577	13.2	26	66	16.1	13.0	7. 9	16.0
Abed	575	16.0	27	60	31	16.2	14.4	24
Tornbygaard	579	14.9	32	31	12.8	9.4	10.6	15.5
Weighted					-			
mean		13.2	23	34	13.2	9.6	18.7	16.3
x:mm	730	162	82	72	178	143	93	

Table 4.2.2.1.A. Cesium-137 in precipitation in Denmark in 1988. (Unit: Bq m⁻³)

Table 4.2.2.1.B. Cesium-137 in precipitation in Denmark in 1989. (Unit: Bq m-3)

Location	mm	Jan-Feb	March-April	May-June	July-Aug	Sept-Dec	Weighted mean
Tylstrup	580	1.6 B	1.6 B	3.5 A	3.4 A	1.3 A	1.95
Kalø	473	5.5 A	1.6 A	5.5 A	3.1 A	1.2 A	2.6
Borris	716	2.0 A	1.76	3.3 A	2.5 B	2.2	2.2
Askov	634	23	15.4	28	26	15.0	19.3
St. Jyndevad	636	13.3	9.6	13.6	9.7	8.0	10.0
Aarslev	516	32	4.9	8.2 A	1.9 A	1.2 A	5.6
Tystofte	434	4.8 B	3.1 A	6.78	1.8 B	3.4	3.3
Ledreborg	444	22	7.6	10.4	5.4	5.9	7.2
Abed	475	14.1	6.0	3.5 B	1.2 A	3.0 A	3.5
Tornbygaard	457	14.3	13.2	13.4	3.4	6.3	7.7
Weighted							
mean	-	11.8	6.6	10.1	4.8	4.8	6.6
x:mm	535	66	102	54	118	197	
Neksø	550	5.8 A	6.8	12.4	2.7 A	3.1	4.36

Location	mm	Jan-Feb	March-April	May-June	July-Aug	Sept-Oct	Nov-Dec	1988
Tylstrup	831	0.72	0.62	0.96	0.81	0.59	0.32 A	4.0
Kalø	617	1.52	1.87	2.0	2.8	0.66	0.55	9.4
Borris	1009	0.34 A	0.47 A	0.98	0.79	0.49	0.23 A	3.3
Askov	1059	5.0	5.6	6.3	5.6	3.7	10.8	37
St. Jyndevad	983	2.8	2.3	3.2	3.1	1.23	0.89	13.5
Aarslev	565	4.1	3.5	3.1	2.7	2.3	1.42	17.1
Tystofte	503	0.49	0.56	0.31 A	0.24 A	0.42 A	0.15 B	2.2
Ledreborg	577	2.?	0. 9 8	1.73	2.0	1.48	0.85	9.3
Abed	576	2.4	1.55	3.5	3.5	1.72	1.33	13. 9
Tornbygaard	580	2.0	1.37	1.76	1. 9 5	1.12	0.80	9.0
Geometric								
mean	•	1.59	1.40	1.82	1.76	1.09	0.77	8.8
Arithmetic								
mean	730	2.1	1.88	2.4	2.4	1.37	1.74	11.88

Table 4.2.2.2.A. Cesium-137 deposition with precipitation in Denmark in 1988. (Unit: Bq m⁻²)

Table 4.2.2.2.B. Cesium-137 deposition with precipitation in Denmark in 1989. (Unit: $Bq m^{-2}$)

Location	mm	Jan-Feb	March-April	May-June	July-Aug	Sept-Dec	1989
Tylstrup	580	0.17 B	0.20 B	0.25 A	0.24 A	0.27 A	1.13
Kalø	473	0.28 A	0.17 B	0.32 A	0.26 A	0.20 A	1.22
Borris	716	0.25 A	0.24	0.23 A	0.198	0.68	1.5 9
Askov	634	2.5	2.3	2.03	1.80	3.5	12.2
St. Jyndevad	636	1.18	1.25	0. 97	1.16	1.81	6.4
Aarslev	516	1.65	0.43	0.32	0.23	0.27 A	2. 9
Tystofte	434	0.17 B	0.18 A	0.32	υ.27	0.46	1.41
Ledreborg	444	0.49	0.52	0.38	0.83	0.96	3.2
Abed	475	0.44	0.44	0.139	0.22	0.42	1.66
Tornbygaard	457	0.58	0.98	0.49	0.51	0.97	3.5
Geometric							
mean	-	0.51	0.46	0.40	0.41	0.64	2.6
Arithmetic							
mean	535	0.78	0.68	0.54	0.57	0.96	3.5
Neksø	550	0.27 A	0.46	0.52	0.44 A	0.72	2.40

Table 4.2.2.3.A. Analysis of variance of In Bq ¹³⁷Cs m⁻³ precipitation, January-December 1988 (from Table 4.2.2.1.A)

Variation	SSD	f	s²	v ²	Р
Between months Between locations Bemainder	11.924 39.222 7.497	5 9 45	2.385 4.358 0.167	14.313 26.157	> 99.95% > 99.95%

Table 4.2.2.4.A. Analysis of variance of In Bq ¹³⁷Cs m⁻² precipitation, January-December 1988 (from Table 4.2.2.2.A)

Variation	SSD	f	s²	v ²	Р
Between months Between locations Remainder	5.476 40.295 5.080	5 9 45	1.095 4.477 0.113	9.701 39.658	> 99.95% > 99.95%

Table 4.2.2.3.B. Analysis of variance of In Bq ¹³⁷Cs m⁻³ precipitation, January-December 1989 (from Table 4.2.2.1.B)

Variation	SSD	f	s²	v ²	P
Between months Between locations	7.263 27.635	4 9	1.816 3.071	6.315 10.678	> 99.5 % > 99.95%
Remainder	10.352	36	0.288		

Table 4.2.2.4.B. Analysis of variance of ln Bq ¹³⁷Cs m⁻² precipitation, January-December 1989 (from Table 4.2.2.2.B)

Variation	SSD	f	s²	v ²	Р
Between months	1.436	4	0.359	2.220	-
Between locations	28.956	9	3.217	19.888	> 99.95%
Remainder	5.824	36	0.162		

Month	Bq ¹³⁷ Cs m ⁻²	Bq ¹³⁷ Cs m ⁻³	134Cs 137Cs	mm precipitation	Theoretical ¹³⁴ Cs/ ¹³⁷ Cs ratio	
	0.20		0.20		0.22	
Jan	0.30	3.4	0.29	00	0.32	
Fed	0.186	4.0	0.36	46	0.31	
March	0.182	5.0	0.25	37	0.30	
April	0.26	19.3	0.26	13.2	0.30	
May	0.23	8.5	0.32	27	0.29	
June	0.24	16.0	0.28	14. 9	0.28	
July	0.38	4.2	0.28	90	0.27	
Aug	0.21	7.8	0.25	27	0.27	
Sept	0.153	2.5	0.26	60	0.26	
Oct	0.188	3.8	0.21	50	0.25	
Nov	0.135	4.8	0.25	28	0.25	
Dec	0.171	3.5	0.23	48	0.24	
1988	Σ2.6	x: 5.0		Σ 528		
	(v	veighted mea	n)	•		
134/137 Obs 134/137 Pred	$= 0.97 \pm 0.10$ S.D. 0.03 S.E. (n = 12)					

Table 4.2.2.5.A. Radiocesium in precipitation collected in the 10 m^2 ion exchanger at Riss in 1988

Table 4.2.2.5.B. Radiocesium in precipitation collected in the 10 m^2 ion exchanger at Riss in 1989

Month	Bq ¹³⁷ Cs m ⁻²	Bq ¹³⁷ Cs m ⁻³	134Cs 137Cs	mm precipitation	Theoretical ¹³⁴ Cs/ ¹³⁷ Cs ratio
Jan	0.132	23	0.25	5.7	0.23
Feb	0.167	9.4	0.26	17.7	0.23
March	0.107	3.1	0.32	34	0.22
April	0.161	5.7	0.24	28	0.22
May	0.104	7.9	0.188	13.2	0.21
June	0.129	3.9	0.21	33	0.21
July	0.194	4.8	0.181	40	0.20
Aug	0.145	1.41	0.21	103	0.196
Sept	0.098	5.8	0.109 A	16.8	0.191
Oct	0.144	2.8	0.173	51	0.186
Nov	0.054	4.7	0.152 A	11.7	0.181
Dec	0.109	4.1	0.152 A	26	0.176
1989	Σ1.54	x: 4.1		Σ 381	
	(v	reighted mea	n)		
$\frac{134/137 \text{ Obs}}{134/137 \text{ Theor}} = 0.99 \pm 0.21 \text{ S.D.} 0.06 \text{ S.E.} (n = 12)$					

		1 m ² rain collector		10 m ² rain collector	
Montr	precipitation	kBq m-3	kBq m−2	kBq m-3	k8q m-2
Jan	86	2.2±0.3	0.187	3.6±0.6	0.31
Feb	46	4.3±0.5	0.200	3.4 ± 0.1	0.155
March	37	5.9±0.9	0.22	1.5±0.1	0.055
April	13.2	27 ±2.6	0.36	14.5±0.2	0.192
May	27	3.1±0.0	0.083	1.7±0.5	0.047
June	14.9	7.2±0.3	0.108	6.6±0.2	0.098
July	90	2.3±0.2	0.21	2.9±0.2	0.26
Aug	27	2.5±0.2	0.068	2.8 ± 0.8	0.076
Sept	60	20.4 ± 1.4	1.22	3.7±0.1	0.22
Oct	50	1.5±0.0	0.075	1.1 ± 0.2	0.055
Nov	28	2.3±0.2	0.064	1.2 ± 0.1	0.034
Dec	48	3.6±0.1	0.173	3.1±0.4*	0.149
1988	Σ 528	x: 5.6	Σ 3.0	x: 3.1	Σ 1.65
	(w	eighted mea	an)	(weighted mean)	

Table 4.2.3.A. Tritium in precipitation collected at Riso in 1988

The error term is 1 S.E. of the mean of double determinations. *Triple determinations.

		1 m ² rain	collector	10 m² rain (10 m ² rain collector		
Month	mm recipitation	kBq m−3	kBq m-²	kBq m⁻³	kBq m-2		
Jan	5.7	5.7±0.0	0.034	18.2±C.7	0.109		
Feb	17.7	3.2 ± 0.4	0.057	2.6 ± 0.2	0.046		
March	34	4.4 ± 0.0	0.151	9.5±0.8	0.32		
April	28	5.0±0.3	0.139	7.4 ± 0.3	0.21		
May	13.2	3.8 ± 0.2	0.049	6.0 ± 0.0	0.077		
June	33	4.8 ± 0.0	0.157	5.7±0.5	0.188		
July	40	6.0 ± 0.0	0.24	21 ± 0.8	0.85		
Aug	103	5.1 ± 0.5	0.52	5.5±0.5	0.57		
Sept	16.8	7.9±0.5	0.134	11.7 ±0.2	0.199		
Oct	51	3.5±0.0	0.177	5.5 ± 0.0	0.28		
Nov	11.7	4.0±0.1	0 048	5.6 ± 0.0	0.068		
Dec	26	1.6 ± 0.5	0.043	19.5±0.2	0.51		
1989	Σ 380	x : 4.6	Σ 1.75	x: 9.0	Σ3.4		
	(we	eighted me	an)	(weighted mean	n)		
The erro	r term is 1 S	.E. of the n	nean of do	uble determinatio	ons.		

•Table 4.2.3.B. Tritium in precipitation collected at Rise in 1989

Date	Tyistrup	Jyndevad	Tornbygaard
January	2.5±0.3*	2.1 ± 0.3	2.2±0.3
February	1.8±0.1	1.5 ± 0.1	3.2±0.1
March	2.2±0.0	1.9 ± 0.1	2.4 ± 0.0
April	2.9±0.1	4.3 ± 0.0	3.5±0.1
May	3.7±0.2	2.5 ± 0.2	4.6 ± 0.3
June	4.1 ± 0.1	-	4.0 ± 0.1
July	2.8 ± 0.1	2.4 ± 0.3	3.6±0.1
August	2.9 ± 0.0	2.6 ± 0.1	3.5 ± 0.2
September	1.7 ± 0.3	1.6 ± 0.1	2.5 ± 0.2
October	1.7 ± 0.2	1.7 ± 0.0	2.7 ± 0.3
November	1.8±0.1	2.0 ± 0.6	3.4 ± 0.1
December	1.5 ± 0.1	-	2.5 ± 0.1
1988: Geometric			······································
mean	2.4	2.2	3.1
1988: Arithmetic			
mean	2.5	2.3	3.2

Table 4.2.4.A. Tritium in precipitation collected in Denmark in 1988. (Unit: kBq m⁻³)

The error term is 1 S.E. of the mean of double determinations. *Triple determinations

Table 4.2.4.B.	Tritium in	precipitation	collected in	ı Denmark	in	1989 .
(Unit: kBq m-	3)					

Date	Tylstrup	Jyndevad	Tornbygaard
January	1.5±0.3	2.4 ± 0.0	2.8±0.2
February	1.7±0.1	1.7 ± 0.4	2.3 ± 0.1
March	1.7±0.1	1.3 ± 0.2	2.1 ± 0.1
April	2.8±0.2	3.3 ± 0.5	3.4 ± 0.3
May	2.8±0.2	2.5 ± 0.0*	-
June	3.7±0.1	2.9 ± 0.4	3.0±0.5
July	3.0 ± 0.0	2.7±0.3	2.8 ± 0.3
August	2.4±0.1	2.1 ± 0.2	3.0 ± 0.4
September	2.3±0.2	2.4 ± 0.3	2.5 ± 0.1
October	1.4±0.1	1.4 ± 0.2	2.2 ± 0.1
November	-	1.5 ± 0.1	2.4 ± 0.3
December	1.6±0.2	1.6±0.1	1.8±0.2
989: Geometric			
mean	2.2	2.1	2.5
989: Arithmetic		·	
mean	2.3	2.2	2.6

The error term is 1 S.E. of the mean of triple determinations. *The error term is 1 S.E. of the mean of double determinations. -

Date		Bq ¹³⁷ Cs m⁻ ³	kBq ³ H m− ³	Measured* Bq ⁹⁰ Sr m ⁻³
Sep 2,	1963	450	300 ±2	760
June 1,	1964	1100	250 ±3	1400
Feb 1,	1965	650	53 ±1	330
Oct 1,	1965	360	46 ± 6	140
March 1	1968	81	11.6±0.5	70
Oct 1,	1968	111	17.9±0.1	35
Dec 2,	1968	156	13.9 ± 0.5	19
Sep 1,	1969	137	19.6±0.1	84
Aug 1,	1970	85	13.7±1.0	100
Aug 1,	1971	120	14.6 ± 0.4	120
Sep 1,	1972	69	17.9±0.6	17
Aug 1,	1973	97	15.5 ± 0.2	4.4
Oct 1,	1974	39	8.0±0.5	20
Sep 1,	1975	89	5.0 ± 0.2	18
Nov 1,	1976	40	9.0±0.1	8
*Blangste	dgård, Fune	n ¹⁾ (mean of neig	hbouring month	

Table 4.2.5. Precipitation collected by the waterworks of Odense in 1963-1976

Fig. 4.3.1.1. Ground water sampling locations in Denmark.

Table 4.3.1.A. Radionuclides in ground water collected in 1988

Location	Date	Bq ⁹⁰ Sr m ⁻³	kg Ca m ⁻³	kBq ³ H m−3
Hvidsten	March	0.056	0.078	0.6±0.1
Feldbak	March	56	0.032	2.4 ± 0.1
Rømø	March	0.054 A	0.033	0.6 ± 0.1
Klemensker	May	0.047 A	0.024	0.6 ± 0.0
Robbedale	May	0.119	0.0122	0.6 ± 0.4
Hasselø	March	0.059	0.135	0.4 ± 0.1
Fåretofte	March	0.124 A	0 139	5.0 ± 0.0
Kalundborg	March	1.37	0.087	3.0 ± 0.1
Ravnholt	March	0.079 A	0.143	4.1 ± 0.0
Fredericia	March	0.29	0.072	2.1 ± 0.0
Geometric m	ean	0.116*	0.058	1.3
Arithmetic m	ean	0.24 *	0.076	1.9
Median		0.099	0.075	1.4

A sample of ground water from Maglekilde in Roskilde contained 1.62 Bq 90 Sr m⁻³, 4.8±0.1 kBq 3 H m⁻³, and 0.22 kg Ca m⁻³.

*Feldbak was not included in the geometric and arithmetic means.

The error term is 1 S.E. of the mean of double determinations.

Location	Date	Bq ⁹⁰ Sr m ⁻³	kg Ca m⁻³	kBq ³ H m ⁻³
Hvidsten	March	0.012 B	0.067	1.0 ± 0.2
Feldbak	March	47	0.030	2.0 ± 0.1
Rømø	March	0.087 A	0.034	0.5 ± 0.1
Klemensker	May	0.015 B	0.029	0.5 ± 0.1
Robbedale	May	0.033 A	0.0152	0.4 ± 0.2
Hasselø	March	0.035	0.063	0.4 ± 0.1
Fåretofte	March	0.024 A	0.061	2.5 ± 0.3
Kalundborg	March	0.34	0.088	2.4 ± 0.1
Ravnholt	March	0.093	0.137	4.1 ± 0.6
Fredericia	March	0.45	0.074	1.8 ± 0.3
Geometric m	ean	0.057*	0.050	1.1
Arithmetic m	ean	0.122*	0.060	1.6
Median		0.061	0.062	1.4

Table 4.3.1.B. Radionuclides in ground water collected in 1989

A sample of ground water from Maglekilde in Roskilde contained 1.33 Bq 90 Sr m⁻³, 3.5 ± 0.7 kBq 3 H m⁻³, and 0.169 kg Ca m⁻³.

*Feldbak was not included in the geometric and arithmetic means.

Fig. 4.3.1.2. Median ⁹⁰Sr levels in Danish ground water, 1961-1989.

Fig. 4.3.1.3. Strontium-90 in ground water at Feldbak 1961-1989.

Risø-R-570

Fig. 4.3.2.1. Sample locations for fresh water from Danish streams (å) and lakes (so).

Stream	Date	Bq ¹³⁷ Cs m ⁻³	¹³⁴ Cs/ ¹³⁷ Cs
Bangsbo å	Jan 20	2.2 A	
Gudenå	March 15	2.9	0.43 A
Skjern å	Jan 21	3.1	
Ribe å	March 14	2.1	
Odense å	March 16	3.6	0.44 A
Suså	March 18	2.0	0.54 A
Halsted å	March 10	1.25	
Læså	May 24	0.50 B	
1988: Geome	tric mean	1.92	
S.E. (factor)		1.25	
1988: Arithmetic mean		2.2	
S.E.		16%	_

Table 4.3.2.1.A. Radiocesium in Danish stream water collected in 1988

Table 4.3.2.1.B. Strontium-90, Cesium-137 and Tritium in Danish stream water collected in March 1989

Stream	Bq ⁹⁰ Sr m ⁻³	kg Ca m− ³	Bq ¹³⁷ Cs m ⁻³	kBq ³ H m− ³
Bangsbo å	10.2	0.052	1.44 B	2.8±0.1
Guden å	5.4	0.037	3.0 A	2.1 ± 0.2
Skjern å	9.3	0.034	1.40 A	2.2 ± 0.1
Ribe å	5.1	0.035	1.97 B	2.2 ± 0.1
Odense å	4.6	0.092	2.6 A	2.1 ± 0.3
Suså	4.8	0.084	1.65 B	2.5 ± 0.0
Halsted å	4.5	0.107	0.72 B	2.4 ± 0.2
Læs å (May)	10.5	0.098	0.77 B	3.1 ± 0.1
1989: Geometric				
mean	6.4	0.061	1.52	2.4
S.E. (factor)	1.14	1.19	1.20	1.05
1989: Arithmetic				
mean	6.8	0.067	1.69	2.4
S.E.	14%	16%	17%	5%

Lake	Date	Bg ¹³⁷ Cs m ⁻³	¹³⁴ Cs/ ¹³⁷ Cs		
Norssø	Jan 21	11.3	0.38 A		
Mosso	March 15	3.7			
Flyndersø	March 16	12.6	0.29 A		
Hostrupsø	March 9	12.1	0.35 A		
Arreskovsø	March 9	4.0 A			
Arresø	March 8	16.3	0.34		
Søndersø	July 10	10.9			
Almindingen sø	May 24	2.3	0.33 A		
1988: Geometric	: mean	7.6			
S.E. (facto	or)	1.29			
1988: Arithmetic	mean	9.2			
S.E.		20%			

Table 4.3.2.2.A. Radiocesium in Danish lake water collected in 1988

Table 4.3.2.2.B. Strontium-90 and Radiocesium in Danish lake water collected in March 1989

Lake	Bq ⁹⁰ Sr m⁻³	kg Ca m ⁻³	Bq ¹³⁷ Cs m ⁻³	¹³⁴ Cs/ ¹³⁷ Cs	kBq ³ H m⁻ ³
Norssø	26	0.052	9.8	0.22 A	2.2±0.1
Mossø	6.1	0.080	1.94 A		2.4 ± 0.2
Flyndersø	4.0	0.048	7.6	0.155 A	2.2 ± 0.1
Hostrupsø	19.7	0.040	12.8	0.199	2.3 ± 0.2
Arreskovsø	11.6	0.073	4.2		2.2 ± 0.3
Arresø	11.7	0.076	14.2	0.23	2.5 ± 0.4
Søndersø	12.2	0.083	9.7	0.22 A	2.4 ± 0.1
Almindingen sø (May)	21	0.034	1.40		3.1 ± 0.2
1989: Geometric					
mean	12.0	0.058	5 .9	_	2.4
S.E. (factor)	1.25	1.13	1.36		1.04
1989: Arithmetic					
mean	14.0	0.061	7.7		2.4
S.E.	19%	11%	22%		4.4%
				· · · · · · · · · · · · · · · · · · ·	

Zone	Bq ⁹⁰ Sr m ⁻³	kg Ca m ⁻³	Bq ¹³⁷ Cs m ⁻³	kBq ³ H m ⁻³	
I: N. Jutland II: E. Jutland III: W. Jutland IV: S. Jutland V: Funen VI: Zealand	0.66 0.058 A 1.19 0.042 0.123 0.090	0.076 0.090 0.059 0.092 0.111 0.102	0.116	2.6 ± 0.2 2.1 ± 0.0 1.4 ± 0.4 1.5 ± 0.0 1.8 ± 0.2 1.9 ± 0.1	
VII: Lolland-Falster VIII: Bornholm	0.067 A 0.40	0.093 0.088	0.054	0.9 ± 0.3 1.8 ± 0.0	
Geometric mean	0.165	0.088	0.105	1.7	
 N. Jutland E. Jutland E. Jutland W. Jutland V. S. Jutland V. Funen V. Zealand VI. Zealand VII. Lolland-Falster VIII. Bornholm Geometric mean Arithmetic mean Median of zones Copenhagen Including Copenhagei 	0.33	0.089	0.105	1.8	
Median of zones	0.107	0.091		1.8	
Copenhagen	0.25	0.123		1.9±0.5	
Including Copenhage	n				

 Table 4.3.3.1.B. Strontium-90, Cesium-137 and Tritium in drinking water collected in June 1989

Fig. 4.3.2.2. Strontium-90 concentrations (± 1 S.E.) in 8 Danish streams and 8 Danish lakes, collected since 1971.

Fig. 4.4.1. Strontium-90 in surface sea water from inner Danish waters, 1962-1989. (I S.D. indicated) (from Tables 4.4.1.A and B and 4.4.2.A and B).

Table 4.4.1.A. Ro	idionuclides in	sea water collected	l around Zealand	l in May 1988
-------------------	-----------------	---------------------	------------------	---------------

Location	Date	Pes	tion	Depth	9057	:3°C5	13 4 05	Η ^ς	Salinity	Chernoby:
	in May	N	E	:ñ m	6q m-3	8g m-3	¹³⁷ Cs	18q m-3	****	Bq127Cs m 3
Kullen	23	56°15'	12 25	2		80	0 24		154	65
-				20	132	41	0136		33 6	20
		5 .200						20.05		67
nesse u	23	56.10	11.47	2	94	79 41	0.24	39±05 16+02	14.9	143
- <u></u> ·. · · · · · · · · · · · · · · · · · ·										
Kattegat SW	30	56'07'	11:10	2	18.4	7 9	0 25		140	70
-				37			0 094		33.2	132
Asnæs rev	29	55'40'	10° 46 '	2		92	0 26		119	86
				30		41	0 1 2 3		32 0	179
		66473	11103		10.6	04	0.36	57+07	10.2	
	29	22.53	11.03	25	130	50	0 26	30±02	295	32
Langeland bælt	29	54 52	10.20	2		99	0 26		88	93
				21		52	0 179	·	27 9	33
Femern bælt	29	54°36'	11:04	2		102	6. 0		88	100
. .				28		76	0 24		177	66
Getter offe	26	54:29	11:59	2		104	0.28		7.9	104
Jeuse, Odde	20	J# 20	11 39	17		96	0 26		109	89
						· · · · · · · · · · · · · · · · · · ·				
Moen	26	54′57	12:41	2		105	0 29	57±02	77	111
						98	0 29	58±03	90	100
The Sourid - South	25	55°24'	12-37	2	20 1	1 09	0 29		77	111
				12		97	0 26		98	93
The Sound - North A	24	55:49	12:45	,		109	0.29		94	114
*	••	55 40	12 45	18		43	0 1 2 7		31 5	20
							<u></u>			
The Sound - North B	24	55*59 [.]	12'42'	2		92	0 26		114	86
									331	
Mean				Surface	194	9 5	0 27	51	106	91
S D					09	11	0 02	10	29	17
SE					05	3	0 0 1	06	08	5
Mean				Bottom	11 3		0 175	3.5	25.2	43
S D					27	25	0 07	21	10 2	34
S F					1 9	7	0.02	12	29	10
<u> </u>						·		•	<u> </u>	

The error term is T.S.E. of the mean of double determinations

Location	Date in May	Pes N	E	Depth in m	90Sr Ba m-3	137Cs Bq m-3	134C5	⁹⁹ Tc Bq.m⁻3	Salurity Neo	Chemobyl Bg 137Cs m 3
Kullen -	20	56 "15"	12 25	2 20		77 25	0.21 0 052 B	0 79	12 2 33 3	76 628
Hesselo -	20	56-10	11'47'	2 22		69 26	0 167 B.D.L	1 43	16 8 33 0	55 BD1
Kattegat SW	17	56° 07°	11,10.	2 36	17.3	69 26	0 185 0 060 B	1. 58	16 3 33.0	61 7.38
Asnæs rev	17	55'40'	10:46	2 22	125	72 26	0 184 0 104 A	20	16.2 31 7	63 12.9A
Halskov rev	17	55'23 [.]	11:03.	2 21	16 2 12 3	8 0 33	0.22 0 104 A		14.6 30.8	B1 16 3 A
Langeland bælt	18	54°52'	10:50	2 32	111	88 18.4	0 197		11.1 28 6	82 135
Femern bælt	18	54*36	11:04	2 24	136	89 61	0.20 0.180		10.9 12 9	85 52
Gedser odde	18	54 °28′	11:59	2 15	167	94 90	0 1 99 0 20		8:5 20 4	39 84
Møen -	18	54:57	12:41	2 21	170	95 89	0 21 0 199		88 11.3	95 84
The Sound - South	19	55*25'	12:37	2	160	93 87	0 20 0 21		97 117	88 84
The Sound - North A	20	55'48'	12:44	2 17	112	100 37	0 21 0 121		9 2 29 9	101 21
The Sound - North B	20	55 * 59 ⁻	12:42	2 27		9 2 25	0 21 0 084 A		10 6 33 4	91 97A
Mean				Surface	158	85	0 199	C 79	12 1	80
S.D.					22	11	0 015		31	14
\$.E.					1,1	3	0 004		0.9	4
Mean				Bottom	135	45	0134	1.67	25.8	36
\$.D.					24	28	0.058	0 30	9 1	33
S.E.					1.0	8	0.017	017	26	10

Table 4.4.1.B. Radionuclides in sea water collected around Zealand in May 1989

Location	Date	Pos N	ition E	Depth thm	*Sr Bam ¹³	¹⁰⁷ Cs 8q m-3	13°Cs	³ H kBq m ³	Salinity %	Chernoby Ba ¹³¹ Cs m 2
Kuilen	Nov 30	56:15	12:25	2		51	0 20		24.4	42
-				22		51	0 185		24 7	38
Hesselo	Nov 30	56:10	11-47	,		2 9	0.71	74-01	25.4	47
-		50 10		24	67	37	0 151	19=01	30 6	23
		66:03:		·					20.0	
-	Uec 8	20.01	11-10	27		64 43	0 20		208	55 31
									<u></u>	
Asnæs rev	Dec 7	55° 39 '	10 *46	2		60 57	0 194		218	48 47
						5/	0.20			
Halskov rev	Dec 7	55'23'	1 1'03 '	2	15 I	64	0 24	45=05	189	63
						65	0 192	34=03	20 6	49
Langeland bælt	Dec 7	54°52'	10:50	2		75	0 21		173	63
				17						
Femern bælt	Dec 7	54° 3 6'	11:04	2		76	0 22		160	69
				2 7		67	0 20		19 Z	56
Gedser odde	Dec 7	54:29	11:50				0.71		11.4	74
	UEC /	J~ 20	11 33	17		76	0 21		17 2	67
Møen -	Dec 6	54 57	12:41	2 72	172	95 94	0 25	41±04 51-01	98 98	96 88
The Sound - South	Dec 6	55-25	12'36'	2		99	0 24		91	96
				12		96	0 23		92	
The Sound - North A	Nov 30	55 48	1 2 °44'	2		66	0 21		189	÷7
				20	120	55	0 1 76		24 5	40
The Sound - North B	Nov 30	55° 59 '	12:42	2		54	0178		23 5	40
				29		51	0 190		25 3	39
Mean				Surface	16 2	70	0 21	37	16 1	62
S.D.					1.5	16	0 02	T T	56	20
S.E.					10	5	0 01	06	16	6
Mean				Bottom	94	63	0 1 94	35	21.0	52
S.D.					37	19	0 02	16	68	22
S.E.					2.6	6	0 01	09	21	7
-										

Table 4.4.2.A. Radionuclides in sea water collected around Zealand in November-December 1988

Fig. 4.4.2. Cesium-137 in surface and bottom water collected in inner Danish waters 1972-1989.

Location	Date Position		:001	Depth	**S.	13°Cs	· ["] Cs	Saunity	Chernoby
	ы п .	Ň	Ē		8q m 3	6q m-3	13°Cs	***	Ba ^{rys} Cs m ^{ry}
	November								
Kullen	17	56'15'	12'25	2	145	66	0 178	17.7	65
-				20	109	42	0 153	25 2	36
Hesseig		56 10	11.47	,	55	0 749		21.4	
-				22		22	0 022 B	33 2	268
Kattacat SM		56'07	11,10,	,	74	0 165		175	67
-		30 07		34	~	23	0 119	32 8	150
		56130	10:46	 ,		0177		176	<u> </u>
	.	33 33	10.40	32	•	25	0 124 A	32.0	17 5 A
Halskov rev	13	55'23'	11 03	2	159	70	C 187	15 4	72
				21		40	C 122	27 8	27
Langeland ballt	14	54'5Z'	10 50	2		74	0 177	14 5	73
. .				29		37	0 131	28 4	27
Femera tasit	14	54:35	11.04	2	174	73	0.170	14.0	69
		J- JQ		22	130	51	0 155	22.4	44
							·		····
Gedser odde	14	54 28	11 59	2	84	0 171		707	79
	<u> </u>						<u> </u>		
Meen	14	54'57'	12:42	2		100	0178	88	98
-				21		93	0 171	8 2	88
The Sound - South	:6	55:25	12 37	2		9;	0 175	10 G	89
	-			13		84	C 177	11.9	82
The Sound , North A	17	55:40	17 45	<u> </u>		0 159		171	70
	•7)) 40	12 44	17	80	68	0 147	173	55
		<u> </u>							
The Sound - North B	17	55° 59 °	12 42	2		78	0 176	14-4	76
				28		24	0 113	32 5	148
Mean				Surface	159	76	0 171	145	72
S D					15	12	0 010	37	13
SE					08	3	0 003	11	4
Mean				Bottom	120	48	0 135	23 9	40
S D					15	25	0 043	89	28
						•	0.010		
25					11	7	0.012	26	8

Table 4.4.2.B. Radionuclides in sea water collected around Zealand in November 1989

Fig. 4.4.3. Sea water locations around Zealand.

Fig. 4.4.4. Percentage of Cs-137 from Chernobyl related to salinity in sea water samples collected in inner Danish waters (figures in brackets collected in the North Sea) in 1988 and 1989 (monthly samples from 6 stations).

Year	Date	Po: N	Sition E or W	Depth in m	⁵⁰ Sr Bq m-3	⁹⁹ Tc Bq m⁻³	¹³⁷ Cs Bq m ⁻³	134Cs 137Cs	Chernobyi ¹³⁷ Cs Ba m- ³	³∺ kBq m-3	Saim ‰
											<u> </u>
1988	Jan 13	54°57'	12°28'E	0			85	0.31	82		9 .
**	Feb 15		**	0			91	0.29	86		9.
<u>.</u> .	March 14	••	••	0			92	0.30	91		9
•• 	Apr 14		••	0			104	0.30	104		8.
••	May 17	••	**	0			104	0.20	95		7.
••	June 13	••		0			33	0.27	89		8.
**	July 14	-	-	0			97	0.26	91		7.
**	Aug 16	-	••	0			97	0.25	91		9.
	Sep 19	-	-	0			95	0.24	89		9.
	Oct 14			0			95	0.26	98		9.
**	Nov 17	**		0			89	0.16	60		9 .
	Dec 17	**					91	0.22	85		9.
t: 94 = 9:	n = 12(±	1 S D.)									
1989	Jan 13	54°57'	12°28'E	0			89	0.20	76		10
"	Feb 16	•		0			33	0.20	8 3		10.
**	March 17	••		0			94	0.2i	90		9
••	Apr 14	"		0			88	0.22	88		9.
	May 13		••	0			79	0.20	76		8.
	June 14	"		0			96	0.190	88		8
	July 17	"	**	0			84	0.190	79		9.
	Aug 15	**		0			81	0.191	79		9.
-	Sep 19	-	**	0			89	0.195	91		8
••	Oct 19	*		0			85	0.179	82		9.
••	Nov 13	"	**	0			86	0.180	85		9
	Dec 18		"	0			92	0.166	87		9.
': 95 = 5;	n = 12(±	1 S.D.)									
1988	Jan 14	55°21'	11°07′E	0			68	0.24	50	3.2 ± 0 .5	17.0
"	Feb 16	"		0			78	0.25	63		13:
	March 15	"	"	0			71	0.23	53		19
	Apr 13	,,	"	0			73	0.24	59		16
.,	May 17	"	"	õ			95	0.27	88		8
,,	June 14	"		0			86	0.26	80	4.8 = 0.2	12
	July 15		"	0			87	0.24	76	5.0 ± 0.0	11
"	Aug 15	"	"	0			82	0.25	77	3.5 ± 0.1	17
	Sen 20	"		n			62	0 23	54	2	21
	Oct 12			ñ			71	0 21	58		17
	Nov 16	-		ñ			70	0.21	50 61	35-01	10
				J			,0	v.£1	51		13.
	Year 1988 $\frac{1}{2}$	Year Date 1988 Jan 13 Feb 15 March 14 Apr 14 May 17 June 13 July 14 Aug 16 Sep 19 Oct 14 Nov 17 Dec 17 1989 Jan 13 Feb 16 March 17 Apr 14 May 13 June 14 July 17 Aug 15 Sep 19 Oct 19 Nov 13 Dec 18 195 ± 5 ; $n = 12(\pm 12)$ 1988 Jan 14 Feb 16 March 15 Apr 13 May 17 June 14 Sep 19 Nov 13 Dec 18 1: 95 ± 5 ; $n = 12(\pm 12)$	Year Date Po: N 1988 Jan 13 $54^\circ 57^\circ$ Feb 15 - March 14 - Apr 14 - Apr 14 - June 13 - July 14 - Aug 16 - Sep 19 - Oct 14 - Nov 17 - Dec 17 - 1989 Jan 13 $54^\circ 57^\circ$ Feb 16 - March 17 - March 17 - May 13 - June 14 - July 17 - Apr 14 - May 13 - July 17 - Aug 15 - Nov 13 - Dec 18 - 1: 95 = 5; n = 12 (± 1 S.D.) 1988 Jan 14 55°21' Feb 16 - March 15 - May 17 - June 14 - June 14 -	Year Date Position N E or W 1988 Jan 13 $54°57'$ $12°28'E$	Year Date Position N Depth in m 1988 Jan 13 $54^{\circ}57^{\circ}$ $12^{\circ}28^{\circ}E$ 0 " Feb 15 " " 0 March 14 " 0 0 March 14 " 0 0 March 14 " 0 0 May 17 " 0 0 June 13 " 0 0 June 13 " 0 0 July 14 " 0 0 Aug 16 " 0 0 Sep 19 " 0 0 Nov 17 " 0 0 Nov 17 " 0 0 Pet 14 " 0 0 March 17 " 0 0 March 17 " 0 0 Jule 14 " 0 0 July 17 " 0 0 July 17 " 0 0 May 13 " 0 0	Year Date Position Depth 50 Sr N E or W in m Bq m ⁻³ 1988 Jan 13 54°57' 12°28'E 0 - Feb 15 - - 0 March 14 - - 0 - Apr 14 - 0 - Apr 14 - 0 - June 13 - 0 - July 14 - 0 - July 14 - 0 - July 14 - 0 - Aug 16 - 0 - Nov 17 - 0 - Nov 17 - 0 - Nov 17 - 0 - March 17 - 0 - March 14 - 0 - March 17 - 0 - March 17 - 0 - July 17 - 0 - July 17 - 0	Year Date Position Depth 93 C 93 C 1988 Jan 13 54*57' 12*28'E 0 0 "Feb 15 " " 0 0 "Apr 14 " 0 0 0 "March 14 " 0 0 0 "May 17 " 0 0 0 "June 13 " 0 0 0 "June 13 " 0 0 0 "June 13 " 0 0 0 "Aug 16 " 0 0 0 "Sep 19 " 0 0 0 "Nov 17 " 0 0 0 "Dec 17 " 0 0 0 "Apt 14 " 0 0 0 "March 17 " 0 0 0 "March 17 " 0 0 0 "July 17 " 0 0 0 "July 17 " 0 0	Year Date Position Depth 50 sr 97 cr 137 cs 1988 Jan 13 $54^{\circ}57^{\circ}$ $12^{\circ}28^{\circ}$ c 0 95 "Feb 15 " " 0 92 "Apr 14 " 0 92 "Apr 14 " 0 92 "Apr 14 " 0 93 "July 14 " 0 97 "Aug 16 " 0 97 "Aug 16 " 0 97 "Sep 19 " 0 95 "Oct 14 " 0 95 "Oct 14 " 0 99 "Dec 17 " 0 94 "Apr 14 " 0 96 "June 14 " 0 95 "Dec 18 " 0 92	Year Date Position N Depth ForW $\frac{90}{10}$ $\frac{93}{90}$ $\frac{137}{137}$ $\frac{132}{137}$ 1988 Jan 13 54°57' 12°28'E 0 65 0.31 "Feb 15 - - 0 91 0.29 March 14 - 0 104 0.30 "March 14 - 0 104 0.30 "March 14 - 0 104 0.26 June 13 - 0 104 0.26 June 13 - 0 97 0.25 Sep 19 - 0 97 0.22 Nov 17 - 0 99 0.16 "Dec 17 - 0 99 0.22 "March 17 - 0 94 0.21 "E94 9, n = 12 (± 1 \$ \$ \$.) - 0 94 0.22 "March 17 - 0 89 0.20 "Apr14 - 0 96	Year Date Position N Depth \$PSr \$PTC 137Cs Bq m^-3 137Cs Bq m^-3 Chemobyl Bq m^-3 1988 Jan 13 54*57 12*28 E 0 85 0.31 82 "Feb 15 " 0 91 0.29 86 March 14 " 0 104 0.30 104 "March 14 " 0 104 0.30 104 "March 14 " 0 33 0.27 89 "June 13 " 0 33 0.27 89 "July 14 " 0 97 0.26 91 "Sep 19 " 0 95 0.26 98 "Nov17 " 0 89 0.16 60 "Dec 17 " 0 89 0.20 76 "Feb 16 " " 0 93 0.20 76 "July 17 " 0 89 0.20	Year Date Position N Depth EorW Page 300 in m Page 300 Bq m^-3 137Cs Bq m^-3 Chernobyl 137Cs Bq m^-3 Chernobyl 14 Chernobyl 1415 Chernobyl 14 Cher

Table 4.4.3. Radionuclides in sea water collected in the Danish Straits, North Sea, and Baltic Sea in 1988 and 1989

Risø-R-570
Location/ cruise	Year	Date	Po: N	sition E or W	Depth in m	%Sr %TC Bq m ⁻³ Bq m ⁻³	¹³⁷ Cs Bq m ⁻³	¹³⁴ Cs ¹³⁷ Cs	Chernobyl ¹³⁷ Cs Ba m ⁻³	^з н kBq m-з	Salinity ‱
	1999	lan 12	55°21'	11507'E	0			0.20		<u></u>	10.9
-		Feb 15		-	0		64	0.20	55		17.6
••		March 16	•		0		81	0.22	79		11.1
-		Apr 13	••	••	0		72	0.196	65		10.3
**		May 13	••	••	0		68	0.180	58		16.3
-		June 13	-	**	0		80	0.191	74		11.0
-	••	July 18	••		0		66	0.185	61		(16.2)
••		Aug 14	••		0		75	0.181	70		149
-		Sep 18		~	0		75	0.186	73		12.9
~	••	Oct 18	**	-	0		64	0.132	45		19.8
-		Nov 13		*	0		72	0.173	68		15.9
**	**	Dec 19	••	**	0		64	0.161	58		17.4
% Chernoby	l: 90 ± 7;	n = 12(=	1 S.D.)								
Klint	1988	Jan 14	55°58'	11°35'E	0	0.76	57	0.22	39		23.2
-		Feb 16	••		0	0.7 9	63	0.22	43		18.6
**	**	March 15		••	0	0.42	66	0.26	56		19.0
~		Apr 13	••	••	0	0.67	76	0.25	64		14.1
**		May 16	••	**	0	0.50	78	0.23	62		15.6
	~	June 14		••	0	0.41	81	0.24	69		154
~		July 15	**	-	0	0.85	76	0.22	61		141
	••	Aug 15		**	0		63	0.22	52		17. 9
~		Sep 20	*	**	0	0.46	73	0.22	62		18.1
**	**	Oct 13	**		0	0.64 ± 0.04					
**		Nov 16		**	0	0.63	61	0.194	48		21.1
	**	Dec 18	*		0	0.74	53	0.21	46		23.0
% Chernoby	: 80 ± 6;	n = 11(±	1 S.D.)					<u></u>		·	
Klint	1989	Jan 12	55°58'	11°35′E	0	1.00	45	0.171	33		24.3
*	"	Feb 15	"	**	0	0.69	46	0.154	31		23.9
•		March 16		"	0	1.00	64	0.194	56		14.8
**		Apr 13	"	~	0	0.51	73	0.169	57		14.1
**		May 12			0	0.65	75	0.191	67		15.4
*		June 13	*	**	0	0.77	68	0.192	63		157
*	"	July 18	**	**	0	1.00	7 9	0.191	75		8.8
**		Aug 14	"	"	0	0.66	63	0.170	55		17.4
**	"	Sep 18	"		0	0.39	63	0.168	56		17.4
*	"	Oct 18		**	0	0.51	58	0.154	48		20.0
*	"	Nov 13	"		0	0.48	61	0.157	53		19.6
···	"	Dec 19	"	"	0	0.44	47	0.136	36		23.8

Table 4.4.3. (continued)

% Chernobyl: 84 ± 8 ; n = 12 (± 1 S.D.)

Location/ cruise	Year	Date	Pos N	ition E or W	Deptin in m	⁹⁰ Sr ⁹⁹ ⊺c Bqm- ³ Bqm- ³	¹³⁷ Cs Bq m ⁻³	^{:34} Cs ¹³⁷ Cs	Chernobyl ¹³⁷ Cs	³ H kBq m-3	Salini ‰
		- <u></u>							Bq m-3		
Lund	1988	Jan 13	55°15'	12°18'E	0		68	0.27	58		10.2
fishing		Feb 15		-	0		80	0.29	75		10.7
port	••	March 14		**	0		82	0.28	75		8.5
**	••	Apr 14	~	•	0	0. 097 A	95	0.29	92		83
**		May 16	•	••	0		96	0.28	92		7.9
	**	June 13		**	о		105	0.26	9 7		7.8
*	••	July 14			0		86	0.26	81		7.6
**	••	Aug 16	*	••	0		92	0.26	90		9.4
-	••	Sep 19	••	**	0		84	0.25	81		9.5
-	••	Oct 14	••	**	0		83	0.24	79		10 4
*	••	Nov 17		~	0		90	0.24	87		100
H		Dec 17	**	*	0		61	0.24	61		80
% Chernobyl:	95±4:	n = 12(±	1 S.D.)								
Lund	1989	Jan 13	55°15'	12°18'E	0		75	0.20	65		10.4
fishing	••	Feb 16			ο		76	0.20	67		13.2
port		March 17	~	**	0		79	0.20	71		10.2
~	*	Apr 14	~	**	ο		69	0.20	64		16.2
	*	May 13	~		0		76	0.21	75		8.9
-		June 14	•		0		84	0.20	82		85
~	**	July 17	•	••	0		82	0.196	80		9.4
	**	Aug 15	•	••	0		85	0.167	72		10.0
-		Sep 19	•	••	0		79	0.20	83		9.0
-	"	Oct 19	**		ο		89	0.180	86		9.2
-	"	Nov 13	*		0		86	0.182	87		10.5
~		Dec 18		••	0		77	0.168	74		92
% Chernobyl:	95 ± 6;	n = 12(±	1 S.D.)								
Svenskehavn	1988	Jan 17	55°05′	15°09'E	0		102	0.33	104		7.2
(Bornholm)	,,	Feb 14			0		104	0.29	98		7.0
••		March 15	••		0		120	0.29	114		7.2
••		Apr 17	~	**	0		106	0 28	100		75
•		May 15		••	0		114	0.28	111		7.6
		June 19	*	**	0	22	104	0.27	99		7.6
		July 17	••	~	0		106	0.28	107		7.5
**	••	Aug 14	••	•	0		98	0.26	96		7.6
*		Sep 18	••	••	0		106	0.23	92		7.4
-	••	Oct 16	*	~	0		102	0.24	98		7.7
			-		-						

Table 4.4.3. (continued)

% Chernobyl: 96 ± 4 ; n = 11 (± 1 S.D.)

Location/ cruise	Year	Date	Po: N	sition E or W	Depth in m	90Sr Bc m ⁻³	⁹⁹ Tc Bq m ⁻³	¹³⁷ Cs Bg m ⁻³	^{:34} Cs ¹³⁷ Cs	Chernobyi ¹³⁷ Cs	³ ∺ kBq m-3	Salimity %ee
										Bq m−3		
C	1000	1	C C 60C'	15200:5					0.22			
Svenskenavn	1989	Jan I Cab A	55'05	15'09 E	0			90	0.22	91		79
(Bornnoim)		rep 4			0			103	0.22	100		70
		March 5			0			9/	0 22	95		/9
-	-	Apr 2	-		0			92	0.23	95		51
		Mayi			0			98	0.21	9/		/8
		June 4			0		0.178 A	92	0.21	94		80
-		July 2			0			95	0.20	95		80
-		Aug 1			0			98	0.179	88		7.9
		Sep 3			0			91	0.189	85		7.9
-		Sep 30		-	0			90	0.174	83		7.9
		Oct 31			0			100	0.189	103		/8
		Dec 2			0	19.0			0.179	91		
% Chernobyl:	98 ± 4	n = 12(±	: 1 S.D.)						<u></u>			
Herrela	1099	May 22	56:12	. 2:05°E	2			77	0.25	67		14 5
		May 23		,	24			37	0.20	16.6		33.6
-	••	Nov 30		••	24			54	0.120	41		24.2
		Nov 20		**	24			J.→ A7	0.103	24		26.0
-		kupe 7	56-12	11:42°E	24	196		75	0.24	65	41-01	15 7
	1000	May 0	56:12	11:42 -	2 2	10.0		75	0.197	62	4.1 - 0.1	16.9
	1909	Not 20	90 IZ	1143E 	2			51	0.167	02		22.1
		May 20	EG:12	12:05/5	2		0.52	50	0.140	41 60		17.4
		May 20	5013	12 05 E	2		0.52	33	0.076 A	77 4		32.9
		Nov 17		••	22			£2 60	0.070 A	7.7 A		10.0
-	••	Nov 17	••	•-	22			26	0.170	147		31.6
•			69 - 107	10.000					0.24	50		17.4
Læso	1988	June 8	5718	10.20 E	2			74	0.24	59		17.4
		June9	57-19	11°07 E	2			/1	0.22	50		10.2
		Dec 16			2	8.8	0.22	34	0.151	21		30.4
-	1989	May 11	5/18	10°56 E	0	13.0		50	0.104	40		24.0
					0		a 7 0	35	0.125	24		31.5
		May II	57 19	11.00°E	2		079	49	0.104	38		22.0
		NOV Z	27.13	11085	2			37	0.120	20		212
Anholt	1988	June 9	56°43′	11°31′E	2	16.5		76	0.24	65		15 2
*	1989	Nov 3	"		2	12.8		52	0.150	43		22 8
Møn-Stevns	1988	May 26	55°11′	12 ⁻ 37'E	2			112	0.30	114	4.4±0.4*	7.8
	"	May 26		*	23			77	0.25	68	2.4±0.5*	19.9
		Dec 6	55°11′	12⁼36′E	2			99	0.23	96		88
**		Dec 6		*	23			90	0.22	83		10.8
**	1989	May 19	"		2	19.5		99	0.21	98		8.4
**	••	May 19		**	22			94	0.20	90		11.2
		Nov 14	"		2	19.0		87	0.168	81		9.3
"	~	Nov 14			22	18.5		89	0.172	85		9.9
Gedser-Møn	1988	May 26	54°42′	12°21′E	2			104	0.28	100		8.5
••	••	May 26		"	16	18.6		86	0 26	76		13 5
**	"	Dec 6		**	2			96	0.22	89		10.1
	"	Dec 6	"	"	16			88	0.22	82		114
Risø-R-570								7	73			

Table 4.4.3. (continued)

Risø-R-570

Location/	Year	Date	Po	sition	Depth	€SI	99.Tc	137Cs	134Cs	Chernoby	34	Salinity
cruise			N	E or W	in m	8a m-3	8q m-3	Bg m ⁻³	137Cs	¹³⁷ Cs	kBç m-3	9.00
Gedser-Mon	1 989	May 18	54 [:] 42 [.]	12°21.E	2	17.5		96	0.21	94		97
-	-	May 18	-	-	15	1 9 7		84	0.177	70		13.5
	-	Nov 14	-	-	2			95	0.173	91		94
-	-	Nov 14	-	-	16			86	0.177	84		94
Barsebäck	1988	May 25	55'+ š	12°52'E	2			103	0.28	100		81
-	•	May 25	•	-	11			45	0.143	22	2.1 ± 0.1*	30.8
-	-	Dec 1	-	-	2			90	0.22	82	4.1 ± 0.4	12.4
-	•	Dec 1	••	-	22			54	0.188	41	3.5=01	24.2
*	1989	May 20	55°46'	12°53'E	2			96	0.20	92		9.3
-	-	May 20	-	-	18			28	0.084 A	11 A		31.5
-	-	Nov 17	-		2			78	0.172	74		11.8
-		Nov 17	~	-	22			33	0.118	22		31.9
Ringhals	1988	June 8	57°15'	12°04'E	2	20		60	0.24	52	7.0±01	1 9 .2
-	-	june 8	-	-	14			41	0.179	26	2.7 ± 0.4	29.6
-	-	Dec 15	57°15'	12°03'E	2			36	0.143	22		27.6
-		Dec 15	-		23			30	0.127	15. 9		31.8
-	1989	May 12	57°15'	12:03 E	2			63	0.178	53		17.6
-	-	May 12	-	-	23			27	0.113 A	14.3 A		32.3
-	-	Oct 31	57°15'	12:04 E	2			49	0.154	41		22.6
-	-	Oct 31		-	24			43	0.135	31		25.0
Ringhals ⁴	1988	Jan 1	(57 °16'	12°06'E)	0			55	0.23	40	2.2 = 0.4	24.0
(location 98)	+	Feb 1	-	**	0			58	0.23	42	22=01	19.0
-	•	March 1	-	-	0			48	0.21	33	27=02	26.5
-	•	March 21	-	-	0			62	0.24	50	6.4 ± 0.4	184
-		May 2	-	-	0			61	0 24	49	3.6 = 0.1	1 9 .8
	-	June 1	-		0			70	0 27	66	4 2 = 0 3	17.1
~		June 30	-	-	0			69	0.24	61	22 = 0 5	17.1
-		Aug 1		-	0			6 9	0.21	54	3.8 ± 0 3	18.4
-	-	Aug 31	-	-	0			63	0.21	50	42-04	19.0
-	-	Sep 29		-	0			56	0.188	41		23.1
-	-	Nov 1	-		0			61	0.22	54	4.0 = 0.3	20.9
		Nov 30						42	0.181			26.8
% Chernobyl:	79 <u>=</u> 8	n = 12(=	1 S.D.)								<u>_</u>	
Ringhals≜	19 89	Jan 2	(57 °16'	12°06°E)	0			44	0.170	31		23 6
(location 98)	-	Feb 1	••		0			56	0.191	46		20 6
-	*	March 1	-	**	0			52	0.172	40		20.9
-	-	March 30		**	0			49	0.190	43		17.3
-	-	May 1	*	-	0			57	0.181	48		18.2
-	-	June 1		-	0			63	0.16 9	51		17.9
-	~	June 29	•	-	0			64	0.186	58		18.1
~		July 31			0			62	0.157	49		17.3
-		Aug 31	•	~	0			56	0.173	50		22.1
~	~	Oct 2	•		0			52	0.151	42		22.9

Location/ cruise	Year	Date	Pos N	E or W	Depth in m	90Sr Bq m-3	99Tc Ba m-3	13)Cs Bq m-3	:34Cs :37Cs	Chernobyl ¹³⁷ Cs Bq m ⁻³	°H kBc m∘3	Saiinit [®] oo
Ringhals+	1989	Nov 1	(57'16	12:06°E)	0			46	0.149	38		22 8
(location 98)	-	Nov 30	-	-	0			35	0.119	24		27 6
% Chernobyi	81 ± 7	n = 12(:	= 1 S.D)									
Skagerak/	1988	Jan ∠8	57°35'	09 [:] 25 [.] E	0		21	23	0.159 A	17.3 A		30 6
Dana 1	-	Jan 28	57 *3 0	08 ⁻ 42'E	0		1.96	26	0.126	10.3		32 7
North Sea/	1988	Feb 1	54*14 [.]	08:00.E	0		4.3	11.2	0.136 A	4.8 A		32.1
Dana 1	-	Feb 17	56*4 7'	07 :08 :E	0		0.59	41	0.155	20		34 3
North Sea/	1988	April 17	59°11'	04-07'E	0			44	0.134	19.9		32 0
Dana 4	-	April 18	62*06	00°25'E	0 0	22		75				35.0
	-	April 22	61*22	06:37W	0	34		74	0.22 A	53A		346
-	-	April 74	59*27	00°01'W	0	U . T	0.186		**			34.2
-	-	April 25	58.33	04:00'F	0 0			30				33 6
-	-	April 25	58°21'	04:59'F	ů.		0.83					33 2
-	-	April 25	57-58	06:32'E	n n			36	0.166	20.0		32 8
-	-	April 25	57°39'	09:31'E	0		0. 89		000			30.5
North Sea/	1988	May 15	55°22'	07:35.F	0		27	126	0 23	99		30 2
Dana 5	~	May 15	55'41'	07:33'E	ñ		1 33	25	0.106 B	91 B		33.8
~	-	May 15	56=42	07:35 5	Õ		1 10	29	0.098 A	131 A		34 O
-	-	May 15	50 -Z	07:42'E	Õ		27	15.7				31.4
-	-	May 15	54*16 [°]	07°36'E	0		_ .,	12.2	0.21	9.0		296
Skagerak/	1988	May 15	57°10'	08:25'E	0		26	98				32.7
Dana 5	-	May 15	57°47	10°36'E	0		1.15	42	0.122 A	17.6 A		29 0
Cattegat/ Dana 5	1988	May 15	57°14'	11-18 E	0		1.47	28	0.134	13.1		32 4
Baltic Sea/	1989	Feb	55*38 [°]	19 ⁻ 59'E	0			97	0.22	92		76
Dana	-	Feb	55*02 ⁻	13'42'E	0			96	0.22	90		8.7
North Sea/	1989	Feb 20	57°43'	05:12°E	0			115	0 122 A	61A		23 9
Dana	-	Feh 2	56:57	07:15:E	0 0			27	0.056 A	67A		347
-		Feb 3	57°09'	06:14'F	ů.			134	0.105 A	61 A		35.0
-		Feb 3	56:33	06'53'E	0			27	0.058 A	6.7 A		34.8
-	•	Feb 5	54*58	08-03 E	0	127		10.6				30.3
-	-	Feb 7	54°52'	07'12'E	0	· • · ·		118	0.092 A	4.7 A		33.9
-	•	Feb 8	53°56′	05°21 E	0			28	0.067 A	8.1 A		34 6
-	-	Feb 8	54°14	05-28 E	0			16.2	0.079 A	5.6 A		34 7
-	-	Feb 11	55°09	00°17'E	0			21.5	0.054 B	5.1 B		34 9
-	-	Feb 17	55*16'	06'36'E	0	16.7		127	0.100 A	5.6 A		34 1
-	-	Feb 17	55°20'	07°13'E	õ			107	0.132 A	6.1 A		33 0
North Sea/	1988	Jan 12	53°42'	06*00'F	0		53					34 0
Gauss		Jan 12	54°14'	08'23'F	ñ		31					26.4
		Jan 12	54°15'	07'30'F	ñ		37					32.6
-	-	Jan 13	55.00	08:00'F	n n		26					31.3
		901113	00 00	00 00 2	v							0.0

Table 4.4.3. (continued)

Location	Year	Date	205	Silion	Depth	•0Sr	₩Tc	.32Cs	· ²² Cs	Chernoby!	ⁱ H	Sainty
Cruise			N	E or W	iñ m	Eq.m ⁻³ B	id w-3	8q m-3	:37Cs		k5q m ⁻³	• oo
				_	<u>.</u>							
North Sea/	1988	Jan 15	51*31	03°00'E	0		44					34 3
Gauss	-	Jan 15	52'01'	04'00'E	0		4.0					30 4
-	-	Jan 15	52'30'	04°00'E	0	1	53					33 B
-	-	Jar 16	53'00'	04:30'E	0		48					31 6
-	-	Jan 13	53'56'	07°24'E	0	1	5.1					30 9
Channel/	1988	Jan 16	51*02"	01'31'E	0		4.7					35 0
Gauss	-	Jan 16	50'30'	00°00 E	0	1	1.1					35 1
-	-	Jan 17	50'14'	01 *29 W	0		0 38					35.3
-	-	Jan 17	50.04.	04°09₩	0		0.165					35 2
-	-	Jan 20	51 °00 '	06*00W	0	1	0.094					35 2
Irish Sea/	1988	Jan 21	52 * 30'	06°00'W	0	1	0.122					34 7
Gauss	-	Jan 22	54'30'	05°10'W	0		30					33 8
-	-	Jan 23	54° 24 [°]	03°46'W	0	24	8±15					31 2
-	-	Jan 23	54'00'	04°00'W	0	!	50					33 8
-	-	Jan 23	53 ° 30'	04°00'W	0		22					33 7
-	-	Jan 27	55'30'	06°30™	0		25					337
North Sea/	1988	Jan 28	58'00'	06°00'W	0	1	0 82					34 4
Gauss	-	Jan 30	58'45'	03 ' 30 W	0	07	71 ± 01					34 6
-	-	Jan 31	58°00'	01°59'E	0	C	0 48					34 7
-	-	Feb 2	57 ° 37'	01°24'E	0	C	0 46					34 6
Borkumriff	1 98 8	Oct 2	53'48 '	06'22'E	0		1 78					33 8
(Lightship)	-	Oct 30	-	-	0		33					33.4
-	-	Nov 26	-	-	0		40					33.5
-		Dec 30	-	_	0		44					33 6
-	1989	Jan 28	_	-	0		1.68					33 0
-	-	March /	-	-	0		1.04					33 4
-	-	March 31	-	-	0		3.0					340
-	-	April 30	-	-	0		20					32.8
-	-	June 3	-	-	0	•	20					32.5
-		June 27	-	-	0		1 71					32.9
		Δun 25	-		с С		1.85					56
-	-	Oct 3	-	-	õ		1 62					90
-	-	Nov 3	-	-	0		24					96
-	-	Dec 1	-	-	0		24					22 9
-	-	Dec 25	-	-	0		1.90					22 9
Elbel	1998	Oct 31	(54°00'	08°07'E)	0	:	2.2					32 8
(Lightship)	-	Nov 29	-	-	0		1.97					32 G
-	1989	March 28	-	~	0		2.8					30 7
-	-	May 2	-	-	0	:	2.1					28 2
•	-	May 16	-	-	0	:	23					
-	-	July 10	-	-	0	:	2.1					32 0
-	-	Sep 3	-		0		1.34					17 5
-	*	Sep 29	•	~	0		1.35					7 9
-		Oct 3	-	-	0		1 58					32 2
-	~	Nov 27	~	-	0		1.80					31.9

Table 4.4.3. (continued)

Location/ cruise	Year	Date	Po: N	Stion E or W	Depth in m	995 <mark>; 97</mark> Baim ⁻³ Bai	Tc ^{:37} Cs m ⁻³ Bq m ⁻³	134Cs 137Cs	Chernobyl ¹³⁷ Cs Ba m ⁻³	3µ kBq.m-3	Salimity Neo
St 413/DMU	1989	Feb 7	56:40	12'07 E	0	1.4	42				27 6
-	-	Feb 7	-	-	25	1.4	42				32.4
-	•	March 15	-	-	5	0	60				18.4
-	-	March 15	-	-	51	0.9	98				32 5
-	-	April 25	-	-	5	0.9	55				16 6
-	-	April 25	-	-	30	1.0	06				33 8
-	-	May 30	-	-	5	0.1	73				170
-	-	May 30	-	-	40	0.9	96				34 1
-	-	July 11	-	-	5	0.4	44				16 7
-	-	July 11	-	-	40	0.3	79				33 6
-	-	Aug 15	-	-	5	04	45				16 1
-	-	Aug 15	-	-	35	0.5					33.1
-	-	Sen 19	-	-	5	0	49				19.7
-	-	Sec 19	-	-	A0	0	-5 51				327
-	-	Oct 10	_	-		0.	42				20 8
-	-		-	-	10	0.4	43 NGR				200
-	-		-	-	13	0.0	196				23.1
-	-	Nov 7	-	-	5 37	0.3	40 31				33 5
St. 925/DMU	1985	Feb 14	56°08'	11*10 ⁻ E	5	0.1	78				23 7
-	-	Feb 14	-	-	25	1.0	62				28 5
~	-	March 14	-	-	5	0.4	48				14.3
-	-	March 14	-	-	38	1.0	09				29 1
-	-	April 26	-	-	5	0:	34				13 9
-	-	May 31	-	-	5	0.0	62				16 7
-	-	May 31	-	-	30	1 !	53				31.1
-	-	July 12	-	-	5	0.4	46				158
-	~	July 12	-	-	35	0.9	95				31 7
-	-	Aug 22	-	-	5	0.1	70				186
-	-	Aug 22	-	-	30	0.9	91				29.2
-	-	Oct 11	-	-	5	0.9	52				21.7
-	-	Oct 11	-	-	30	0!	57				2 9 8
-	-	Nov 9	-	-	5	0.3	39				197
-	-	Nov 9	••	-	31	03	38				32 4
St. 444/DMU	1 989	Feb 16	55°00'	13°18′E	0	0.3	32				98
-	-	March 13	-	-	5	0.2	21				82
-	-	April 28	-	-	5	0.2	25				•
-		June 2	-	-	5	0.2	23				83
-	•	June 2	-	-	30	0.2	29				9.5
-	-	July 10	-	-	5	0,1	103				82
-	-	Aug 24	-	-	5	0.2	25				84
-	-	Sep 21	-	-	5	0:	39				83
~	-	Oct 12	-	-		0.0	82 A				84
St. 1013/DMU	1989	Feb 8	57°37′	09°55'E	5	2	1				32 3
St. 1005/DMU	1989	Feb 8	5 7'48 '	10°52'E	0	0.0	97 A				31 7
St. 1004/DMU	1989	Feb 8	57*51′	09'34'E	5	0.0	50				34 0
St GF6/DMU	1989	Fed 8	57*32	11°20'E	20	1.1	53	~~			32 6
Risø-R-570								77			

Table 4.4.3. (continued)

Location.	Year	Date	Pos	ution	Depth	soSr	STc	'J'Cs	THCs	Chernobyl	H،	Salinity
cruise			N	EorW	in m	8q m-3	8q m-3	Bq m-3	137Cs	137Cs	kBq m-)	*'30
		<u> </u>						<u>_</u>		8q m-3		
St. 905/DMU	1989	Feb 7	57°12	11'40'E	4		1.04					31 0
-	-	Feb 7	-	-	40		1.11					33 2
St. 1019/DMU	1989	Feb 9	57*08	08°35'E	5		2.1					30 7
St. 1022/DMU	1989	Feb 9	56°39.	08:08.E	5		2.3					29 9
St. 1024/DMU	1989	Feb 9	56'3 9'	07°24'E	5		0.94					34 5
St. 1027/DMU	1989	Feb 9	5 6 °39.	06"18 E	5		0.56					34 8
St. 1041/DMU	1 989	Feb 10	55'44'	08:00.E	5		2.5					29 2
St. 1043/DMU	1 989	Feb 10	55:44	07°24'E	5		24					31 8
St. 1046/DMU	1989	Feb 10	55'44'	06 18 E	5		2.6					34 7
St. 1059/DMU	1989	Feb 11	55°00'	08:16'E	5		0.7 9					27 9
St. 1051/DMU	1989	Feb 11	55'00'	07° 36 °E	5		3.0					33 3
St. 1064/DMU	1989	Feb 11	55'00 '	06°27'E	5		1.47					34 6
St. 1131/DMU	1989	Feb 9	57'19'	08-30 E	5		0.86					34 6
St. 105/DMU	1 989	March 7	55°15'	15 ⁻ 59 E	5		0.104					80
-	-	March 7	-	-	80		0.54					148
Bolund	1968	Aug 17	55'42'	12:05 E	0			49	0.193	35		118
-	1989	May 31	-	-	0			46	0 153	34		14 8
Riso	1989	Aug 1	55'42'	12:05 E	0			52	spiked			15 2

Table 4.4.3. (continued)

The error term is 1 S.E. of the mean of double determinationations

*Triple determinations.

ACf. Fig. 3.2.1.2

Fig. 4.4.5. Technetium-99 in surface sea water collected in January-February 1988. (Unit: Bq m⁻³).

Fig. 4.4.6. Technetium-99 in surface sea water collected in 1988. (Unit: Bq m-3).

Fig. 4.4.7. Technetium-99 in surface sea water collected in January-February 1989. (Unit: Bq m⁻³).

Fig. 4.4.8. Technetium-99 in surface sea water from the German Bight 1988-1989. (Unit: Bq rr⁻³). Borkum Riff: 53°48'N, 06°22'E and Elbe I: 54°00'N, 08°07'E.

Fig. 4.4.9. Technetium-99 in sea water collected in 1989. (Unit: Bq m⁻³). St. 413/DMU: 56°40'N, 12°07'E St. 925/DMU: 56°08'N, 11°10'E St. 444/DMU: 55°00'N, 13°08'E

Fig. 4.4.10. Technetium-99 in sea water and Fucoids from the shore at Klint: 55°58'N, II°35'E in 1988-1989.

Fig. 4.5.1. Mean ¹³⁷Cs deposition (global fallout only) (± 1 S.E.) in Danish uncultivated soils (0-30 cm layer) collected at Tylstrup, Askov, St. Jyndevad, Tystofte, Ledreborg and Abed in 1975, 1987 and 1989, compared with the theoretical decay of ¹³⁷Cs since 1975 (t/2 = 30.5 y).

Risø-R-570

		1				Σ		Che	rnobyl 1	³⁷ Cs*	
Location		0-5 cm	0-5 cm	0-10 cm	10-20 cm	0-20 cm	1	Ð	•		Σ
							0-5 cm	0-5 cm	0-1 0 cm	10-20 cm	0-20 cm
Hokkerup	untreated	3816	2605	4023	1470	5473	3599	2255	3031	-	3031
		(0.239)	(0.220)	(0 191)							
-	treated	382 5	2685	3588	1426	5014	3551	1628	2723	113	2 836
		(0.236)	(0.154)	(0 193)	(0 020)						
Sønder Vilstrup	untreated	1507	1543	2135	745	2880	1052	1376	1439	-	1439
		(0.177)	(0.226)	(0171)							
-	treated	1451	1501	2026	667	2693	1143	1243	1298	•	1298
		(0.200)	(0.210)	(0.163)							
Gabol	untreated	2162	1972	4909	1382	6291	1675	1596	3366	257 A	3623
		(0.197)	(0.205)	(0.174)	(0.047 A)						
-	treated	1 89 4	1953	4604	1300	5904	1557	1475	3151	222	3373
		(0.209)	(0.192)	(0.174)	(0.043)						
Rangstrup	untreated	1088	775	1 76 3	1850	3613	812	544 A	800	749	1549
		(0.189)	(0.178 A)	(0 1 1 5)	(0 103)						
-	treated	9 97	732	1842	1865	3707	626	279	848	808	1656
		(0.159)	(0.096)	(0 117)	(0.110)						
Styding	untreated	2226	2011	2941	960	3901	2018	1778	2286		2 286
		(0.230)	(0.224)	(0.197)							
~	treated	2124	1905	2622	898	3520	1738	154 9	186 9		1869
		(0.208)	(0.206)	(0.181)							
Mean	untreated	2160	1781	3154	1281	4432	1831	1510	2184	201	239 9
Relative S.D.	untreated	48%	38%	42%	34%	32%	60%	42%	49%	162%	40%
Mean	treated	2058	1755	2936	1231	4168	1723	1235	1978	229	2206
Relative S.D.	treated	52%	41%	39%	38%	31%	64%	45%	42%	147%	39%

Table 4.5.1. Radiocesium in uncultivated soil collected in South-Jutland October, 18, 1988. (Unit: Bq m⁻²). (¹³⁴Cs/¹³⁷Cs)

*Calculated from ¹³⁴Cs/¹³⁷Cs assuming that this ratio was 0.55 in pure Chernobyl debris on April 26, 1986.

Fig. 4.5.2. Chernobyl ¹³⁷Cs (± 1 S.E.) in Danish uncultivated soil collected at the 10 State experimental farms 1986, 1987 and 1989, compared with the theoretical decay of ¹³⁷Cs since September 1986 (t/2 = 30.5 yr).

Fig. 4.5.3. The relative deposition of 137 Cs (Bq m⁻²) in the 0-5 cm soil layer at Nustrup in S-Jutland and Tågerup in Zealand from global fallout and from Chernobyl in 1989, as a function of distance from the hedge. The distance is given in units of the height of the hedge.

Fig. 4.5.4. Special soil sampling in South-Jutland in 1988.

					Σ	<u> </u>	- Chernot	ovi 137Cs*	
Location	0-5 cm	5-10 cm	10-20 cm	20-30 cm	0-30 cm			•	ĩ
						0-5 cm	5-10 cm	10-20 cm	0-20 cm
Tyistrup	1200	1280	490	210	3180	368			369
	(0.062)								
Kale	1800	1530	570	163	4050	921	60 B		9 81
	(0 098)	(0.007 B)							
Borris	1130	1090	1310	1290	4820	615	367		982
	(0.104)	(0.064)							
Askov	2100	2200	1920	1380	7650	1832	1632	579	4043
	(0.167)	(0 138)	(0 057)						
St. Jyndevad	1350	710	1130	720	3910	684			894
	(0.124)								
Arslev	1720	800	850	550	392 0	1387	420		1807
	(0 154)	(0.100)							
Tystofte	1020	420	590	270	2290	68 5			685
	(0.128)								
Ledreborg	490	710	1260	790	3240	362	300 A		262
	(0 142)	(0.081 A)							
Abed	560	1200	1 6 50	330	3740	328 A	329		657
	(0 112 A)	(0 052)							
Tornbygård	770	530	990	720	3010	345			346
	(0.086)								
Mean	1212	1051	1075	643	3981	775	311	58	1144
Relative S.D	44%	51 %	8 5 .	67°/-	37%	65%	159%		96%

Table 4.5.2. Radiocesium in uncultivated soil collected at the 10 State experimented	al
farms in Denmark in September 1989. (Unit: Bg m-2). (134Cs/137Cs)	

*Calculated from ¹³⁴Cs/¹³⁷Cs assuming that this ratio was 0.55 in pure Chernobyl debris on April 26, 1986

Table 4.5.3. Radiocesium in cultivated soil (0-5 cm) collected in 1989. (Unit: Bq m-2) (134Cs/137Cs)

Location	Distance from hedge	Height cf hedge	Date	¹³⁷ Cs	¹³⁴ Cs/137Cs	Chernobyl ¹³⁷ Cs	Global failout
Nustrup	$1 \times \text{height}$	6 m	April 13	4130	0.201	3825	305
(Zone IV)	6 × height	*	*	4560	0.200	4199	361
-	10 × height		-	2160	0.152	1511	649
*	15 × height	20	**	10 6 5	0.099	486	579
Tågerup	1 × height	7 m	February 13	640	0.076	212	428
(Zone VI)	6 × height	••	*	740	J.074	237	503
*	10 × height	-	-	780	0.085	29 1	489
~	15 × height	**		720	0.075	236	484

Table 4.5.4. Strontium-90 in uncultivated soil from the 10 State experimental farms in Denmark in August-September 1987. (Area: 0.04314 m^2)

	0-5 cm		5-10 cm 10-20		0 cm	0 cm 20-3		Σ0-30 cm	
	Bq kg-1 dry	Bq m⁻²	Bq kg ⁻¹ dry	ⁱ Bq m ⁻²	Bq kg-1 dry	Bq m⁻²	Bq kg- drv	¹ Bq m⁻²	Bq m⁻²
Tylstrup	4.1 ± 0.6	172 ± 2 6	5.4	279	4.0	412	1.37	122	1010
Kalø	4.5	178	4.8	256	3.1	300	1.72	222	955
Borris	1.87	110	1.81	81	2.3	257	2.3	283	
Askov	3.8	248	2.9	133	3.4	183	2.6	172	736
St. Jyndevad	1.53*	82*	0.80*	43*	0.33*	36*	0.31*	32*	193
Årslev	3. 9	190	3.1	166	3.5	270	3.1	157	783
Tystofte	2.8	141	2.5	170	3.0	375	1.7	173	840
Ledreborg	2.5	147	2.2	138	2.4	291	2.5	285	861
Abed	2.3 ± 0.2	90 ± 10	2.7	113	3.7	192	2.9	180	584
Tornbygård	1.56	105	1.62	83	2.2	208	2.1	179	575
Arithmetic									
mean	2.89	146	2.78	146	2.79	250	2 06	180	726
Relative S.D.	39%	36%	50%	52%	38%	43%	40%	43%	34%
Bolund	5.7	226	5.9	305	4.2	490	1.04	105	1126
*From Table 4	.5.5.								

Depth	St. Jyn	devad	 Skyde	banen	Area
in cm	Bq kg-1 dry	Bq m⁻²	Bq kg ⁻¹ dry	Bq m-2	m²
0-5	1.53	82	2.8	121	0.0800
5-10	0.80	43	2.6	152	0.0800
10-15	0.33	17.5	3.2	195	0.0800
20	0.33	37	1.74	290	0.03456
30	0.29	28	3.5	6 10	0.03456
40	0.080	7.6	0.150	27	0.03456
50	0.050	4.6			0.03456
60	0.043 A	4.2			0.03456
70	0.054	5.4			0.03456
80	0.035	3.5			0.03456
90	0.022	2.3			0.03456
100	0.024	2.5			0.03456
		Σ 240		Σ 1400	

Table 4.5.5. Strontium-90 in uncultivated soil from St. Jyndevad and Skydebanen in Denmark in April 1987

Table 4.6.1.A. Radiocesium in marine sediments collected in Roskilde Fjord on August 17, 1988 at Bolund (55°42'N 12°05'E). (Area: 0.0145 m²)

Layer	134	₄Cs	13	⁷ Cs	Chernobyl	Chernobyl
in cm	Ba kg-1	Bq m−2	Bq kg⁻¹	Bq m⁻²	137Cs	¹³⁷ Cs
<u> </u>	ary		ary		Bq m-2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0-3	8.9	79	67	680	296	44
3-6	4.8	38	35	280	142	51
6-9	2.5	23	18.0	165	86	52
9-12	B.D.L.	B.D.L.	7.9	61	-	0
12-15	0.6 A	4.2 A	4 .2 A	32 A	16 A	50
Σ 0-15		144		1220	540	44

Table 4.6.!.B. Radiocesium in marine sediments collected in Roskilde Fjord on May 31, 1989 at Bolund (55°42'N 12°05'E). (Area: 0.0145 m²)

Layer	134	Cs	1370	s	Chernobyl	Chernobyl
in cm	n cm Bq kg [.] 1 Bq m ⁻²		Ba kg-1 Ba m-2		137Cs	¹³⁷ Cs
	dry		dry		Bq m-2	%
0-3	5.1	31	55	330	148	45
3-6	2.4	19 .1	38	300	91	30
6-9	1.36	7.3	27	140	35	25
9-12	B.D.L.	B.D.L.	13.5	136	-	0
12-15	B.D.L.	B.D.L.	2.6	44	-	0
Σ 0-15		57	<u> </u>	950	274	29

Fig. 4.6. Roskilde fjord.

Layer in cm	90Sr Bq kg ⁻¹ dry	Bq m ⁻²
0-3	0.37	2.6
3-6	0.30	4.4
6-9	0.32	4.1
9 -15	0.29	5.0
Σ 0-15		16.1

Table 4.6.2. Strontium-90 in marine sediments collected in Roskilde Fjord on May 7, 1987 at Bolund (55°42'N 12°05'E). (Area: 0.0145 m²)

5. Danish Food and Various Vegetation

by A. Aarkrog

5.1. Cows Milk

Dried milk from seven locations (Figure 5.1.1) was collected monthly and analysed for ⁹⁰Sr (Tables 5.1.1.A & B) and for ¹³⁷Cs (Tables 5.1.3.A & B). Since 1983 the ⁹⁰Sr concentrations in Danish milk have decayed with a halflife of 10 years; the global fallout ¹³⁷Cs has shown a halflife of 6 years and that of Chernobyl ¹³⁷Cs of 1.1 years (1987-1989). Tables 5.1.5.A & B show that the contribution of Chernobyl ¹³⁷Cs in Danish milk decreased from 84% in 1988 to 74% in 1989 (in 1987 the percentage was 94).

Consumers milk was collected in June 1988, the mean ratio between 137 Cs in fresh milk and that in dried milk (Table 5.1.3.A) was $1.24 \pm 0.81 (\pm 1 \text{ S.D.}; n = 7)$. Jutland showed higher levels in dried milk than in consumers milk whereas it was opposite in the islands.

5.2. Other Milk Products

Cheese was collected in 1988 and in 1989 and analysed for ⁹⁰Sr and ¹³⁷Cs (Table 5.2.2). The cheese levels (in particular ¹³⁷Cs) were higher than the corresponding country means in dried milk, probably because the cheese was prod .ced of older milk and of milk preferentially coming from the western part of the country.

5.3. Cereal Grain

Grain samples collected at the 10 State experimental farms were as previously analysed for ⁹⁰Sr and ¹³⁷Cs. Figures 5.3.1-5.3.4 show the ⁹⁰Sr levels since measurements began in 1959 and Figures 5.3.5-5.3.8 show the corresponding ¹³⁷Cs concentrations for the period 1962-89. The effective halflife of ⁹⁰Sr in Danish grain has been 19-15 years since 1983.

The ¹³⁴Cs/¹³⁷Cs in grain (Tables 5.3.5.A & B) shows the contribution of Chernobyl ¹³⁷Cs in 1987: 78% of the total ¹³⁷Cs in Danish grain came from Chernobyl, in 1988: 81% and in 1989: 67%. The effective halflife of global fallout of ¹³⁷Cs has since 1983 been 12 years (for oats 16 years) and that of Chernobyl ¹³⁷Cs has since 1987 been 5 years (shorter for barley and oats, longer for wheat and rye).

The predictions of the ¹³⁷Cs levels in grain from 1988 and 1989 based upon revised models, including root uptake are summarized in Appendix C, cf. also Arbendix A. It appears that the observed values in 1988 in general were lower than those predicted while the opposite was the case in 1989.

As has been suggested earlier (Aarkrog 1989) this may reflect that the resuspended ¹³⁷Cs becomes increasingly more available as time goes by.

5.4. Bread

The bread levels in 1988 as well as in 1989 were in general higher than expected from Danish grain measurements (Tables 5.4.3.A & B). This may suggest import of grain from areas in Europe which was more contaminated by Chernobyl debris than Denmark.

5.5. Potatoes

The effective halflife of ⁹⁰Sr in potatoes in Denmark has since 1983 been about 20 years, somewhat longer in the Islands than in Jutland (cf. Figures 5.5.1-5.5.2). The ¹³⁷Cs concentrations have shown greater variability partly due to the Chernobyl accident (Figures 5.5.3-5.5.4).

5.6. Vegetables and Fruit

Peas show 3-4 times higher ¹³⁷Cs concentrations than cabbage and carrots. The ¹³⁷Cs levels in vegetables and fruit did not change significantly from 1988 to 1989.

5.7. Meat, Fish, Eggs and Various Vegetable Foodstuffs

5.7.1. Meat

During 1988 and 1989 82% of the ¹³⁷Cs in Danish beef came from Chernobyl, this activity decayed with an effective halflife of 3-4 years which is shorter than that of global fallout. The ¹³⁷Cs concentrations in pork were one third to one half of those in beef.

5.7.2. Fish

Fish from the inner Danish waters contained 2-4 times more ¹³⁷Cs than fish from the North Sea. Fish from the Baltic Sea showed 3-4 times higher levels than fish from the inner Danish waters. The ¹³⁷Cs concentrations in 1989 were lower than those in '988 in fish from the North Sea, while no difference was observed for fish from the inner Danish waters.

The contribution from Chernobyl 10 the total ¹³⁷Cs concentration in fish was 72% in the inner waters and 46% .7 the North Sea in 1988 and 1989. Fish from the Baltic Sea showed a percentage of 91% in 1989.

Eels from a location in the Baltic Sea (Oscarshamn) has been meassured for ¹³⁷Cs since the Chernobyl accident (Figure 5.7.2). The maximum was reached at the beginning of 1988.

5.7.3. Eggs

The ⁹⁰Sr concentrations in eggs in 1988 and 1989 were similar to those in 1987, i.e. mean ≤ 0.01 Bq kg⁻¹. The ¹³⁷Cs levels were an order of magnitude higher.

5.7.4. Various Vegetable Foods

The levels in rize, oats, banana, orange, coffee and tea in 1988 were similar (within a factor of 2-3) to those observed at the last sampling in 1986; but hazel nuts contained far less ¹³⁷Cs in 1988 (about two orders of magnitude less).

5.8. Total Diet (Consumption Data)

The ⁹⁰Sr intake with total Danish diet has since 1983 decreased with a halflife corresponding to the radiological halflife of ⁹⁰Sr, i.e. 28.5 years. The daily pro capite intake of Ca with the Danish diet is now 1.17 g Ca corresponding to 428 g per year.

The global fallout ¹³⁷Cs in the diet (23% of the total ¹³⁷Cs in 1988 and 1989) decayed with an effective halflife of approx. 5 years whereas Chernobyl ¹³⁷Cs (77%) decreased with 3 years halflife. The determination of the decay of the global fallout is encumbered with uncertainties due to the contribution of Sellafield radiocesium from fish consumption.

5.9. Total Diet (Production Data)

The ⁹⁰Sr intake with total diet calculated from the concentrations in the various diet constituents may be compared with the measured levels in total diet (consumption data). In 1988 the production data were 0.14 Bq ⁹⁰Sr day⁻¹ cap⁻¹ and the consumption figure was 0.16. In 1989 the data were 0.12 and 0.15, respectively. The corresponding figures for ¹³⁷Cs were in 1988 0.40 and 0.46, respectively, and in 1989 0.34 and 0.33 Bq ¹³⁷Cs day⁻¹ cap⁻¹, respectively.

5.10. Grass

5.10.1. Grass from Zealand

Strontium-90 in grass collected around Risø has since 1987 decayed with an effective halflife of 5 years and ¹³⁷Cs with about 1.5 years halflife. These figures are based on monthly samples collected throughout the year.

5.10.2. Grass Collected Countrywide

Since September 1986 the ¹³⁷Cs levels in grass collected during the summer half year at the 10 State experimental farms has decayed with a halflife of a little less than 1 year.

5.11. Sea Plants

5.11.1. Sea Plants from Roskilde Fjord

The 90 Sr concentrations have since 1987 decayed with a halflife of about 2 years and 137 Cs with 2.5 years.

5.11.2. Sea Plants from Inner Danish Waters

An anova of the ¹³⁷Cs data on Fucus samples collected monthly 1987-1989 at Strøby Egede, Nysted, Mullerup/Reersø, Gilleleje/Nakkehoved and Klint show no significant interactions between year, month and location. But the main effects are all highly significant. The maximum levels are occurring in June. the levels in 1988 and 1989 are higher than those in 1987 and the concentrations are higher in Fucus from the southern stations close to the Baltic Sea (i.e. Strøby Egede and Nysted) than in the northern Cattegat stations (Gilleleje and Klint).

The observed mean ratios between Bq kg⁻¹ d.w. Fucus and Bq l⁻¹ sea water for ⁹⁹Tc were $1.05 \cdot 10^5$ for Fucus vesiculosus and $0.88 \cdot 10^5$ for Fucus serratus both sampled monthly at Klint in 1988 and 1989 (cf. also Fig. 4.4.10). In 1988 the relative variations of the ⁹⁹Tc concentrations in sea weed were two times *L*:gher in 1989 although the variation of the water concentrations was the same for the two years. This may indicate a recall by the Fucus of higher water concentrations of ⁹⁹Tc in 1987. The relative variation of the ⁶⁰Co concentrations in sea weed did not differ for the two years.

5.12. Lichen and Moss

In Fig. 5.12 five years observations of ¹³⁷Cs in Danish lichen are shown (1986-1990). It appears that the environmental halflife of ¹³⁷Cs varies between 1.5 and 4 years for the various locations. The halflife of the Chernobyl debris was shorter than that of global fallout ¹³⁷Cs.

5.13. Mushrooms from a Forest in NE-Zealand

In cooperation with the University of Roskilde a study of radiocesium in mushrooms was carried out in September-October 1989. The samples were collected from a spruce forest and a beech wood in Gribskov, NE-Zealand by three students from the University, and the samples were analysed at Risø. The results have been published in a Danish report from the University of Roskilde (*Roos* et al. 1990).

The report concludes that for the same mushroom species and the same deposition of fallout, the spruce forest showed higher levels than the beech wood. Common yellow mussula is well suited as a bioindicator for radiocesium. A significant part of the ¹³⁷Cs in mushrooms comes from global fallout, esticially in the honey fugus where 35-85% was old fallout. In common yellow nussula about 45% was global fallout, but in clouded agaric nearly all ¹³⁷Cs was from Chernobyl. The environmental halflife of ¹³⁷Cs in most mushrooms is apparently long. The observed ratio between the ¹³⁷Cs concentrations in the mushrooms and those in the upper 10 cm soil layer varied between 3 and 35 depending upon mushroom species and forest type. Chernobyl radiocesium showed a higher (about 3 times) transfer than global fallout cesium.

.	Stront	ium-90	Cesium-137		
Sample type and unit	1988	1989	1988	1989	
Countrywide dried milk, Bq l ⁻¹ fresh	0.060	0.056	0.196	0.133	
Danish cheese, Bq kg ⁻¹	0.41	0.44	0.135	0.153	
Countrywide rye, Bq kg ⁻¹	0.32	0.28	0.13	0.093	
Countrywide barley, Bq kg-1	0.33	0.34	0.082	0.052	
Countrywide wheat, Bq kg-1	0.29	0.26	0.066	0.051	
Country wide oats, Bq kg-1	0.40	0.57	0.195	0.164	
Countrywide rye bread, Bq kg-1	0.27	0.20	0.24	0.25	
Countrywide white bread, Bq kg-1	0.125	0.109	0.088	0.036	
Countrywide potatoes, Bq kg ⁻¹	0.035	0.032	0.076	0.078	
Countrywide cabbage, Bq kg-1	0.23	0.21	0.034	0.027	
Countrywide carrot, Bq kg-1	0.28	0.17	0.026	0.033	
Countrywide peas, Bq kg ⁻¹	0.13	0.14	0.122	0.100	
Countrywide apples, Bq kg-1	0.037	0.017	0.053	0.058	
Country intake † with diet, Bq day-1 cap-1	0.161	0.150	0.46	0.33	
Countrywide beef, Bq kg ⁻¹	0.008	0.01 3	1.06	0.97	
Countrywide pork, Bq kg-1	0.007*	0.001*	0.41	0.42*	
Countrywide" plaice, Bq kg-1	0.018	0.020	2.6	1.3	
Countrywide" herring, Bq kg-1	0.0033	0.0040	2.2	1.6	
Countrywide" cod, Bq kg-1	0.018	0.0145	4.1	3.7	
Countrywide grass, Bq kg-1 fresh	•	-	0.28	0.18	

Table 5. Geometric means of Strontium-90 and Cesium-137 levels in Danish environmental biological samples collected in 1988 and 1989

[†]Mean of June and December sampling

*Copenhagen samples only

*Mean of inner Danish water and North Sea samples.

Fig. 5.1.1. Dried milk sampling locations in Denmark.

Month	Hjørring	Randers	Videbæk	Abenrå	Nyborg	Ringsted	Nakskov	Geometric mean	Arithmetic mean
Jan-April	53	59±1	66±6	76± 1	35±3	39±4	58	53	55
May-June	41±3	38	68	70	33	40	38	45	47
July-Oct	54 ± 2	52	59	68	36	39	35	48	49
Nov-Dec	54±2	61 ± 0	63±2	71 ± 3	57 ± 1	44±2	38±1	54	55
1988: Geometric mean*	51	53	64	71	38	40	43	50	
1988: Arithmetic mean*	51	53	64	71	39	40			52

Table 5.1.1.A. Strontium-90 in dried milk in 1988. (Unit: Bq (kg Ca)-1)

*The data were weighted with the number of months when calculating the mean.

As 1 cubic meter of milk contains 1.2 kg Ca, the mean ⁹⁰Sr content in Danish milk produced in 1988 was 62 8q m⁻³ (or 0.062 Bq ⁹⁰Sr I⁻¹).

Month	Hjørring	Randers	Videbæk	Åbenrå	Nyborg	Ringsted	Nakskov	Geometric mean	Arithmetic mean
Jan-April	56	56	62	62	31	45	37	48	50
May-June	51	51	63	63	34	48	32	47	49
July-Sep	52	57	64	58	42	40	34	48	50
Oct-Dec	46	46	52	48	33	42	34	42	43
1989: Geometric mean*	51	53	60	57	34	43	35	46	
1989: Arithmetic mean*	52	53	60	58	35	43	35		48

Table 5.1.1.B. Strontium-90 in dried milk in 1989. (Unit: Bq (kg Ca)-1)

*The data were weighted with the number of months when calculating the mean.

As 1 cubic meter of milk contains 1.2 kg Ca, the mean ⁹⁰Sr content in Danish milk produced in 1989 was 58 Bq m⁻³ (or 0.058 Bq ⁹⁰Sr l⁻¹).

Table 5.1.2.A. Analysis of variance of In Bq ⁹⁰Sr (hg Ca)⁻¹ in Danish dried milk in 1988 (from Table 5.1.1.A)

Variation	SSD	f	s²	v ²	Р
Between months*	0.226	3	0.075	2.332	-
Between locations	1.904	6	0.317	9.824	> 99.55%
Month × loc.	0.581	18	0.032	5.427	> 99.5 %
Remainder	0.083	14	0.006		

*Jan-April, May-June, July-Oct, Nov-Dec.

Table 5.1.2.B. Analysis of variance of In Bq ⁹⁰Sr (kg Ca)⁻¹ in Danish dried milk in 1989 (from Table 5.1.1.B)

Variation	SSD	f	s²	v²	Р
Between months*	0.083	3	0.028	3.785	-
Between locations	1.300	6	0.217	29.596	> 99.95%
Month × loc.	0.132	18	0.007		

*Jan-April, May-June, July-Sep, Oct-Dec.

Table 5.1.?.A. Cesium-137 in Danish dried milk in 1988. (Unit: Bq 137 Cs (kg K)⁻¹)

Month	Hjørring	Randers	Videbæk	Åbenrå	Nyborg	Ringsted	Nakskov	Geometric mean	Arithmetic mean
Jan	210	196	450	190	69	74	27	125	174
Feb	260	260	290	590	168	38	29	155	230
March	115	211	(310)	230	88	63	33	118	151
April	91	600	560	240	89	8 9	31	151	240
May	138	177	380	230	99	87	27	126	163
June	136	140	430	290	82	53	42	123	168
July	210	145	310	320	73	41	32	116	161
Aug	174	195	340	380	74	36	27	118	175
Sep	137	230	310	320	5 9	30	44	114	161
Oct	220	164	154	210	69	32	40	100	126
Nov	117	154	230	330	98	60	18.5	106	145
Dec	89	128	193	179	67	37	21	80	102
1988: Geometric mean	149	197	310	280	83	50	30	118	
1988: Arithmetic									
mean	158	220	330	290	86	53	31		167

As 1 cubic meter of milk contains approx. 1.66 kg K, the mean 137 Cs content in Danish milk produced in 1988 was estimated at 280 Bq m⁻³ (or 0.28 Bq 137 Cs I⁻¹).

Figures in brackets were calculated from VAR3 (Vestergaord 1964).

Fig. S.1.2. Predicted (curve) and observed ⁹⁰Sr/Ca levels in dried milk from Denmark (May 1962 - April 1990) (milk year).

Fig. 5.1.3. Predicted (curve) and observed ¹³⁷Cs/K levels in dried milk from Denmark (May 1962 - April 1990) (milk year).

Month	Hjørning	Randers	Videbæł	Åbenrå	Nyborg	Ringsted	Nakskov	Geometric mean	Arithmetic mean
Jan	140	151	300	1 49	54	37	23	88	121
Feb	113	151	182	196	44	9 5	22	92	115
March	67	240	230	230	38	40	21	83	123
April	73	113	155	250	42	51	25	78	101
May	99	90	190	17 9	59	39	24	77	97
June	86	1 97	240	191	57	56	22	92	121
July	137	290	290	173	59	64	28	111	148
Aug	153	194	176	130	66	76	31	101	118
Sep	93	230	270	144	51	38	24	87	121
Oct	71	96	156	(107)	59	27	18.3	61	76
Nov	79	79	167	73	51	31	19.2	58	71
Dec	59	76	164	43	73	34	18.5	55	67
1989: Geometric mean	93	144	200	141	54	46	23	80	
1989: Arithmetic mean	99	159	210	155	55		23		107

Table 5.1.3.B. Cesium-137 in Danish dried milk in 1989. (Unit: Bq 13"Cs (bg K)-1)

As 1 cubic meter of milk contains approx 1.66 kg K, the mean ¹³⁷Cs content in Danish milk produced in 1989 was estimated at 178 Bg m⁻³ (or 0.178 Bg ¹³⁷Cs l⁻¹).

igures in brackets were calculated from VAR3 (Vestergaard 1964).

Table 5.1.4.A. Analysis of variance of ln Bq ¹³⁷Cs (kg K)⁻¹ in Danish dried milk in 1988 (from Table 5.1.3.A) (milk year May 1988 - April 1989)

Variation	SSD	f	s²	v²	Р
Between months Between locations Remainder	2.363 53.247 5.505	11 6 66	0.215 8.874 0.083	2.575 106.398	> 99% > 99.95%

Table 5.1.4.B. Analysis of variance of In Bq ¹³⁷Cs (kg K)⁻¹ in Danish dried milk in 1989 (from Table 5.1.3.B) (milk year May 1989 - April 1990)

SSD	f	s²	v²	Ρ
4.132 36.817	11 6	0.376	4.658 76.088	> 99.95% > 99.95%
	SSD 4.132 36.817 5.242	SSD f 4.132 11 36.817 6 5.242 65	SSD f s ² 4.132 11 0.376 36.817 6 6.136 5.242 65 0.081	SSD f s ² v ² 4.132 11 0.376 4.658 36.817 6 6.136 76.088 5.242 65 0.081 6

Month	Hjørning	Randers	Videbæk	Åbenså	Nyborg	Rungsted	Nakskov	Mean = 1 S D	Theoretical TaiCs/ ⁴³⁷ Cs
jan	0 26	0 26	0.30	0 31	0 27	0 31		0 29 = 0 02	0 32
Feb	0 30	0 30	0.27	0 30	0 26	0 25		0 28 = 0 02	0 31
March	0.31	0.27	-	0.29	0 27	0 24	0.22	0 27 = 0 03	0.30
April	0 25	0 26	0 29	C 28	0 22	0 20		0 25 = 0 04	C 30
May	0 21	0.25	0.27	0 27	0 22	C 29		0 25 ± 0 03	0.29
June	0 21	0 24	0.25	0 26	0 27	0 25	0.25	0 25 = 0 02	0.28
July	0 22	0.21	0.23	0 24	0 20	0 21	0.27	0 22 = 0 02	0.27
Aug	0 23	0.21	0.24	0 23	0188		0.197	0 22 = 0 02	0 27
Sept	0 176	0 196	0.22	0.25	0 1 77	0 155	0.165	0 191 = 0 03	0.26
Oct	0 22	0.27	0 20	0 25	0188		0.152	0 21 = 0.0-	0 25
Nov	0 22	0.23	0.22	0 24	0 193	0185		0 22 ± 0 02	0.25
Dec	0 1 79	0.155	0.22	0.22	0 199	0110		0 180 = 0 04	0 24
Observe	tt""2""	°Cs	- 084-6	06/15/0	N = 17	······································			
Theoret	cal : HCs/	³⁷ Cs							

Table 5.1.5.4. Radiocesium: 134Cs/137Cs in Danish dried milk in 1988

Table 5.1.5.B. Radiocesium: 134Cs/137Cs in Danish dried milk in 1989

Month	Hjorning	Randers	Videbæk	Åbenrä	Nyborg	Aingsted	Nakskov	Mean - 15 D	Theoretical
									- 03 - 03
Jan	0 190	0.20	0.192	0.183		0 171	0 147 B	0 181 = 0 02	0 23
Feb	0 197	0 194	0185	0.197	0 1 22 A	0 20		0 183 = 0 03	0 23
March	0 173 A	0.22	0.189	0.178	024 A	0 148		0 190 ± 0 03	0 22
Apni	0 147 A	0.187	0164	0.195	0 161 A	0 142 B	0 170 A	0 167 = 0 02	0 22
May	0 147	0 172	0 1 7 1	0 185	0 195	0 161 A		0 172 = 0 02	0 21
June	0 093 B	0.147	0.168	0 165	0137A	0 182 A		0 149 = 0 03	0 21
July	0 150 A	0.167	0.149	0.192	0 098 B	0 137 A		0 149 = 0 03	0 20
Aug	0.134	0 152 A	0.142	0.161	0118	0 172		0.146 = 0 02	0 196
Sept	0 089 A	0.150	0.142	0.125 A	0 122 A	0 127 B		0 126 = 0 02	0 1 90
Oct	0 132 A	0 159 A	0146 A		0 109 A	0 159 8		0 141 = 0 02	0186
Nov	0 123 B	0.119 A	0134	0.115	0177 A			0133=003	0 181
Dec	0 009 B	0.C93 A	0.128	0.087 B	0 1 05 A	0 046 8	01498	0 088 = 0 05	0 1 76
Observ	ed 134Cs/1	J'Cs	- 0.74 -	0.00/1 6	0 N = 1			^	
Theore	tical 134Cs.	/ ¹³⁷ Cs	= 0.741	V V3 (1 3.	U., N = 1/	()			

Table 5.2.1. Radiocesium in consumers milk collected in the 8 zones and Copenhagen in June 1988 (cf. Fig. 5.4.1). (Theoretical ¹³⁴Cs^{/137}Cs: 0.28)

Loca	ation	Bq ¹³⁷ Cs (kg K) ⁻¹	Bq : 37Cs -1	134Cs 137Cs
i :	North Jutland	108	0.164	_
ll:	East Juliand	113	0.168	0.26
IA:	West Jutland	260	0.39	0.25
IV:	South Jutland	230	0.36	0.25
V :	Funen	240	0.35	-
VI:	Zealand	82	0.120	0.28
VII :	Lolland-Falster	52	0.083	0.27
V!!:	Bornholm	32	0.048	0.21
1966	B: Geometric mean	112	0.169	0.25
1988	B: Arithmetic mean	141	0.21	J.25
Сор	enhagen	70	0.109	0.25

Table 5.2 2. Strontium-90 and radiocesium in Danish cheese collected countrywide in the 8 zones in 1988 and 1989

Date	8q ⁹⁰ Sr kg ¹	Bq ⁹⁰ Sr (kg Ca) 1	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-1	134Cs 137Cs	Theoretical - 34Cs/137Cs
Dec 1988	0.41	56	0.135	177	0.188 A	0.24
June 1989	0.44	58	0.153	198	-	0.21

Location	Rye	Ba	riev	W	reat	Oats	Triticale
	Winter	Spring	Wister	Winter	Spring	Spring	
Tylstrup	0.36	0.43	0.42	0.90		0.51	
Kale	0.21	0.35		0.27	0.30	0.44	
Borns	0.31	0.49	0.42	0.21	0.86	0.67	0 33
Askov	0.78	0.53		0 49			
St. Jyndevad	0.50	0.60		0.38		0.41	
Funen	0.32	0.24	0.83	0.32		0.52	
Tystofte	0.20	0.25	0.32	0.116	0.31	0.45	
Ledreborg	0.25	0.38	0.33	0.42	0.46	0.27	
Abed	0.184	0.115	0.114	0.154	0.162	0.168	
Bornholm	0.45	0.23	0.22	0.082	0.25		0.152
							
Geometric							
mean	0.32	0.33	0.33	0.27	0.34	0.40	0.23
1968 :							
Anthmetic							
mean	0.36	0.36	0.38	0.33	0.39	0.43	0.24

Teble 5.3.1.A. Strontium-90 in Danish grain in 1989. (Unit: Bq hg-1)

Table 5.3.1.B. Strontium-90 in Danish grain in 1989. (Unit: Bq hg-1)

Location	Rye Winter	Ba	rley	Wr	. Oats	
		Spril.g	Winter	Winter	Spring	Spring
Jutiand	0.40	0.46	0.43	0.27	0.86	0.60
The !slands	0.20	0.27	0.27	0.090	0.21	0.54
1989: Geometric mean	0.28	0.35	0.34	0.155	0.43	0.57
1989: Arithmetic mean	0.30	0.36	0.35	0.1 78	0.54	0.57

Location	Rye	Ba	riev	W	reat	_ Oats Spring	Triticale
	Winter	Spring	Winter	Winter	Spring		
Tylstrup	1160	1400	900	1870		700	
Kale	690	860		96 0	750	540	
Borns	990	1290	930	1030	2200	850	960
Askow	2100	1250		1380			
St. Jyndevad	1550	1350		1400		640	
Funen	710	660	1770	970		700	
Tystofte	600	630	800	440	1000	640	
Ledreborg	610	1000	670	1320	1120	320	
Abed	560	320	250	390	560	240	
Bomholm	1230	620	450	360	760		470
1988:				_			
Geometric							
mean	920	860	710	880	9 70	540	670
1986:							
Anthmetic							
mean	1020	940	830	1010	1070	580	720

Table 5.3.2.4. Strontium-90 in Danish grain in 1988. (Unit: Bq (kg Ca)-1)

Table 5.3.2.B. Strontium-90 in Danish grain in 1989. (Unit: Bq (hg Ca)-1)

Location	Rye	8a	rley	Wr	1691	Oats
	Winter	Spring	Winter	Winter	Spring	Spring
Jutiand	1150	1120	870	780	2100	760
The Islands	470	560	510	310	480	560
1989: Geometric mean	740	790	670	490	990	650
1989: Arithmetic mean	810	840	690	550	1270	660

Table 5.3.3.4. Analysis of variance of In Be ¹⁰Sr hg⁻¹ in grain in 1988 (from Table 5.3.1.4)

Variation	SSD	f	\$ ²	v²	Ρ
Between species	0.362	3	0.121	0.96	-
Between locations	8.12	9	0.902	7.16	> 99.95%
Spec. × ioc.	3.15	25	0.126	0 57	-
Remainder	2.89	13	0.272		

Table 5.3.4.A. Analysis of variance of In Bq ⁹⁰Sr (kg Ca)⁻¹ in grain in 1988 (from Table 5.3.2.A)

Variation	SSD	f	\$ ²	v ²	Ρ
Between species	1.95	3	0.650	7.09	> 99.5%
Between locations	7.73	9	0.865	9.44	> 99.95%
Spec. × loc.	2.29	25	0.092	0.64	-
Remainder	1.857	13	0.143		

Table 5.3.3.B. Analysis of variance of In Bq ⁹⁰Sr hg⁻¹ in grain in 1989 (from Table 5.3.1.B)

Variation	SSD	f	s²	v²	Ρ
Between species	0.916	3	0.305	1.368	
Between locations	1.549	1	1.549	6.946	> 95%
Remainder + (spec × loc)	1.558	7	0.223		

Table S.3.4.B. Analysis of variance of In Bq ⁹⁰Sr (hg Ca)⁻¹ in grain in 1989 (from Table 5.3.2.B)

Variation	SSD	f	s²	د ر	Ρ
Between species	0.020	3	0.007	0.054	-
Between locations	1.935	1	1.935	15.000	> 99%
Remainder + (spec × loc)	0.905	7	0.129		

Fig. 5.3.1. Strontium-90 in :ye col!"cted in Denmark in 1959-1989. (Unit: Bq kg ⁻¹).

Fig. 5.3.2 Strontium-90 in barley collected in Denmark in 1959-1989. (Unit: Bq kg -1).

Risø-R-570

Fig. 5.3.3. Strontium-90 in wheat collected in Denmark in 1959-1989. (Unit: Bq kg⁻¹).

Fig. 5.3.4. Strontium-90 in oats collected in Denmark in 1959-1989. (Unit: Bq kg⁻¹).

Location	Rve	Barley		V4	neat	Oats	Triticale	
	Winter	Spring	Winter	Winter	Spring	Spring		
Tylstrup	0.116 (0.18 A)	0.057	0.080	0.131		0.24		
Kalo	0.143	0.29 (0.16 A)		0.080	0.063	0.49 (C.12 A)		
Borns	0.108 (0.28 A)	0.122	0.075	0.140 (0.21 B)	0.130 (0.38)	0.28 (0.14 B)	0.172 (0.19 A)	
Askov	0.74 (0.22)	0.82 (0.22)		0.198 (0.23 A)				
St. Jyndevad	0.26 (0.25 A)	0.40		0.22 (0.25 A)		1.02 (0.11 A)		
Funen	0.073	0.049	0.28 (0.28)	0.080 (0.28 B)		0.24 (0.22)		
Tystofte	0.039 A	0.034 B	0.050	0 024 B	0.022 B	0.084		
Ledreborg	0.067 (0.22 B)	0.052	0.055	0.050 A	0.126	0 061		
Abed	0.092 (0.27 A)	0.034 B	0.033 A	0.025 A	0.027 A	0.051 A		
Bornholm	0.22 (0.13)	0.034 B	0.036 A	0.029 A	0.052		0.061 A	
1988:								
Geometric mean	0.130	0.096	0.066	0.073	0.057	0.195	0.102	
1988: Arithmetic			- <u></u>	<u></u>				
mean	0.186	0.189	0.087	0.097	0.070	0.31	0.117	

Table 5.3.5.A. Radiocesium in Danish grain in 1988. (Unit: Bq kg⁻¹)

Location	Rve _	Barley		Wh	eat	Oats	Triticale	
	Winter	Spring	Winter	Winter Spring		Spring		
Tyistrup	0.142	0.058	0.082			0 27		
	(0.135 A)					(0.112)		
Kalø	0.153	0.085	0 026 B	0.0195 B		0.136		
Borris	0.120	0.145	0.042 A	0.139	0.192	0.31	0.127	
	(0.114 A)	(0.068 A)			(0.099 A)	(0.144 A)		
Askov	0.53	0.151	0.131	0.27	0.51	0.39		
	(0.156)	(0.555 A)		(0.080 B)	(0.196)	(0.151)		
St. Jyndevad	0.24	0.165	0.089	0.25		1.06		
	(0.125 A)			(0.165)		(0.118)		
Funen	0.087	0.50		0.040 A		0.30		
		(0.142)				(0.140)		
Tystofte	0.028 B	0.0131 B	0.0154 B	0.0111 B	0.027 A	0.060		
Ledreborg	0.026 B	0.027 A		0.021 B	0.039 A	0.084		
Abed		0.0150 B	0.024 A	0.021 A	0.036 A	0.031 A		
				(0.122 B)				
Bornholm	0.024 A	0.0181 A	0.025 B	0.0133 B	0.026 A	0.063	0.035 A	
1 989 :								
Geometric								
mean	0.093	0.062	0.042	0.043	0.068	0.164	0.066	
1989: Arithmetic								
mean	0.151	0.117	0.054	0.087	0.139	0.27	0.081	
In brackets th	e 134Cs/137Cs	s are shown	<u>, , , , , , , , , , , , , , , , , , , </u>					

Table 5.3.5.B. Radiocesium in Danish grain in 1989. (Unit: Bq kg-1)

Location	Rye	Barley		Wh	eat	Oats	Triticale	
<u> </u>	Winter	Spring	Winter	Winter	Spring	Spring		
Tylstrup	28	13.0	22	27		67		
Kalø	33	6 9		20	16.1	134		
Borris	26	31	23	40	34	85	36	
Askov	18 9	198		52				
St. Jyndevad	60	9 3		57		270		
Funen	16.9	13.4	85	22		54		
Tystofte	8.8 A	8.5 B	13.2	6.4 B	5.5 B	19.0		
Ledreborg	17.3	12.5	13.5	14.2 A	35	14.9		
Abed	23	7.0 B	8 .8 A	5.7 A	6.8 A	13.2 A		
Bornholm	44	6.0 B	9.3 A	7.3 A	11.5		12.1 A	
1988:								
Geometric								
mean	31	22	18.0	18.7	14.2	50	21	
1988:								
Arithmetic								
mean	45	45	25	25	18.0	82	24	

Table 5.3.6.A. Cesium-137 in Danish grain in 1988. (Unit: Bq (kg K)-1)

Table 5.3.6.B. Cesium-137 in Danish grain in 1989. (Unit: Bq (kg K)-1)

Location	Bve	Barley		Wh	eat	Oats	Triticale	
	Winter	Spring	Winter	Winter	Spring	Spring		
Tylstrup	34	14.8	19.2			73		
Kale	34	23	5.7 B	4.6 B		29		
Borris	2 7	47	10.5 A	37	57	93	27	
Askov	127	40	35	74	114	95		
St. Jyndevad	60	45	25	77		300		
Funen	21	161		10.1 A		96		
Tystofte	7.0 B	3.8 B	3.8 B	4.6 B	9.0 A	10.9		
Ledreborg	6.2 B	7.6 A		6.3 B	13.4 A	27		
Abed		4.2 B	6.7 A	6.5 A	12.0 A	10.2 A		
Bornholm	6.3 A	5.1 A	7.9 B	4.0 B	7.0 A	18.1	7.6 A	
1989:								
Geometric								
mean	22	17.6	10.9	12.5	20	44	14.2	
1989:								
Arithmetic								
mean	36	35	14.2	25	35	75	17.1	

.

Table 5.3.7.A. Analysis of variance of In Bq ¹³⁷Cs kg⁻¹ in grain in 1988 (from Table 5.3.5.A)

Variation	SSD	f	s²	v ²	Р
Between species	6.03	3	2.01	6.68	> 99.5%
Between locations	29.20	9	3.24	10.78	> 99 .95%
Spec. × loc.	7.53	25	0.301	1.624	-
Remainder	2.41	13	0.185		

 Table 5.3.8.A. A1
 - of variance of ln Bq ¹³⁷Cs (kg K)-1 in grain in 1988

 (from Table 5.3.6...,

Variation	SSD	f	s²	v²	P
Between species Between locations Spec. × loc. Remainder	5.85 30.82 7.81 2.68	3 9 25 13	1.95 3.42 0.312 0.206	6.24 10.96 1.517	> 99.5% > 99.95%

Table 5.3.7.B. Analysis of variance of $\ln Bq^{137}Cs kg^{-1}$ in grain in 1989 (from Table 5.3.5.B)

Variation	SSD	f	s²	v ²	Ρ
Between species Between locations Spec. × loc. Remainder	9.296 47.186 8.896 3.123	3 9 25 14	3.099 5.243 0.356 0.223	8.708 14.733 1.595	> 99.95% > 99.95% -

Table 5.3.8.B. Analysis of variance of $\ln Bq \, {}^{137}Cs$ (kg K)-1 in grain in 1989 (from Table 5.3.6.B)

Variation	SSD	f	s ²	v ²	Р
Between species	8.579	3	2.860	7.011	> 99.5%
Between locations	44.494	9	4.944	12.121	> 99.95%
Spec. × loc.	10.196	25	0.408	1.611	-
Remainder	3.544	14	0.253		

Fig. 5.3.5. Cesium-137 in rye collected in Denmark in 1962-1989. (Unit: Bg kg⁻¹).

Fig. 5.3.6. Cesium-137 in barley collected in Denmark in 1962-1989. (Unit: Bg kg⁻¹).

Risø-R-570

Fig. 5.3.7. Cesium-137 in wheat collected in Denmark in 1962-1989. (Unit: Bg kg⁻¹).

Fig. 5.3.8. Cesium-137 in oats collected in Denmark in 1962-1989. (Unit: Bg kg⁻¹).

Fig. 5.4. Sample locations for bread and total diet.

Location	Rve	bread	White bread			
	Ba kg-1	Bq (kg Ca)-1	Ba kg-1	Bq (kg Ca)		
Jutland	0.25±0.02	470	0.138±0.001	400		
The Islands	0.30±0.01	860	0.114 ± 0.004	240		
1988:						
Geometric mean	0.27	630	0.125	310		
1 988 :						
Arithmetic mean	0.27	660	0.126	320		
Copenhagen	0.28±0.03	550	0.122±0.010	240		
Population						
weighted mono	0.27	600	0.127	310		

Table 5.4.1.A. Strontium-90 in Danish bread collected in June 1988

T	abl	e 5.	4.	1.B.	. Strontiu	m-90 i	in D	anish	bread	coll	ncied	in	Tune	1989	,

Location	Rye	e bread	White bread			
	Bq kg-1	Bq (kg Ca)-1	Bq kg-1	Bq (kg Ca)-1		
Jutland	0.21	730	0.113	270		
The Islands	0.20	340	0.104	210		
1989:						
Geometric mean	0.20	500	0.109	240		
1 9 89:						
Arithmetic mean	0.20	540	0.109	240		
Copenhagen	0.176	360	0.191	300		
Population						
weighted mean	0.199	520	0.132	260		

Fig. 5.4.3. Calcium in Danish bread 1962-1989. (Unit: g Ca kg⁻¹ bread).

Location			Rye bread			White bread				
		Bq ¹³⁷ Cs kg ⁻¹	8q ¹³⁷ Cs (kg K) ⁻¹	134Cs 137Cs	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-1	134Cs 137Cs			
1	North Jutland	0.25	95	0.175	0.074	67	0.29			
H	East Jutland	0.178	56	0.096 A	0.075	56	0.27 A			
III	West Jutland	0.165	61	-	0.186	118	0.26			
N	South Jutland	0.25	96	-	0.082	67	0.199 A			
V	Funen	0.58	196	0.25	0.136	110	0.35			
VI	Zealand	0.27	75	0.111 A	0.046	32	0.25			
VII	Loliand-Falster	0.33	115	0.174	0.37	300	0.28			
VIII	Bornhoim	0.105	27	-	0.0176 A	17.4 A	-			
198	B :									
Geo	metric mean	0.24	78	0.152	0.088	69	0.27			
198	B:									
Aritl	nmetic mean	0.27	90	0.161	0.123	9 5	0.27			
Copenhagen		0.45	152	0.27	0.058	42	•			
Pop	ulation-									
weighted mean		0.31	105	-	0.093	69	-			

Table S.4.2.A. Radiocesium in Danish bread collected in June 1988

Table 5.4.2.B. Radiocesium in Danish bread collected in June 1989

Loc	ation	Bq ¹³⁷ Cs kg ⁻¹	Rye bread Bq ¹³⁷ Cs (kg K)-1	134 <u>Cs</u> 137Cs	Bq ¹³⁷ Cs kg ⁻¹	White bread Bq ¹³⁷ Cs (kg K) ⁻¹	d <u>134Cs</u> 137Cs
I	North Jutland	0.28	112	0.161	0.029	22	-
II	East Jutland	0.45	170	0.171	0.030	23	-
111	West Jutland	0.48	175	0.157	0.022	16.6	-
IV	South Jutland	0.40	154	0.148	0.047	35	-
V	Funen	0.38	139	0.168	0.068	47	0.21 A
VI	Zealand	0.22	84	0.172	0.028	21	-
VII	Lolland-Falster	0.120	44	0.26	0.057	37	0.22 A
VIII	Bornholm	0.057	17.2	0.34	0.027	21	•
198 Geo	9: metric mean	0.25	91	0.189	0.036	26	0.22
198 Ariti	9: hmetic mean	0.30	112	0.197	0.039	28	0.22
Сор	enhagen	0.100	41	0.148 B	0.027	19.3	-
Pop weig	ulation- ghted mean	0.29	109	-	0.033	24	-

Nuclides	Species	-Bread activity in June 1988 calculated as grain in Bq kg ⁻¹	-Activity in grain from harvest 1987 Bq kg ⁻¹	"Bread"/grain ratio				
90Sr	Wheat	0.85	0.59	1. 44				
	Rye	0.36	0.44	0.82				
137C5	Wheat	0.33	0.078	4.2				
	Rye	0.36	0.17	2 1				
≏ (Rise Re	△ (Rise Reports 1957-1989).							

Table 5.4.3.A. A comparison between ⁹⁹Sr and ¹³⁷Cs levels in bread (June) and grain 1988

Table 5.4.3.B. A comparison between ⁹⁹Sr and ¹³⁷Cs levels in bread (June) and grain 1989

Nuclides	Species	-Bread activity in June 1989 calculated as grain in Bq kg-1	-Activity in grain from harvest 1988 Bq kg ⁻¹	"Bread"/grain ratio
9 05r	Wheat	0.74	0.36	2.1
	Rye	0.27	0.36	0.75
137Cs	Wheat	0.105	0.087	1.21
	Rye	0.40	0.186	2.2
≏ (Risø Re	ports 1957	-1989}.		

Table 5.5.1.A. Strontium-90 and radiocesium in Darish preasoes in 1988

Location	Bq ⁹⁰ Sr kg ⁻¹	8q ⁹⁰ Sr (kg Ca}-1	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-1	134Cs 137Cs
Tylstrup	0.037	600	0.126	30	0.168 A
Kale	0.0155	890	0.089	24	0.28 A
Borris	0.047	1020	0.26	65	0.174
Askov	0.036	1110	0.127	29	0.22 A
St. Jyndevad	0.047	700	0.116	28	0.161 A
Årslev	0.047	810	0.113	24	0.23
Tystofte	0.027	620	0.023 B	5.0 B	-
Ledreborg	0.040	610	0.034	8.2	-
Abed	0.034	450	0.025 B	5.4 B	-
Bornholm	0.036	660	0.030 A	7.3 A	-
1988: Geometric mean	0.035	720	0.070	16 5	0.20
1988: Arithmetic mean	0.037	750	0.094	23	0.21

Location	Bq ⁹⁰ Sr kg ⁻¹	8q ⁹⁰ Sr (kg Ca)-1	8q ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)- ¹	134Cs
Tyistrup	0.029	710	0.081	19.4	
Kalo	0.025	520	0.037 A	7.6 A	
Borris	0.024	530	0.182	35	0.136 A
Askov	0.080	1020	0.39	88	0.20
St. Jyndevad	0.025	370	0.129	28	
Arslev	0.025	360	0.108	23	0.179 B
Tystofte	0.048	570	< 0.022	< 4.9	
Ledreborg	0.030	670	0.024 B	5.7 B	
Abed	0.058	680	0.132	29	0.24 A
Bornholm	0.0179	240	0.039 A	6.4 A	
1989: Geometric mean	0.032	530	0.078	16.6	0.18
1989: Arithmetic mean	0.036	570	0.114	25	0.19

Table 5.5.1.B. Strontium-90 and radiocesium in Danish petators in 1989

Table 5.6.1.A. Strontium-90 in vegetables and fruit collected in 1988

	Cabbage		Carrot		Peas		Apples	
Location	Ba kg-1	Bq (kg Ca)-	Ba kg-1	Bq (kg Ca)	Ba kg	Bo ikg Car	Ba kg-T	Bq (kg Cat
Jutland	0 28	640	0 41	1370	0 162	810	0 036	440
The Islands	0 187	420	0 190	630	0 106	470	0 037	450
1988								
Geometric mean	0 23	520	0 28	930	0 131	620	0 037	450
1988								
Anthmetic mean	0 23	530	0 30	1000	0134	640	0 037	450

Table 5.6.1.B. Strontium-90 in vegetables and fruit collected in 1989

	Ca	bbage	c	arrot	1	Peas	A	pples
Location	Ba kg-1	Bq (kg Car 1	Bq 1g-1	Bq (kg Ca)-1	Ba kg-1	Bq (kg Ca)-	Ba kg-1	Ba (kg Cat
Jutland	0 28	640	0 28	950	0 145	440	0 0193	340
The islands	0 152	270	0 099	360	0132	510	0 01 55	370
1989								
Geometric mean	0 21	420	0 166	580	0138	480	0 01 73	360
1989								
Anthmetic mean	0 22	460	0 189	650	0139	480	0 01 74	360

Fig. 5.5.1. Strontium-90 in potatoes collected in Jutland in 1959-1989. (Unit: Bq kg⁻¹).

Fig. 5.5.2. Stronuium-90 in potatoes collected in the Islands in 1959-1989. (Unit: Bq kg⁻¹).

Risø-R-570

Fig. 5.5.3. Cesium-137 in potatoes collected in Jutland in 1963-1989. (Unit: Bq kg⁻¹).

Fig. 5.5.4. Cesium-137 in potatoes collected in the Islands in 1963-1989. (Unit: Bq kg⁻¹).

Risø-R-570

			Cabbage			Carrots			Peas			Appies	
Loca	tion	137Cs	107Cs	134Cs	' ³⁷ Cs	137Cs	134Cs	137Cs	137Cs	134Cs	137Cs	137Cs	Cs ^{ير .}
		Ba kg-1	Bq (kg K)-"	137Cs	Ba kg-1	Bq (kg K)−1	137Cs	Bq kg-1	Baikg Kr1	137Cs	Ba kg-1	Bq (kg K)-1	137Cs
ı	North Jutland	0.055	26		0 032	18.2		0.23	67		0.066	73	0 24
н	East Jutland	2.035	51		0 01 04 A	38A		0.060	21		0.088	78	C 31
ш	West Jutland	0 049	20		0 124	65	0.20	0 73	230	0 25	0.149	172	0 30
iv	South Jutland	0.130	77	0 102 A	0 107	61	0 143 A	0 22	77	0.28 9	0.041	39	C _ A
v	Furien	0.047	26		0.044 A	21 A		0.146	54	0.28 A	0.034	33	0.50 A
VI	Zealand	0.0181	7.5		0 0123 A	4.9 A		0.107	27		0.104	145	0 23
VII	Lolland-Faister	0.0143 A	5.3 A		0 0070 B	25B		0.050	16.0		0.025	21	
Vili	Bornholm	0.0119A	50A	_	0.011 B	3.0 B		0.028 A	67A		0.0193 A	18.9	
1989	Geometric												
	mean	0.034	17.9		0 026	10.9	017	0 1 2 2	38	0 27	0.053	54	0 30
			_										
1988	Arithmetic												
	mean	0.045	27		0 043	22	017	0 196	63	0 27	0.066	72	0.31

Table 5.6.2.A. Radiocesium in vegetables and fruit collected in 1988

Table 5.6.2.B. Radiocesium in vegetables and fruit collected in 1989

			Cabbage			Carrots			Peas			Apples	
Loca		137Cs	137C5	134Cs	137Cs	'37Cs	134Cs	137Cs	137Cs	134Cs	137C5	137Cs	134Cs
		Ba kg-1	Bq (kg K)-1	137Cs	Ba kg-1	Bq (kg K)-1	137Cs	8q kg-1	Bq (kg K)−1	137Cs	Ba kg ⁻¹	Bq (kg K)-1	137Cs
1	North Jutland	0.185	88	0.04 B	0 054	23		0 051	17.5		0 029	36	
н	East Jutland	0.0109 A	6.7 A		0.049	29		0.073	21		0 044	42	0 27
11)	West Jutland	0.056	29	0 16 A	0 068	50	C 163A	0 59	142	0119	0.101	127	0 170
iv	South Jutland	0.039	14.9		0.21	84	0.103	0132	47	0.21 A	0.141	170	0 20
v	Funen	0.0172 A	7.7 A		0 01 1 3 B	77 B		0.37	127	0 155	0 079	86	0 161 A
Vł	Zealand	0 01 84 B	8.2 B		0.041	25		0 042	128		0.076	100	0 1 86
VII	Lolland-Faister	0.0093 B	3.6 B		0 031	140	0 146 B	0 049 A	17.2 A		0 069	51	0 193 A
VIII	Bornholm	0.022 A	9.7 A		0 0024 B	0 98 B		0 046	141		0 0168 A	11 8A	
1989	Geometric												
	mean	0.027	12.4	0.082	0 033	17,1	0.135	0100	32	0 156	0.058	60	0 194
1000	Acthematic												
1963	Animelic	0.045	21	0.100	0.059	20	0 1 2 7	0169	60	0.160	0.060	70	0.106
	ETHERAT)	0.045	21	0.100	0.008	13	0.13/	0.108	50	0 100	0.003	/6	0,20

Table 5.6.3.A. Calculated 90Sr and 137Cs mean levels in vegetables in 1988

Dail	y intake in g	Bq ⁹⁰ Sr kg⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-1
50	leaf vegetables (cabbage)	0.23	530	0.045	27
30	root vegetables (carrot)	0.30	1000	0.043	22
40	peas and beans	0.134	640	0.196	63
120	g	0.22	680	0.095	38

Table 5.6.3.B. Calculated ⁹⁰Sr and ¹³⁷Cs mean levels in vegetables in 1989

Dail	y intake in g	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ċa)-1	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-1
50	leaf vegetables (cabbage)	0.22	460	0.045	21
30	root vegetables (carrot)	0.189	650	0.058	29
40	peas and beans	0.139	480	0.168	50
120	g	0.185	510	0.089	33

 Table 5.7.1.1. Strontium-90 in beef and pork collected in Denmark in June 1988

 and June 1989

Year	Location	Species	Bq kg-1	Bq (kg Ca)-1
1988	Denmark	Beef	0.0081	120
1989	"		0.0131	119
1988	Copenhagen	Pork	0.0067 A	67 A
1989	"		< 0.001	< 14

			Beef			Pork	
Zone		Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	134Cs 137Cs	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	134 <u>Cs</u> 137Cs
I.	North Jutland	0.92	410	0.29	0.32	109	0.177
H.	East Jutland	0.98	420	0.24	0.47	181	0.24
Ш.	West Jutland	0.32	111	0.179	0.65	196	0.26
IV.	South Jutland	2.1	830	0.28	0.52	210	0.24
V .	Funen	2.6	900	0.28	0.34	145	0.24
VI.	Zealand	0.74	220	0.26	0.128	47	-
VII.	Lolland-Falster	0.23	83	0.25	0.24	89	0.180
VIII.	Bornholm	2.4	870	0.27	0.194	64	-
Geor	netric mean	0.94	350	0.25	0.32	115	0.22
Arith	metic mean	1.27	480	0.26	0.36	130	0.22
Copenhagen		1.14	350	0.29	0.64	230	0.27
Population-weighted		1 09	200		0.46	162	
mear	I	1.00	220	-	0.40	105	-

Table 5.7.1.2.A. Radiocesium in beef and pork collected countrywide in Denmark in June 1988

 Table 5.7.1.2.B. Radiocesium in beef collected countrywide in Denmark in June

 1989

			Beef	
Zone		Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	134Cs 137Cs
L	North Jutland	0.66	230	0.152
H.	East Jutland	1.09	360	0.162
HI.	West Jutland	1.43	500	0.174
IV.	South Jutland	1.28	460	0.177
V.	Funen	1.33	46 0	0.153
VI.	Zealand	0.73	250	0.189
VII.	Lolland-Faister	0.48	131	0.152
VIII.	Bornholm	0.44	184	0.138
Geor	netric mean	0.85	290	0.161
Arith	metic mean	0.93	320	0.162
Copenhagen		2.4	690	0.163
Рори	lation-weighted			
mear	<u> </u>	1.40	450	•

			Beef			Pork	
Zone		Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	¹³⁴ Cs ¹³⁷ Cs	Bq ¹³⁷ Cs kg⁻¹	Bq ¹³⁷ Cs (kg K)-1	134 <u>Cs</u> 137Cs
. . .	North Jutland East Jutland West Jutland	0.42 0.47 2.5	134 177 850	0.151 0.196 0.21	0.58 0.36 0.76	193 138 280 250	0.130 A 0.137 A 0.196 0.195
V. VI. VII. VII.	Funen Zealand Lolland-Falster Bornholm	2.2 1.08 1.18 1.17±0.00 2.5	400 360 400 ± 13 1000	0.185 0.176 0.20 0.24 0.25	0.52 0.51 0.31 ± 0.04 0.31	181 167 97±18 104	0.195 0.21 0.151 0.172 A 0.197 A
Geometric mean		1.20	410	0.196	0.52	173	0.171
Arithmetic mean		1.45	490	0.198	0.58	189	0.173
Copenhagen		1.59	490	0.163	0.44	136	0.21
Population-weighted mean		1.33	430	-	0.54	180	-

 Table 5.7.1.3.A. Radiocesium in beef and pork collected countrywide in Denmark in

 December 1988

 Table 5.7.1.3.B. Radiocesium in beef collected countrywide in Denmark

 in December 1989

				_
			Beef	
Zone		Ba ¹³⁷ Cs	Ba ¹³⁷ Cs	134Cs
		kg⁻¹	(kg K)-1	¹³⁷ Cs
I.	North Jutland	3.3	1250	0.134
H.	East Jutland	0.57	210	0.145
III.	West Jutland	0.68	220	0.157
IV.	South Jutland	0.90	310	0.182
V .	Funen	1.81	630	0.123
VI.	Zealand	0.74	260	0.124
VII.	Lolland-Falster	0.70	260	0.158
VIII.	Bornholm	2.2	740	0.131
Geon	netric mean	1.11	390	0.143
Arith	metic mean	1.36	480	0.144
Copenhagen		1.20	420	0.108
Popu	lation-weighted			
mear	n	1.19	420	-

Table 5.7.1.4.A. Radiocesium in beef and pork collected in Copenhagen in 1988

Month	Species	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	134Cs 137Cs
March	Beef	1.29	420	0.31
	Pork	0.46	165	0.27
Sept	Beef	0.92	290	0.18
"	Pork	0.30	97	0.22

 Table 5.7.1.4.B. Radiocesium in pork collected in Copenhagen in March and September 1989

Month	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	134Cs 137Cs
March	0.82	240	0.18
September	0.22	65	-

Month	Year	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	134 <u>Cs</u> 137Cs
Dec	1988	1.28	440	0.24
Jan	1989	0.26	86	0.22
Feb	"	0.133	49	0.21 A
March	**	0.169	64	0.152 B
April	"	0.129	48	-
May	,,	0.191	66	0.158 A
June	"	2.4	690	0.163

Table 5.7.1.5. Radiocesium in beef collected at Nyborg (Zone V) in 1988 and 1989

were obtained from Hundested (Cattegal) and Ringkøbing (North Sea)) (Cf. Table 5.7.2.2.A)	Table 5.7.2.1.A. Strontium-90 in fish collected in Danish waters in 1988 (san were obtained from Hundested (Cattegal) and Ringkøbing (North Sea)) (Cf. Table 5.7.2.2.A)	nples
--	---	-------

Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ⁹⁰ Sr
		(kg Ca)-'
0.0179	24	18.9
0.0180	23	16.2
0.0033	6.2	4.0
0.0102	15.1	10.7
0.0131	17.8	13.0
	0.0180 0.0033 0.0102 0.0131	0.0180 23 0.0033 6.2 0.0102 15.1 0.0131 17.8

Table 5.7.2.1.B. Strontium-90 in fish collected in Danish waters in 1989 (samples were obtained from Hundested (Cattegat) and Ringkobing (North Sea)) (Cf. Table 5.7.2.2.B)

	Fi	Bone	
Species	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ⁹⁰ Sr (kg Ca)⁻¹
Cod Plaice Herring	0.0145 0.0199 0.0040	17.5 24.6 7.5	16.8 16.0 4.0
1989: Geometric mean	0.0105	14.8	10.6
1989: Arithmetic mean	0.0128	16.5	12.4

		·····			
Location	Month	Species	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)⁻¹	¹³⁴ Cs ¹³⁷ Cs
Hundested	March	Cod	9.1	2800	0.22
(Cattegat)	March	Plaice	5.3	2000	0.25
	March	Herring	2.7	810	0.142
- * -	Sept	Cod	5.9	2700	0.24
- " -	Sept	Plaice	5.8	1630	0.20
-*-	Sept	Herring*	2.2	630	0.147
1988: Geomet	ric mean		4.6	1520	
1988: Arithmetic mean			5.2	1760	
Ringkøbing	March	Cod	2.8	1210	0.121
(North Sea)	March	Plaice	1.30	490	0.149
- " -	March	Herring	2.0	750	0.169
- * -	Sept	Cod	1.92	610	0.084
- " -	Sept	Plaice	1.11	390	0.146
- " -	Sept	Herring	2.1	680	0.142
1988: Geomet	ric mean		1.79	640	
1988: Arithmetic mean			1.87	690	
1988: Total Geometric mean			2.9	990	
1988: Total Ari	ithmetic me	an	3.5	1220	
*The sample c	ontained 3.	7 Bq ^{110m} Ag k	g ⁻¹		

Table 5.7.2.2.A. Radiocesium in fish (flesh) from Danish waters in 1988

Location	Month	Species	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)−1	134Cs 137Cs	
Hundested	March	Cod	33	10500	0.23	
(Cattegat)	March	Plaice	1.61	650	0.123	
	March	Herring	1.83	590	0.132	
- " -	Sept	Cod	6.9	2000	0.151	
- - -	Sept	Plaice	6.0	1730	0.163	
	Sept	Herring	1.48	470	0.115	
1989: Geornet	ric mean		4.3	1370		
1989: Arithme	tic mean		8.5	2700		
Ringkøbing	March	Cod	0.72	250	0.061 A	
(North Sea)	March	Plaice	0.54	220	0.127 A	
- " -	March	Herring	1.91	750	0.163	
- " -	Sept	Cod	1.10	330	0.052 A	
- " -	Sept	Plaice	0.56	230	0.077 A	
	Sept	Herring	1.18	440	0.090	
1989: Geornet	ric mean		0.90	330		
1989: Arithme	tic mean	_	1.00	370		
Bornholm	Jan	Cod	24	6000	0.23	
(Baltic Sea)	May	Cod	14.0	4300	0.195	
- " -	May	Plaice	11.8	3900	0 .180	
	Мау	Herring	10.8	3300	0.192	
1989: Geomet	ric mean		14.4	4300		
1989: Arithme	tic mean		15.2	4400		
Skagen	Jan	Sole	1.26	440	0.152	
	Feb	Mackerel	0.24	82	0.076	
1989: Geomet	ric mean		0.55	190		
1989: Arithme	1989: Arithmetic mean			260		
1989: Total Ge	ometric me	an	2.6	880		
1989: Total Ari	thmetic me	an	6.6	2000		
*The sample contained 0.44 Bq ²¹⁰ Po kg ⁻¹						

Table 5.7.2.2.B. Radiocesium in fish (flesh) from Danish waters in 1989

Location	Date	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	134Cs 137Cs
Oscarshamn				
Baltic Sea, Sweden	March 988	11.7	5400	0.30
-	April 1988	10.0	4200	0.30
-	July 1983	9.8	4100	C.26
Biotest lake				
Forsmark.Sweden	1987	183	76000	0.48
-	1988	128	60000	0.35

Table 5.7.2.3. Radiocesium in marine fish (eel) from various locations in 1987 and 1988

 Table 5.7.3. Strontium-90 and radiocesium in eggs collected in Copenhagen in 1988

 and 1989

Year	Month	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca)-1	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	134Cs kg-1
1988	June	0.024	46	0.102	78	0.023
1989	June	0.0121	22	0.042	33	-

Fig. 5.7.2. Cesiu:n-137 in eels from the Baltic Se., Oscarshamn, Sweden) 1986-1988. (Unit: Bq ¹³⁷Cs kg⁻¹).

Sample	Bq ⁹⁰Sr	8q 90Sr	8q ¹³⁷ Cs	8q ¹³⁷ Cs	:34Cs
	kg-1	(kg Ca)-1	kg-1	(kg K)-1	¹³⁷ Cs
Rize	0.167	220	0.054	43	
Oats	0.57	540	1,19	350	0.18
Hazel nuts	3.3	2000	1.75	320	0.22
Banana	0.0039	75	< 0.017	< 4.5	-
Orange	0.046	170	0.013 B	8.8 B	
Coffee	0.191	330	0.56	31	
Tea	0.38	2200	1.34	98	0.08 A
Rize*	•	•	0.030 A	29 A	

Table 5.7.4. Strontium-90 and radiocesium in various imported vegetable food purchased in Copenhagen in November 1988

Table 5.8.1.A. Strontium-90 in Danish total diet collected in June 1988

Zone		Bq (kg Ca)-1	Bq day-1 cap-1	g Ca day-1
I.	North Jutiand	162	0.162	1.01
11 .	East Jutland	147	0.165	1.12
HI .	West Jutland	164	0.173	1.05
IV.	South Jutland	180	0.191	1.06
V .	Funen	151	0.189	1.25
VI.	Zealand	136	0.154	1.14
VII.	Lolland-Falster	152	0.160	1.05
VIII.	Bornholm	144	0.150	1.04
Geor	netric mean	154	0.168	1.09
Arith	metic mean	155	0.168	1.09
Copenhagen		126	0.155	1.23
Popu	lation-weighted			
mear	1	146	0.165	1.14

Table 5.8.1.B.	Strontium-90 in	Danish total diet	collected in	Tune 1989
• • • • • • • • • • • • • • • • • • • •				

Zone	·	Bq (kg Ca)-1	Bq day-1 cap-1	g Ca day-1
I.	North Jutland	121	0.135	1.11
H.	East Jutland	122	0.141	1.16
III.	West Jutland	137	0.154	1.12
IV.	South Jutland	147	0.160	1.09
V .	Funen	130	0.155	1,19
VI.	Zealand	131	0.145	1.11
VII.	Lolland-Falster	118	0.146	1.24
VIII.	Bornholm	140	0.162	1,15
Geor	netric mean	131	0.150	1.15
Arith	metic mean	131	0.150	1.15
Соре	enhagen	113	0.151	1.34
Рори	lation-weighted	1.25	0 1 4 0	1 20
mear	1	125	0.149	1.20

Fig. 5.8.1. Predicted and observed ⁹⁰Sr levels in the Danish total diet. The dotted curve represents the predicted values for »Diet C« (cf. Tables 5.7.1 and 5.7.2) and the circles are the corresponding observed values. The unbroken curve represents the predicted values for »Diet P« (cf. Table 5.9.3), and the triangles the corresponding observed values.

Fig. 5.8.2. Calcium in Danish average diet 1962-1989. (Unit: g Ca day-1).

	Dy Ing Car	or reh .	g Ca day-1	
North Jutland	153	0.154	1.01	
East Jutland	151	0.157	1.04	
West Jutland	i40	0.148	1.06	
South Jutland	151	0.165	1.09	
Funen	149	0.168	1.13	
Zealand	122	0.142	1.16	
Lolland-Falster	124	0.145	1.17	
Bomholm	127	0.150	1.18	
netric mean	140	0.153	1.10	
metic mean	140	0.154	1.11	
nhagen	100±0	0.127±0.004	1.27±0.04	
lation-weighted				
) –	131	0.146	114	
	North Jutland East Jutland West Jutland South Jutland Funen Zealand Lolland-Falster Bornholm Metric mean metic mean metic mean	North Jutland153East Jutland151West Jutland140South Jutland151Funen149Zealand122Lolland-Falster124Bornholm127netric mean140metic mean140mhagen100 \pm 0lation-weighted131	North Jutland 153 0.154 East Jutland 151 0.157 West Jutland i40 0.148 South Jutland 151 0.165 Funen 149 0.168 Zealand 122 0.142 Lolland-Falster 124 0.145 Bornholm 127 0.150 metric mean 140 0.153 metic mean 140 0.154 inhagen 100 ± 0 0.127 ± 0.004	

Table 5.8.2.A. Strontium-90 in Danish sotal diet collected in December 1988

The error term is 1 S.E. of the mean of double determinations.

Tabl	: 5.8.2 .1	B. S	Strontium-9	0 in 1	Danisl	h socal di	iet collec	led in .	December	r 1989
------	-------------------	------	-------------	--------	--------	------------	------------	----------	----------	--------

Zone		Bq (kg Ca)-1	Bç day-1 cap-1	g Ca day-1
I.	North Jutland	159	0.173	1.09
H.	East Jutland	146	0.156	1.07
HI.	West Jutland	164	0.173	1.06
IV.	South Jutland	153	0.171	1.11
V.	Funen	118	0.133	1 13
VI.	Zealand	117	0.161	1.38
VII.	Lolland-Falster	103	0.123	1.20
VIII.	Bornholm	90	0.112	1.25
Geon	netric mean	129	0.149	1.16
Arith	metic mean	131	0.150	1.16
Copenhagen		85	0.113	1.33
Рори	lation-weighted			
mear)	125	0.147	1.21

Zone		Bq ¹³⁷ Cs (kg K) ⁻¹	Bq ¹³⁷ Cs day ⁻¹ cap ⁻¹	g K day-1	¹³⁴ Cs 137Cs			
I.	North Jutland	111	0.37	3.3	0.21			
łI.	East Jutland	104	0.36	3.4	0.20			
111.	West Jutland	124	0.45	3.6	0.199			
IV.	South Jutland	154	0.49	3.2	0.23			
V.	Funen	175	0.55	3.1	0.25			
VI.	Zealand	102	0.35	3.4	0.23			
VII.	Loliand-Falster	174	0.61	3.5	0.24			
VIII.	Bornholm	158	0.56	3.5	0.21			
Geometric mean		135	0.46	3.4	0.22			
Arithm atic mean		138	0.47	3.4	0.22±0.02			
Copenhagen		164	0.49	3.0	0.24			
Population-weighted mean		n 135	0.44	3.3	-			
The e	The error term is 1 S.D. of the mean.							

Table 5.8.3.A. Radiocesium in Danish total diet collected in June 1988

Zone		Bq ¹³⁷ Cs (kg K) ⁻¹	Bq ¹³⁷ Cs day-1 cup-1	g K day-1	134Cs 137Cs
I.	North Jutland	79	0.25	3.2	0.191 A
₿.	East.Juliand	103	0.33	3.2	0.151 A
HI.	West Jutland	123	0.37	3.0	0.146
IV.	South Jutland	102	0.34	3.3	0.191
V.	Funen	79	0.27	3.4	0 165
VI.	Zealand	94	0.34	3.6	0.150
VII.	Lolland-Falster	45	0.177	3. 9	0.145 A
VIII.	Bornholm	138	0.49	3.5	0.185
Geor	netric mean	91	0.31	3.4	0.164
Arith	metic mean	95	0.32	3.4	0.165 ± 0.020
Copenhagen		75	0.26	3.5	0.146
Population-weighted mean		n 91	0.30	3.4	•
The e	error term is 1 S.D. of 1	the mean.			

Zone		Bq ¹³⁷ Cs (kg K)-1	Bq ¹³⁷ Cs day ⁻¹ cap ⁻¹	g K day-1	¹³⁴ Cs 137Cs
I	North Jutland	123	0.45	3.6	0.142 A
И.	East Jutland	137	0.48	3.5	0.170
111.	West Jutland	147	0.50	3.4	0.170
IV.	South Jutland	136	0.45	3.3	0.173 A
V .	Funen	104	0.36	3.5	0.1 6 8 A
VI.	Zealand	92	0.31	3.4	0.154 B
VII.	Lolland-Falster	133	0.48	3.6	0.25
VIII.	Bornholm	159	0.62	3.9	0.20
Geor	netric mean	127	0.45	3.5	0.176
Arith	metic mean	120	0.46	3.5	0.178±0.033
Соре	enhagen*	220±111	0.77±0.39	3.4 ± 0.1	0.20 ± 0.03
Рори	lation-weighted mean	150	0.52	3.5	-
		·			

Table 5.8.4.A. Radiocesium in Danish total diet collected in December 1988

The error term is 1 S.D. of the mean.

*The error term is 1 S.E. of the mean of double collections.

Zone		Bq ¹³⁷ Cs (kg K) ⁻¹	Bq ¹³⁷ Cs day ⁻¹ cap ⁻¹	g K day-1	¹³⁴ Cs ¹³⁷ Cs
I. H. IV. V. VI. VI. VII.	North Jutland East Jutland West Jutland South Jutland Funen Zealand Lolland-Faister Bornholm	121 93 100 108 96 81 42 240	0.42 0.33 0.34 0.39 0.35 0.29 0.144 0.91	3.5 3.6 3.4 3.6 3.6 3.6 3.4 3.8	0.135 A 0.100 A 0.126 A 0.162 A 0.141 A 0.163 A 0.072 B 0.153 A
Geon	netric mean	99	0.35	3.6	0.128
Arith	metic mean	109	0.40	3.6	0.132 ± 0.032
Соре	nhagen	63	0.21	C.3	0.104 A
Population-weighted mean		88	0.31	3.5	-

Table 5.8.4.B. Radiocesium in Danish total diet collected in December 1989

Туре	Fraction fro	om harvest	t 1987	Fraction from harvest 1988			Total
	kg flour	Bq kg−1	Bq	kg flour	Bq kg ⁻¹	Bq	Bq
Rye flour 100% extraction	21.9	0.44	9.64	7.3	0.36	2.63	12.27
Wheat flour 75% extraction	32.9	0.129	4.24	10.9	0.072	0.78	5.02
Grits	5.5	0.20	1.10	1.8	0.14	0.25	1.35
Total	60.3	0.25	14.98	20.0	0.18	3.66	18.64

Table 5.9.1.A. Estimate of the ⁹⁰Sr content in grain products consumed pro capite in 1988

Table 5.9.1.B. Estimate of the ⁹⁰Sr content in grain products consumed pro capite in 1989

Туре	Fraction from harvest 1988			Fraction fr	Fraction from harvest 1989				
.,,,, _	kg flour	Ba kg-1	Bq	kg flour	Bq kg ^{−1}	Bq	Bq		
Rye flour 100% extraction	21.9	0.36	7.8	7.3	0 .30	2.2	10.0		
Wheat flour 75% extraction	32.9	0.072	2.4	10.9	0.072	0.78	3.18		
Grits	5.5	0.172	0.95	1.8	0.23	0.41	1.36		
Total	60.3	0.18	11.2	20.0	0 .170	3.4	14.54		

Туре	Fraction from harvest 1987			Fraction from harvest 1988 Total			
	kg flour	Bq kg⁻¹	Bq	kg flour	Bq kg−1	Bq	Bq
Rye flour 100% extraction	21.9	0.17	3.72	7.3	0.19	1.39	5.11
Wheat flour 75% extraction	32.9	0.04	1.32	10.9	0.04	0.44	1.76
Grits	5.5	0.25	1.38	1.8	0.15	0.27	1.65
Total	60.3	0.11	6.42	20.0	0.11	2.10	8.52

Table 5.9.2.A. Estimate of the ¹³⁷Cs content in grain products consumed pro capite in 1988

Table 5.9.2.B. Estimate of the ¹³⁷Cs content in grain products consumed pro capite in 1989

Туре	Fraction fro	om harvest	1988	Fraction from harvest 1989			Total
	kg flour	Bq kg⁻¹	Bq	kg flour	Bq kg-1	Bq	Bq
Rye flour 100% extraction	21.9	0.186	4.1	7.3	0.151	1.10	5.2
Wheat flour 75% extraction	32.9	0.042	1.38	10.9	0.056	0.61	1.99
Grits	5.5	0.23	1.26	1.8	0.20	0.36	1.62
Total	60.3	0.11	6.7	20.0	0.10	2.1	8.8

Table 5.9.3.A. Estimate of the mean content of 90Sr in the human diet in 1988

Type of food	Annual quantity in kg	Bq ⁹⁰ Sr per kg	Tota! Bq ⁹⁰ Sr	Percentage of total Bq ⁹⁰ Sr in food	References
Milk and cream	164.0	0.062	10.17	20.4	(Table 5.1.1.A)
Cheese	9.1	0.41	3.73	7.5	(Table 5.2.2)
Grain products	80 .3	0.232	18.64	37.4	(Table 5.9.1.A)
Potatoes	73.0	0.037	2.70	5.4	(Table 5.5.1.A)
Vegetables	43.8	0.22	9.64	19.3	(Table 5.6.3.A)
Fruit	51.1	0.034	1.74	3.5	1)
Meat	54.7	0.022	1.20	2.4	2)
Eggs	10. 9	0.024	0.26	0.5	(Table 5.7.3)
Fish	10. 9	0.013	0.14	0.3	(Table 5.7.2.1.A)
Coffee and tea	5.5	0.25	1.38	2.8	3)
Drinking water	548	0.0005	0.27	0.5	(Table 4.3.3.1.A)
Total			49.87		

The mean Calintake was estimated at 0.41 kg y⁻¹ (approx. 0.1 kg creta praeparata). Hence the ⁹⁰Sr/Ca ratio in total diet was 122 Bg ⁹⁰Sr (kg Ca)⁻¹ (3.3 S.U.) in 1988.

+ No collections in 1988. 1987 data used.

Table 5.9.4.A. Estimate of the mean content of ¹³⁷Cs in the human diet in 1988

Type of food	Annual quantity in kg	Bq ¹³⁷ Cs per kg	Total Bq ¹³⁷ Cs	Percentage of total Bq ¹³⁷ Cs in food	References
Milk and cream	164.0	0.28	45 92	29.9	(Table 5.1.3.A)
Cheese	9.1	0.135	1.23	0.8	(Table 5.2.2)
Grain products	80.3	0.106	8.52	5.6	(Table 5.9.2.A)
Potatoes	73.0	0.094	6.86	4.5	(Table 5.5.1.A)
Vegetables	43.8	0.095	416	2.7	(Table 5.6.3.A)
Fruit	51.1	0.049	2.50	1.6	1)
Meat	54.7	0.72	39.38	25.7	2)
Eggs	10. 9	0.10	1.09	0.7	(Table 5.7.3)
Fish	10.9	3.6	39.24	25.6	(Table 5.7.2.2.A)
Coffee and tea	5.5	0.82	4 51	2.9	3)
Drinking water	548	0.00006	0 03	0.0	(Table 4.3.3.1.A)
Total			153.44		

As the approximate intake of potassium was 1.365 kg y⁻¹ the 137 Cs/K ratios were 112 Bg 137 Cs (kg K)⁻¹ or 3.0 M.U. in 1988.

• No collections in 1988. 1987 data used.

Notes to Tables 5.9.3 and 5.9.4.

¹⁾ Calculated from apples in Tables 5.6.1.B and 5.6.2.B and from banana and orange in Table 5.7.4 with the relative weighting factors 0.714, 0.143, 0.143, respectively.

²⁾ Calculated from the mean of the June and December sampling for ¹³⁷Cs in beef (Tables 5.7.1.2.B and 5.7.1.3.B) and from Table 5.7.1.4.B (¹³⁷Cs in pork). Table 5.7.1.1 gives ⁹⁰Sr data for beef and pork. In the calculation beef is weighted by 0.33 and pork by 0.67.

³⁾ One third of the total consumption consists of tea and two-thirds of coffee. The data from Table 5.7.4. are used for the calculation.

Arithmetic means are used all through.

Type of food	Annual quantity in kg	Bq ⁹⁰ Sr per kg	Total Bq ⁹⁰ Sr	Percentage of total Bq ⁹⁰ Sr in food
Milk and cream	164.0	0.058	9.51	22.6
Cheese	9.1	0.44	4.00	9.5
Grain products	80.3	0.181	14.54	34.5
Potatoes	73.0	0.036	2.63	6.3
Vegetables	43.8	0.185	8.10	19.2
Fruit	51.1	0.020	1.02	2.4
Meat	54.7	0.009	0.49	1.2
Eggs	169	0.012	0.13	0.3
Fish	10.9	0.013	0.14	0.3
Coffee and tea	5.5	0.254	1.40	3.3
Drinking water	548	0.33×10-3	0.18	0.4
Total			42.14	

Table 5.9.3.B. Estimate of the mean content of ⁹⁰Sr in the human diet in 1989 (cf. notes to A tables)

The mean Ca intake was estimated at 0.44 kg y⁻¹ (approx. 0.1 kg creta praeparata). Hence the 90 Sr/Ca ratio in total diet was 96 Bq 90 Sr (kg Ca)⁻¹ (2.6 S.U.) in 1989.

Type of food	Annual quantity in kg	Bq ¹³⁷ Cs per kg	Total Bq ¹³⁷ Cs	Percentage of total Bq ¹³⁷ Cs in food
Milk and cream	164.0	0.178	29.19	17.1
Cheese	9.1	0.153	1.39	0.8
Grain products	80.3	0.110	8.80	5.1
Potatoes	73.0	0.114	8.32	4.9
Vegetables	43.8	0.089	3.90	2.3
Fruit	51.1	0.054	2.76	1.6
Meat	54.7	0.728	39.82	23.3
Eggs	10.9	0.042	0.46	0.3
Fish	10.9	6.6	71.94	42.0
Coffee and tea	5.5	0.819	4.50	2.6
Drinking water	548	0.105 × 10-3	0.06	0.0
Total			171.14	

Table 5.9.4.B. Estimate of the mean content of 137Cs in the human diet in 1989 (cf. notes to A tables)

As the approximate intake of potassium was 1.365 kg y⁻¹ the 137 Cs/K ratios were 125 Bq 137 Cs (kg K)⁻¹ or 3.4 M.U. in 1989.

Periods	Bq ⁹⁰ Sr (kg ash)⁻1	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ¹³⁷ Cs kg ⁻¹ dry	Bq ¹³⁷ Cs (kg K) ⁻¹	g K kg⁻¹ dry	134Cs 137Cs
Jan-March April-June	11 8 13.9	290 300				
Oct-Dec	26.3	420	1.06	39	26.9	0.26
1988: Geometric mean	17.2	350				
1988: Arithmetic mean	18.0	360				

Table 5.10.1.1.A. Strontium-90 and radiocesium in grass from Zealand, 1988

Table 5.10.1.1.B. Strontium-90 and radiocesium in grass from Zealand, 1989

Periods	Bq ⁹⁰ Sr	Bq ⁹⁰ Sr	Bq ¹³⁷ Cs	Bq ¹³⁷ Cs	g K	134Cs
	(kg ash) ⁻¹	(kg Ca) ⁻¹	kg ⁻¹ dry	(kg K) ⁻¹	kg ⁻¹ dry	137Cs
Jan-March	17.2	350	1.82	184	9.9	0.17 A
April-June	15.8	330	1.12 A	37	29.9	-
July-Sept	24.2	320	1.03	46	22.1	0.17 A
Oct-Dec	16.7	230	1.73	74	23.2	0.20 A
1989: Geometric mean	18.2	300	1.38	69	19.7	0.18
1989: Arithmetic mean	18.4	310	1.42	85	21.3	0.18

Fig. 5.10.1. Quarterly ⁹⁰Sr levels in grass, 1957-1989.

Fig. 5.10.2. Cesium-137 in grass samples collected at Riso, Denmark in the period April 1986 - December 1989.

Month	Bq ¹³⁷ Cs kg ⁻¹ fresh weight	Bq ¹³⁷ Cs m ⁻²	g K kg-1 fresh	¹³⁴ Cs ¹³⁷ Cs
Jan	0.69	0.29	1.47	0.32
Feb	0.92	0.33	4.68	0.28
March	0.77	0.24	0.87	0.17 B
April	0.69	0.160	5.94	0.27 A
May	0.33	0.129	7.25	0.36 A
June	-	-	8.32	-
July	0.30	0.108	6.7 9	0.24 A
Aug	0.21 A	0.078 A	7.12	-
Sept	0.28	0.100	6.25	0.38 A
Oct	0.197 A	0.082 A	4.88	0.34 B
Nov	0.49	0.111	5.73	•
Dec	0.48	0.148	2.24	0.28 A
1988:				
Geometric mean	0.43	0.144	4.3	0.29
1988:				
Arithmetic mean	0.49	0.161	5.1	0.29

Table 5.10.1.2.A. Radiocesium in grass collected at Risø weekly in 1988

Tahl	15	10	12	R	Radio	esium	in	<i>OTASS</i>	col	lected	at	Risa	2000k	lv in	1989
1 401	ε.J.	1 V.	1.2.	D .	1 van inc	C214111	111	grass	LOL	ICLICU	u	1/126	WEEKI	y m	1 707

Month	Bq ¹³⁷ Cs kg ⁻¹ fresh weight	Bq ¹³⁷ Cs m ⁻²	g K kg-1 fresh	¹³⁴ Cs ¹³⁷ Cs
Jan	0.76	0.134	2.76	0.25 A
Feb	0.90	0.144	2.95	0.27
March	0.69	0.149	2.52	0.21 A
April	0.55	0.137	3.55	0.25 A
May	0.115 A	0.043 A	6.54	
June	-	-	5.98	
July	0.145	0.055	5.95	
Aug	0.21 A	0.078 A	5.75	
Sept	0.03 B	0.014 B	5.60	
Oct	0.130	0.065	4.77	
Nov	0.181 A	0.052 A	6.45	
Dec	0.144 A	0.043 A	3.23	
1989 :				
Geometric mean	0.23	0.068	4.4	0.24
1989: Arithmetic mean	0.35	0.083	4.7	0.24

		May-Ju	une			August-Se	eptember	
Location	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs m ⁻²	¹³⁴ Cs ¹³⁷ Cs	g K kg ⁻¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs m ⁻²	134Cs 137Cs	g K kg⁻¹
Tyistrup	0.73	0.70	0.25	5.3	0.32	0.49		53
Kale	0.90	0.83	0.29	7.4	0.57	0.36	0.24	83
Borris	0.22	0.41		7.3	0.62	0.50	0.22	5.3
Askov	0.56	0.54	0.194 A	6.3	0.159	0.166	0.37	5.0
St. Jyndevad	0.195	0.38		5.3	0.88	1.0 9	0.091	5.0
Årslev	0.148 A	0.22 A		8.1	0.27	0.172	0.30	4 9
Tystofte	1.00 ± 0.26*	1.85±0.48*	0.25 ± 0.01 **	7.9=2.3*	0.101 B	0.080 B		4.7
Ledreborg	0.31	0.33		4.0	0.116	0.107		50
Abed	0.07 9	0.127	0.31	3.8	0.073 B	0.043 B		3.6
Tornbygård	0.147	0.093		6.1		•		-
1 988 :								
Geometric								
mean	0.31	0.39	0.26	6.0	0.25	0.22	0.22	<u> </u>
S.D. factor	2.40	2.43	1.20	1.31	2 43	2.80	1.71	1 24
1988: Arithmetic mean	0.43	0.55	0.26	6.2	0.35	0.33	0 24	52
S.D.	0.34	0.52	0.04	1.55	0.28	0.33	0.10	1.27
N	10	10	5	10	9	9	5	9

Table 5.10.2.A. Radiocesium in grass collected at the state experimental farms in 1988 (fresh weight samples)

• The error term is 1 S.E. of the mean of triple determinations.

**The error term is 1 S.E. of the mean of double determinations.

Fig. 5.10.3. Cesium-137 median values in grass from the 10 Danish State experimental farms 1986-1989.

Fig. 5.11.1. Strontium-90 in sea plants from Roskilde Fjord, 1959-1989.

		Jur	ne			Septe	mber		
Location	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs m ⁻²	134Cs 137Cs	g K kg-1	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs m ⁻²	134Cs 137Cs	g K kg⁻1	
Tylstrup	0 91	0.48	014A	64	0.199	090		82	
Kale	0 145 A	0.083 A		85	0.109 A	0.071 A		74	
Borris	0.22	0.175		6.0	0.41	0.200		54	
Askov	0.68	0.77	0 23	44	0.33	0.133	0.186 B	74	
St. Jyndevad	2.2	1.66	0.137	4.6	0.172	0 106	0.22 A	89	
Arslev	0.193	0 181	0 16 B	5.1	0.166	0.113		64	
Tystofte	0.072 A	0.146		64	0.080 B	0 031 B		7.1	
Ledreborg	0.116	0.092	0.21 B	4.9	0.024 B	0 020 B		56	
Abed	0.101 A	0.100 A		7.8	0.092 A	0.077 A		72	
Tornbygård	0.043 B	0.034 B		7.2	-	-		•	
1989: Geometric									
mean	0.22	0.194	0 1 7 3	60	0 1 35	0.077	0.20	70	
S.D. factor	3.51	3 19	1 26	1.25	2.33	2.05	1,14	1 18	_
1 989 : Arithmetic									-
mean	0.47	0.37	0 1 76	61	0.176	0.094	0.21	71	
S.D.	0.69	0.51	0.054	1.38	0.125	0 054	0.03	113	
N	10	10	5	10	9	9	2	9	

Table 5.10.2.B. Radiocesium in grass collected at the state experimental farms in 1989 (fresh weight samples)

 Table 5.11.1.1. Strontium-90 in Fucus vesiculosus from Roskilde Fjord in 1988

 and 1989

Location (cf. Fig. 4.6.1)	Date	Bq ⁹⁰ Sr (kg Ca) ⁻¹	8q ⁹⁰ Sr kg ⁻¹ dry weight
I: 55-42'N 12-06'E	Jan-June 1988	- 180	3.4
I: 55°42'N 12°06'E	Jun e -Nov 1988	125	3.7
IX: 55°45'N 12°04'E	June 2, 1988	155	2.9
X: 55°51'N 12°02'E	June 2, 1988	158	3.6
I: 55°42'N 12°06'E	Jan-June 1989	171	2.8
I: 55°42'N 12°06'E	July-Dec 1989	200	2.9
IX: 55°45'N 12°04'E	May 23, 1989	107	2.9
X: 55°51'N 12°02'E	May 23, 1989	108	2.9

Fig. 5.11.2. Cesium-137 and cesium-134 (lower curve) in Fucus vesiculosus and Fucus servatus from April 1986 to November 1990 collected at Klint, Zealand (55°58'N, 11°35'E).

Fig. 5.11.3. Cesium-137 and cesium-134 (lower curve) in surface sea water from April 1986 to November 1990 collected at Klint, Zealand (55°58'N, 11°35'E).

Risø-R-570

Location (cf. Fig. 4	1.6.1)	Date	sig dry matter	8q ^{:37} Cs (kg K) ⁻¹	Bq ¹³⁷ Cs kg ⁻¹ dry weight	134Cs	Salinity in %aa
1: 55*4	2'N 12'06'E	Jan 21, 1988	17.3	540	18.8	0.21	11.0
l: 55*4	2'N 12'06'E	April 19, 1988	17.2	680	13.2	0.198	9.9
1: 55*4	2'N 12'06'E	Aug 22, 1988	17.1	650	20.4	0.134	11.9
I: 55'4	2'N 12'06'E	Oct 18, 1968	17.5	560	18.1	0.20	10.9
IX: 55*4	5'N 12'04'E	June 2, 1988	18.1	630	19.2	0.186	13 5
X: 55*5	1'N 12'02'E	June 2, 1988	14.6	580	21.4	0.184	15.7
1: 55*4	2'N 12'06'E	Jan 10, 1989	17.7	460	13.5	0.171	12.0
l: 55*4	2'N 12'06'E	April 19, 1989	13.4	420	12.2	0.154	14.2
1: 55*4	2'N 12"06'E*	July 19, 1989	22.8**	510	13.7	0.126	15.4
l: 55*4	2'N 12 '06 'E	Oct 19, 1989	21.7	450	14.8	0.100	14.3
IX: 55*4	5'N 12 '04'E	May 23, 1989	14.4	560	20.6	0.133	14.8
X: 55*5	1'N 12'02'E	May 23, 1989	14.9	500	16.4	0.1 49	16.1
• Measu	ired on fresh drying.					<u> </u>	

Table 5.1.1.2. Radiocesium in Fucus vesiculosus from Roskilde Fjord in 1988 and 1989

 Table 5.11.2. Radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus servatus (Fu.se.) collected at Klint (55*58'N, 11*35'E) in 1987. (Unit: Bq hg⁻¹ dry matter) (corrected 1987-data from Riso-R-563)

Species	Date	د و دو	137Cs	106Ru 137Cs	110mAg 137Cs	125Sb 137Cs	134Cs 137Cs	% dry matter	Salinity in ‰
Fu,ve.	April 10	4.0	14.9		0.23		0.27	17.8	
Fu.se	April 10	4.1	14.0	1.31	0.41	0.14	0.21	16.0	
Fu.ve.	May 21	4.0	13.5		0.24		0.25	17.8	
Fu.se.	May 21	4.7	21				0.27	19.0	
Fu.ve.	June 22	3.0	14.9				0.25	16.8	16.7
Fulse.	June 22	2.3	1 9 .9				0.27	17.4	
Fu.ve.	Ju.y 15	2.7	18 .1		0.06 B		0.25	13.0	
Fu.se.	July 15	3.4	16.8				0.24	21.4	
Fu.ve.	Aug 13	2.8	18 .1				0.25	14.6	
Fu.se.	Aug 13	2.0	21				0.22	20.2	
Fu.ve.	Sept 15	2.6	17.6				0.25	17.0	18.4
Fu.se.	Sept 15	2.5	17.6				0.25	21.3	
Fu.ve.	Oct 15	3.0	15.0				0.25	17.4	18.2
Fu.se.	Oct 15	1.79	11.3			0.12	0.22	22.1	
Fu.ve.	Nov 13	2.0 A	12.6				0.22	19.6	20.8
Fu.se.	Nov 13	2.3	13.3				0.21	19.0	
Fu.ve.	Dec 17	2.4	14.2				0.24	19.2	
Fu.se.	Dec 17	3.0	15.2			0.22	0.25	19.3	

Species	Date	60Co	137Cs	125Sb 137Cs	134Cs 137Cs	⁹⁹ Tc	% dry matter	Salinity in ‰
Fu.ve.	Jan 14	1.90	11.1		0.24	139	18.2	23.1
Fu.se.*	Jan 14	2.4	13.3	0.085	0.24	69	20.1	
Fu.ve.	Feb 16	2.1	16.1		0.20	135	16.0	18.8
Fu.se.	Feb16	3.4	19.0		0.26	83	16.2	
Fu.ve.	March 15	2.5	11.5		0.25	78	18.8	19.0
Fu.se.	March 15	2.7	14.0		0.195	71	21.6	
Fu.ve.	April 13	2.2	12.1		0.22	82 ± 5	18.9	14.1
Fu.se.	April 13	2.1	10.5		0.22	72	22.7	
Fu.ve.	May 16	0.86	13.8		0.23	97	16.1	15.6
Fu.se.	May 16	1.76	22		0.24	52	18.6	
Fu.ve.	June 14	1.45	19.8		0.26	48	17.8	15.4
Fu.se.	June 14	B.D.L.	28		0.24		18.4	
Fu.ve.	July 15	1.64	25		C 22	65	16.5	13.9
Fu.se.	July 15	1.86	25		0.23	41	22.0	
Fu.ve.	Aug 15	1.37	21		0.24	48	15.4	17.8
Fu.se.	Aug 15	1.71	22		0.24	39	24.5	
Fu.ve.	Sep 20	1.84	23		0.20	55	20.6	18.2
Fulse.**	Sep 20	2.6	23		0.23	46	20.0	
Fu.ve.	Oct 13	2.3	17.1		0.192	52	20.7	21.4
Fu.se.	Oct 13	3.0	19.5	0.124 A	0.21	54	21.8	
Fu.ve.	Nov 16	2.1	12.4		0.189	22	21.7	21.1
Fu.se.	Nov 16	2.0	10.8		0.22	21	22.4	
Fu.ve.	Dec 18	2.5	15.9		0.20	54	21.0	22.7
Fu.se.	Dec 18	2.7	16.7	0.206 A	0.20	116	20.0	

Table 5.11.2.A. Radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus servatus (Fu.se.) collected at Klint (55°58'N, 11°35'E) in 1988. (Unit: Bq kg⁻¹ dry matter)

Species	Date	60Co	¹³⁷ Cs	⁵⁴ Mn	125Sb 137Cs	<u>134Cs</u>	⁹⁹ Tc	% dry matter	Salinity in ‰
Fu ve	lan 12	21	10.0		<u> </u>	0 139	74	21.5	24.3
Fulse	Jan 12	27	14 1			0 184	64	21.2	2.0.0
Fu ve	Feb 15	22	7.3			0.182	60	20.9	23.9
Fulse	Feb 15	27	12.5			0.175	89	23.2	
Fu.ve.	March 15	1.55	8.1			0.167	66	22.5	15.2
Fu.se.	March 15	2.1	14.5	0.48 A	0.171	0.199	51	22.3	
Fu.ve.	April 13	1.11	13.4	0.21 A		0.172	79	17.1	14.2
Fu.se.	April 13	1.63	9.2	0.61 A	0.24	0.182	69	24.2	
Fu.ve.	May 12	1.77	22			0.179	78	14.8	15.4
Fu.se.	May 12	1.58	22	0.39 A	0.070	0.195	55	18.6	
Fu.ve.	June 13	B.D.L.	23			0.182	66	15.6	15.7
Fu.se.	June 13	1.52	26			0.186	50	18.4	
Fu.ve.	July 18	1.65	25			0.192	43	15.6	16.2
Fu.se.	July 18	1.15	19.0			0.177	48 `	21. 9	
Fu.ve.	Aug 14	1.73	22			0.166	49	18.0	17.4
Fu.se.	Aug 14	1.70	17.0			0.192	37	21.9	
Fu.ve.	Sep 18	1.86	16.0		0.107	0.154	55	19.3	17.5
Fu.se.	Sep 18	1.19	15.3		0.099	0.148	37	23.0	
Fu.ve.	Oct 18	1.74	14.4			0.169	54	22.9	19.8
Fu.se.	Oct 18	1.82	16.0		0.150	0.122	42	26.1	
Fu.ve.	Nov 13	B.D.L.	11.3			0.106	60	16.3	19.8
Fu.se.	Nov 13	2.1	15.2			0.150	48	20.3	
Fu.ve.	Dec 19	1.8A	9.7			0.190	75	15.4	23.8
Fu.se.	Dec 19	2.0	12.2			0.129	56	23.9	

Table 5.11.2.B. Radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus serratus (Fu.se.) collected at Klint (55:58'N, 11°35'E) in 1989. (Unit: Bq kg⁻¹ dry matter)

Location	Position N E	Date	©Co	137Cs	54Mn	125Sb 137Cs	134Cs	aalc	% dry matter	Salinity in ‰	Species
Nysted	54*40' 11*44'	Jan 13, 1988		25			0.25		18.5	12.3	Fu.ve.
	. - .	Feb 15, 1988		27			0.24		16.8	9.2	Fu.ve.
.*.		March 14, 1988		26			0.26		16.8	7.8	Fu.ve.
- * -		April 14, 1988		32			0.25	17.8±1.7	14.2	11.4	Fu.ve.
·*-		May 18, 1968		45			0.25		15.7	9.6	Fu.ve.
- • -	- * -	June 13, 1988		61			0.24	13.8	16.5	8.8	Fu.ve.
· · ·		July 14, 1988		54			0.24		17.8	9.4	Fu.ve.
- * -	.*.	Aug 16, 1988		48			0.25	16.3	18.1	11.1	Fu.ve.
•	.".	Sep 19, 1988		40			0.23		16.3	10.7	Fu.ve.
· · ·	- * -	Oct 14, 1988		44			0.22	10.7	16.3	13.9	Fu.ve.
· - ·	- * -	Nov 17, 1988		39			0.22		18.5	13.4	Fu.ve.
-"-	. * .	Dec 17, 1988		31	0.5 B		0.22		20.5	14.0	Fu.ve.
· · ·	-*-	Jan 13, 1989*		25			0.20	16.2	20.5	16.1	Fu.ve.
.".		Feb 16, 1989		21			0.193		21.7	15.1	Fu.ve.
· - ·	- - -	March 17, 1989		26			0.20		18.4	11.1	Fu.ve.
- * -	- * -	April 14, 1989		36		0.029 A	0.194	18.0	16.9	10.3	Fu.ve.
· - -	. * .	May 13, 1989		37	0.46	0.041	0.196		17.8	10.8	Fu.ve.
		June 14, 1989		41			0.184		20.8	10.4	Fu.ve.
· · ·	- * -	July 17, 1989		51			0.186	17.1	19.1	10.4	Fu.ve.
. •.		Aug 15, 1989		41			0.183		17.2	12.7	Fu.ve.
. - .	- * -	Sep 19, 1989		37			0.174		17.3	10.7	Fu.ve.
- * -		Oct 19, 1989		39			0.186	12.5	16.3	109	Fu.ve.
.*.	. * .	Nov 13, 1989		28			0.157		19.3	13.3	Fu.ve.
.* .		Dec 18, 1989		24			0.161		21.2	11.6	Fu.ve.
Streby											
Egede	55°25' 12°15'	Jan 13, 1988	2.8	32			0.29		19.8	11.5	Fu.ve.
.•.	.*.	March 14, 1988		34			0.31		11.7	9.0	Fu.ve.
.•.		April 14, 1988		47			0.28	18.4	16.1	10.5	Fu.ve.
- * -	·*·	May 16, 1988	1.31	59			0.27		13.3	8.2	Fu.ve.
·•·	.*.	June 13, 1988		72			0.28	14.9	14.4	7.8	Fu.ve.
.•.	·*·	July 14, 1988	1.37	61			0.25		18.6	7.9	Fu.ve.
.*.	·	Aug 16, 1988		51			0.26	13.1	18.1	9.9	Fu.ve.
.*.	- - .	Sep 19, 1988	1.37	42	0.6 B		0.25		17.4	10.2	Fu.ve.
. *.		Oct 13, 1988	2.1 A	35			0.23	19.1	16.7	12.1	Fu.ve.
.*.	- • -	Nov 17, 1988	1.92	29			0.23		17.1	10.5	Fulve.
- * -		Dec 18, 1988**	1.83	29			0.21		17.8	10.6	Fu.ve.
.".	· • ·	Jan 13, 1989	1.60	26			0.22	23	17.5	12.5	Fu.ve.
.*.	·*·	Feb 16, 1989	1.60	29			0.199		15.1	11.8	Fu.ve.
.* .	.•.	March 17, 1989		34			0.20		14.1	9. 9	Fu.ve.
· * ·		April 14, 1989	1.10	41	0.45		0.20	34	13.6	9.6	Fu.ve.
. *.	<i>.</i> •.	May 13, 1989	0.85	44	0. 34 A		0.199		15.7	10.2	Fu.ve.
·•·	.*.	June 14, 1989		56			0.197		12.7	9.1	Fu.ve.
	.*.	July 17, 1989		54			0.198	25	21.7	9.4	Fu.ve.
-* <i>-</i>		Aug 15, 1989	1.06	38			0.184		19.5	10.2	Fu.ve.
٠.	- * -	Sep 19, 1989	1.01 A	37			0.180		17.9	9.6	Fu.ve.
.*.	<i>.</i> •.	Oct 19, 1989		44			0.167	11.4	17.8	13.3	Fu.ve.
. * -		Nov 13, 1989	1.09	40			0.171		17.3	10.2	Fu.ve.
	.".	Dec 18, 1989	0.73 A	30			0.159		21.3	11.8	Fu.ve.

Table 5.11.3. Radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus serratus (Fu.se.) collected in Danish waters in 1988 and 1989. (Unit: Bq kg⁻¹ dry matter)

Location	Position	Date	⁶⁰ Co	13705	54Mn	125Sb	134Cs	99Tc	·	Salinity	Species
	N E					137Cs	137Cs		dry matter	in ‰	
Mullerup	55*30' 11*10'	Jan 14, 1988		13.6			0.25		18.0	17.9	Fu.ve.
-"-	-*-	Feb 16, 1988		17.2			0.24		16. 9	13.9	Fu.ve.
. . -	· * ·	April 13, 1988		25			0.27	48±4.9	15.0	16.7	Fu.ve.
-*-	-*-	May 17, 1988		25			0.26		18.7	10.4	Fu.ve.
·•·	· - ·	June 14, 1988		27			0.24	34	20.1	13.0	Fu.ve.
- * -	- * -	July 15, 1988		29		0.140	0.25			11. <u>2</u>	Fu.se.
.*.		Sep 20, 1988		17.5			0.24		24.2	20.5	Fu.ve.
-*-	-*-	Oct 13, 1988		11.8		0.22 A	0.192	30	24.7	18.2	Fu.ve.
Reerse	55°31′ 11°07′	Jan 12, 1989		14.3			0.196	43	18.4	19.9	Fu.ve.
- - .	· * -	Feb 15, 1989		14.3			0.21		18.3	18.6	Fu.ve.
	-*-	March 16, 1989		22			0.20		16.1	11.3	Fu.ve.
-*-	-"-	April 13, 1989		25			0.182	48	17.1	11.1	Fu.ve.
- *-	-*-	May 12, 1989		17.0			0.173		12.7	15.1	Fu.ve.
 .	· - ·	June 13, 1989	1.06 A	28			0.190		17.1	13.0	Fu.ve.
- * -	. *.	July 18, 1989		30			0.196	27	20.6	16. 9	Fu.ve.
- - -	• " -	Aug 14, 1989		25			0.175		19.3	16.4	Fu.ve.
- - -	. * .	Sep 18, 1989		30			0.156		16.2	12.4	Fu.ve.
·*· .	. - .	Oct 18, 1989		21			0.175	28	22.0	18. 9	Fu.ve.
- - .	· ~ -	Dec 19, 1989		14.0			0.099		18.8	18.7	Fu.ve.
Gilleleje	56°07' 12°19'	Jan 15, 1988	4.3	15.9			0.191		21.4	20.4	Fu.se.
Nakkehoved	56°07' 12°21'	Feb 19, 1988	1.39	11.8			0.26		16.7	18. 8	Fu.ve.
- - .		March 15, 1988	2.1	13.3			0.22		19.7	18.1	Fu.ve.
. * .		April 13, 1988	3.7	17.6			0.24	104 ± 1.8	19.4	11.4	Fu.se.
-".		May 16, 1988	2.1	20			0.25		13.4	15.8	Fu.ve.
. . .		June 14, 1988		21			0.25		16.9	13.7	Fu.ve.
. - .		July 13, 1988		24			0.23		16.1	13.7	Fu.ve.
- * .	-"-	Aug 15, 1988	2.2	19.1			0.22	53	18.6	18.4	Fu.ve.
- * -		Oct 13, 1988	2.3	15.4			0.20	102	19.1	22.4	Fu.ve.
- " -	.".	Nov 16, 1988	2.1	12.2		0.22	0.22		20.4	21.7	Fu.ve.
·		Dec 21, 1988	2.1	13.5			0.182		18.7	22.1	Fu.ve.
. - .	. * .	Dec 21, 19884	3.6	19.6			0.190		21.9		Fu.se.
·*·		Jan 12, 1989		12.3			0.180	200	20.8	21.6	Fu.ve.
- * -	.*.	March 15, 1989	1.55	10.4			0.193		18.6	15.4	Fu ve.
-*-	·*-	April 13, 1989	0.99	12.0			0.191	141	15.1	12.2	Fu.ve.
- * -	 .	May 12, 1989		16.9			0.21		14.6	15.2	Fu.ve.
·*-	<i>.*</i> .	June 13, 1989		24			0.188		13.7	11.7	Fu.ve.
·*·		Aug 14, 1989	1.41	18.9			0.160		18.1	19.0	Fu.ve.
- - .		Sep 19, 1989		17.7			0.168		18.1	19.6	Fu.ve.
- - -		Oct 18, 1989	1.60	12.2			0.169	82	23.2	19.0	Fu.ve.
	- * -	Nov 15, 1989	2.4	14.1			0.148		17.6	17.6	Fu.ve.
-*-	.*.	Dec 19, 1989	1.58	10.5			0 162		23.6	21.0	Fu.ve.
Svenske							•••			•••••	
Havn	55*05' 15*09'	May 25, 1988		45			0 28	6.3	12 2		Fu.ve.
	.*.	May 30, 1989		51			0.199		14.2		Fulve
Hesseia	55*12' 11*43'	June 7, 1988	1.38	25			0.24		19.6		Fu.ve.
	.".	June 7 1988	2.1	25			0.23		22.7		Fuise
		May 9 1099	1 46	24			0 185		17.0		Fuve
		May 9, 1909	1.62	 22			0.175		19.1		Fuse
		Oct 30 1090	1 58	167		0118	0.125		19.9		Fulve
		001 30, 1909	1 30	130		0.110	0.135		7: F		Fue
			1.33			-	·				1 gl. grui -
52						R	isø-R-57	' U			

I adie S.II.S. Continuea	Ta	ıble	5. <i>II.3</i>	. continued
--------------------------	----	------	----------------	-------------

Table 5.11.3. continued

Location	Position N E	Date	60 Co	137Cs	54Mn	125Sb 137Cs	134Cs 137Cs	99Tc	% dry matter	Salinity In ‰	Species
Anholt	56'43' 11'31'	June 9, 1988	0.88 A	18.7			0.23		19.4		Fu.ve.
. - .	_• .	Nov 3, 1989		15.3			0.131		15.6		Fu.ve.
Læsø											
Vestereby	57"18' 10"56'	June 8, 1988		14.6			0.23		22.7		Fu.ve.
.•.	-*-	May 11, 1989	1.66	10.1			0.152		17.2		Fu.ve.
·•.	. *.	Nov 1, 1989	1.68	8.6			0.105 A		20.3		Fu.ve.
Læsø											
Østerby	57°19' 11°08'	June 9, 1988		16.6			0.21		14.9		Fu.ve.
.* .	-*-	Dec 16, 1988	1.96	10.8			0.182		17.0		Fu.ve.
. •.	- - -	May 11, 1989		16.2			0.194		14.6		Fu.ve.
	-*-	Nov 2, 1989	1.65	10.7			0.111 A		16.6		Fu.ve.

.

•95Nb: 0.9 A Bq kg-1 dry weight

**1511: 4.4 A Ba kg-1 dry weight

△ 106Ru: 13.2 A Bq kg -1 dry weight

Location	Position	Date	Bq ⁶⁰ Co	Ba ¹³⁷ Cs	110mAg	106Ru	134Cs	%	Species	Salinity
	N E		kg ⁻¹ d.w.	kg ⁻¹ d.w.	¹³⁷ Cs	¹³⁷ Cs	¹³⁷ Cs	dry matter	-	in ‰
Nysted	54°40' 11°44'	April 29		18.0			0.30		Fu.ve.	95
-"-	-"-	May 20		36			0.28	13.3	Fu.ve.	10.4
- " -	- ** -	June 23		37			0.29	17,9	Fu.ve.	10.6
- " -	- " -	July 16		34			0.31	19.8	Fu.ve.	11.0
- " -	- " -	Aug 12		29			0.29	20.8	Fu.ve.	13.6
- <i>"</i> -	- " -	Sept 14		35			0.31	17.2	Fu.ve.	10.5
- " -	- " -	Oct 14		34			0.25	16.5	Fu.ve.	10.8
- " -	- " -	Nov 11		32			0.28	17.6	Fu.ve.	9.9
- " -	- " -	Dec 18		30			0.26	17.7	Fu.ve.	11.3
Strøby										. –
Egede	55°25' 12°15'	April 29		43			0.33	16.5	Fu.ve.	8.5
	"	May 20		37			0.36	14.1	Fu.ve.	9.1
- <i>"</i> -	- " -	June 17	2.1	60			0.32	10.2	Fu.ve.	8.1
- " -	- " -	July 16		42			0.32	17.2	Fu.ve.	10.6
- " -	- " -	Aug 12	2.0	40			0.34	20.8	Fu.ve.	9.8
- " -	- " -	Sept 14		44			0.29	19.1	Fu.ve.	11.8
- " -	- " -	Oct 14		36			0.28	18.1	Fu.ve.	9.6
- " -	- " -	Nov 11		36			0.29	18.2	Fu.ve.	11.1
- " -	- " -	Dec 16	2.0	33			0.30	18.8	Fu.ve.	12.8
Gilleleie	56°07' 12°19'	April 24	92	14.8	0.22		0.30		Fu.ve.	17.3
- " -	-".	May 20	64	19.4	0.25	0.97	0.29	21.9	Fu.se.	17.2
- " -	- " -	June 22	2.0	18.6	0.20		0.28	17.3	Fulve	16.8
- " -	- " -	July 17	46	21			0.24	19.5	Fulse	20.2
- <i>" -</i>	- " -	Aug 14	37	12.3			0.29	26.2	Fulse	19.8
- " -	<i>."</i> .	Sent 14	59	17.7			0.23	20:2	Fu se	16.7
• " -	_ " _	Oct 16	33	18.5			0.27	21.5	Fulse	24.4
- " -	·* ·	Nov 12	39	11.5		0.58	0.31	20.7	Fulse	20.8
Hessela	56°12' 11°43'	May 25	32	13.1	0.23	0.00	0.28	22.1	Fulve	
	-"-	May 25	32	15.3	0.20		0.20	21.8	Fulse	
.".	_ " _	Dec 14	2.8	14.7			0.25	34.3	Fu se	
Anhoit	56°43' 11°31'	May 13	2.0	22	013	0.56	0.25	21.6	Fulve	
~		Dec 14	1 <u>4</u> A	16.8	0.10	0.00	0.20	179	Fulve	
Mullerun	55°30' 11°10'	April 30	1.47	20a)	013		0.33	13.5	Fulve	15.3
.".	-"-	May 21	1.86	22	0.10		0.00	127	Fulve	17.8
- " -		lune 22	1.00	31			0.33	14.5	Filve	18.7
- " -	- " -	July 15	15	17 86)			0.31	25.3	Fulve	16.7
			1.5 10A	163			0.30	21.3	Fulve	173
		Sent 15	1.0 A	19.5			0.00	20.5	Fu ve	13.4
.".		Oct 15		195			0.27	20.5	Fu se	12.6
		Oct 15		20.4			0.32	197	Fu ve	12.0
		Dec 17		103			0.20	21.2	Fu vo	16.6
lanca	57019' 10056'	May 12	24	14.6			0.20	21.2	Fu co	10.0
L.~~50	57'18'10'50	May 13	2.4	137			0.24	13.6	Fulva	
Svenska	57 15 11 06	IVIDY IS	2.0	13.7			0.22	13.0	ru.ve.	
									_	

Table 5.11.3.C. Radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus serratus (Fu.se.) collected in Danish waters in 1987 (corrected 1987 data from Risø-R-563)

154

Table 5.12.1.A. Radionuclides in lichen collected in Denmark in 1988

Sample	Location	Date	¹³⁷ Cs	106Ru	110mAg	125Sb	134Cs	:#4Ce	kg d.w
			Bo m ⁻²	137Cs	^{, 37} Cs	¹³⁷ Cs	¹³⁷ Cs	¹³⁷ Cs	m-2
Lichen	Bornholm	May 25	198	0.070 A			0.23		0 88
Lichen	Asserbo	June 14	790	0.079	0.0019 B	0.014 A	0.28		1.28
Lichen	Hvide Sande	June 27	3200	0.072		0.0174	0.28	0.016 A	1 14
Lichen	Skagen 1	Sep 29	200	0.059 B			0.24		0 56
Lichen	Skagen 2	Sep 29	310				0.24		0.94
Lichen Lichen	Skagen 3	Sep 29	220				0.22		0.62
(Pseudevernia furfuracea) Lichen	Skagen	Sep 29	124				0.21		0 38
(Pseudevernia furfuracea) Lichen	Skagen	Sep 29	206				0.25		1 19
(Mypogymnia physodes)	Skagen	Sep 29	64				0.26		0 40

Table 5.12.1.B. Radionuclides in lichen and moss collected in Denmark in 1989

Sample	Location	Date	¹³⁷ Cs Bq m ⁻²	¹⁰⁶ Ru ¹³⁷ Cs	125Sb 137Cs	¹³⁴ Cs 137Cs	kg d.w. m⁻²
Moss Lichen Lichen Lichen Lichen	Arnager, Bornholm Dueodde, Bornholm Hvide Sande Skagen 1 Skagen 2	May 30 May 30 June 6 Sep 24 Sep 24	660 63 1600 310 220	0.050 A	0.015 A	0.154 0.138 0.21 0.179 0.174	3.90 0.43 0.98 0.96 0.76

Table 5.12.2. Padiocesium in lichen	(Cladina portentosa) col	lected at Oustrup Heather
October 3, 1989, by Ulrik Sochting,	Institute of Sporeplants,	University of Copenhagen

Sample	^{1 37} Cs Bq kg ⁻¹ Bq m ⁻² d.w.	¹³⁴ Cs Bq kg ⁻¹ Bq m ⁻² d.w.	134 <u>Cs</u> 137Cs	% Chernobyi ¹³⁷ Cs
Top layer No. 1	390 560	68 97	0.174	
Top layer No. 2	430 610	76 107	0.175	
Top layer No. 3	440 540	70 86	0.158	
Top layer No. 4	360 400	59 67	0.167	
Top layer No. 5	490 710	70 103	0.144	
Bottom layer No. 1	16.4 820	1.0 A 51 A	0.06	
Bottom layer No. 2	41 125	1.2 B 4 B	0.03	
Bottom layer No. 3	15.6 470	1.1 B 33 B	0.07	
Bottom layer No. 4	35 730	0.8 B 16 B	0.02	
Bottom layer No. 5	22 900	0.8 A 30 A	0.04	
x Top ±1 S.D.	420±50 560±113	$69 \pm 6.1 92 \pm 16$	0.164 ± 0.01	90
\bar{x} Bottom ± 1 S.D.	26±11 610±315	1.0 ± 0.2 27 ± 18	0.04 ± 0.02	22
Top + Bottom ±1 S.D.	1170 ± 337	119±24	0.102	55

Risø-R-570

Fig. 5.12. The ecological decay of ¹³⁷Cs from Chernobyl and from global fallout (all ¹³⁷Cs data corrected to April 26, 1986) in Danish lichen collected at Oustrup Heather and Skagen 1986-1990.

Species	Date	¹³⁷ Cs Bq kg ⁻¹ d w.	¹³⁴ Cs Bakg ⁻¹ d.w.	-34Cs 137Cs	g K kg⁻¹ d.w	% dry matter
Honey fungus	Sept 29	268 ± 14 (n = 2)	325±16(n=2)	$0.121 \pm 0.000 (n = 2)$	528=11(n=2)	7 12 ± 0 26 (n = 2)
(Armillaria	Oct 17	278 = 9(n = 2)	351 ± 3.5 (n = 2)	0.127 ± 0.017 (n = 2)	48 7 ± 0.1 (n = 2)	5 47 ± 1 47 (n = 2)
meliea)	Oct 19	142	14.9	0 105	69 4	4 56
Clouded agaric	Sept 29	113	19.7	0.174	72.6	6 23
(Clitocybe	Oct 4	626	116	0.185	280	9 62
nebularis)						
Common yellow	Oct 4	640 ± 49 (n = 2)	76 ± 5.2 (n = 2)	0.118±0.001 (n = 2)	42.2 ± 0 1 (n = 2)	11 73±307 (n = 2)
russula	Oct 11	360	42	0.117	43.2	514
(Russula	Oct 17	580 ± 92 (n = 4)	69 ± 10 (n = 4)	0.120 ± 0.002 (n = 4)	427 ± 21 (n = 4)	555 ± 0.44 (n = 4)
ochroleuca)	Oct 19	570 ± 41 (n = 2)	48 ±1 (n = 2)	0.084 ± 0.008 (n = 2)	54.3 ± 2.9 (n = 2)	383±029(n=2)
	Oct 30	950 = 134 (n = 2)	$74 \pm 16 (n = 2)$	$0.077 \pm 0.006 (n = 2)$	$510 \pm 06 (n = 2)$	4 19±0 29 (n = 2)
The blusher	Oct 11	445	46	0 103	46 0	
(Amanita	Oct 17	300	34	0113	44 4	5 42
rubescens)	Oct 19	126	13 2	0 104	58 8	3 39
Wood blewit	Oct 4	108	177	0.164	52.4	5 62
(Lepista nuda)	Oct 30	7			58 7	5 26
Field blewit	Oct 30	25	394	0 155 A	776	3 52
(Lapista personata)						
Geometric mean						
Honey fungus	Sept 29-Oct 19	$240 \pm 1.14(n = 5)$	29±1.18(n=5)	0.120 ± 1.06 (n = 5)		
Clouded agaric	Sept 29-Oct 4	270 ± 2 35(n = 2)	48 = 2 43 (n = 2)	0 179 ± 1 03 (n = 2)	451 ± 161 (n = 2)	
Common yellow	Oct 4-Oct 30	600 ± 1 11(n = 11)	62 ± 1.10 (n = 11)	0.103±1.06(n=11)	460±104(n=11)	
russula						
The blusher	Oct 11-Oct 19	260 ± 1 45 (n = 3)	27 ± 1 46 (n = 3)	$0.107 \pm 1.03 (n = 3)$	49.3 ± 1 09 (n = 3)	
Wood blewit	Oct 11-Oct 19	28 ± 3 92 (n = 2)	17.7	0 164	55 5 ± 1 06 (n = 2)	
Field blewit	Oct 30	25	394	0 155 A	77.6	
Arithmetic mean						
Honey fungus	Sept 29-Oct 19	247 = 27 (n = 5)	30 ± 4 (n = 5)	0 1 20 ± 0 007 (n = 5)	545 ± 39(n = 5)	
Clouded agaric	Sept 29-Oct 4	370 = 257 (n = 2)	68 ± 48 (n = 5)	$0.180 \pm 0.006 (n = 2)$	50 = 22 (n = 2)	
Common yellow	Oct 4-Oct 30	640 ± 63 (n = 11)	65 ± 6 (n = 11)	$0.105 \pm 0.006 (n = 11)$	463±18(n=11)	
russula						
The blusher	Oct 11-Oct 19	292 = 93 (n = 3)	$31 \pm 10 (n = 3)$	0.107 ± 0.003 (n = 3)	49.7 ± 4 5 (n = 3)	
Wood blewit	Oct 11-Oct 19	57 ± 50 (n = 2)	177	0 164	555±31(n=2)	
Field blewit	Oct 30	25	394	0 155 A	77,6	

Table 5.13.1.1. Radiocesium in mushrooms collected in spruce-forest in Gribskov in the north-east part of Zealand in Denmark in September-October 1989. (The error term is ±1 S.E.) collected by University of Roskilde

Species	Date	¹³⁷ Cs Bq kg-1 d.w.	¹³⁴ Cs Bq kg ⁻¹ d.w.	<u>134Cs</u> 137Cs	g K kg ⁻¹ d.w.	% dry matter
Honey fungus	Sept 29	$65 \pm 10 (n = 4)$	201 ±0 39 (n = 4)	$0.030 \pm 0.002 (n = 4)$	451 ± 1.9 (n = 4)	$923\pm034(n=4)$
(Armillaria	Oct 11	142	348	0.024 B	41.1	
meliea)						
Clouded agaric	Oct 4	210	25	0.118	44 3	18.32
(Clitocybe	Oct 11	$221 \pm 167 (n = 2)$	28 = 21 (n = 2)		40.6 ± 7 5 (n = 2)	6 48 = 1 04 in = 2)
nebularis)	Oct 14	97	11	0118	35 6	6.70
Common yeliow	Oct 4	980	116	0119	43 3	18.62
russula	Oct 11	250	27	0.110	41.9	5.52
(Aussula	Oct 14	820 ± 133 (n = 3)	90 = 15 (n = 3)	0.110 ± 0.006 (n = 3)	42.9 ± 1.6 (n = 3)	5.32 ± 0 62 (n = 3)
ochroieuca)	Oct 17	910	110	0.121	42.4	5.20
	Oct 19	1200 ± 270(n = 3)	$123 \pm 27 (n = 3)$	$0.104 \pm 0.008 (n = 3)$	48.7 ± 0.2 (n = 3)	4 39 ± 0 24 (n = 3)
	Oct 30	690 ± 280 (n = 2)	73 ± 33 (n = 2)	$0.103 \pm 0.006 (n = 2)$	46.3 ± 2 3 (n = 2)	5 46 ± 0 98 (n = 2)
The blusher	Oct 4	81	3.7 B	0.046 B	41.1	9 14
(Amanita	Oct 11	64	168	0 024 8	48.1	4.26
rubescens}	Oct 17	560	49	Ĵ 087	37.8	5.40
	Oct 19	43 A			58 7	3 93
···· · · · ·	• ••					
Wood blewit	Oct 20	13.4			58.9	5 51
(Lepista nuda)				<u> </u>		
Geometric mean						
Honey fungus	Sept 29-Oct 11	72 ± 1.26(n = 5)	2.1 ± 1.26 (n = 5)	$0.029 \pm 1.07 (n = 5)$	44.2 ± 1.04 (n = 5)	
Clouded agaric	Oct 4-Oct 14	143 ± 1.54(n = 4)	18 ± 1.51 (n = 4)	0.126 ± 1.05 (n = 4)	398±109(n=4)	
Common yellow	Oct 4-Oct 30	780±117(n=11)	85 ± 1 17 (n = 11)	0.108 ± 1.03 (n = 11)	449±1.02(n=11)	
russula						
The blusher	Oct 4-Oct 19	106 ± 1.77 (n = 4)	66=2.81 (n = 3)	0.046 ± 1 44 (n = 3)	458 ± 1.10 (n = 4)	
Wood blewit	Oct 20	134			58 9	
Arithmetic meter						
Honey lungus	Sent 29.Oct 11	90 + 17 4 (n + 5)	$23 \pm 0.4 (n = 5)$	$0.029 \pm 0.002 (n = 5)$	$44.3 \pm 1.7 (n = 5)$	
Clouded again	Oct4-Oct 14	187 - 75 (n = A)	23 + 93 in = 41	0.126 = 0.002 (n = 3)	403+36(n=4)	
	Oct 4-Oct 30	870 ± 117(n ± 11)	$95 \pm 124(n \pm 11)$	$0.109 \pm 0.003 (n = 11)$	450=10in=11	
russula						
The blusher	Oct 4-Oct 19	188±125(n=4)	18 = 15 (n = 3)	$0.052 \pm 0.018 (n = 3)$	$464 \pm 46(n=4)$	
Wood blewit	Oct 20	13.4			58.9	

Table 5.13.1.2. Radiocesium in mushrooms collected in beech wood in Gribskov in the north-east part of Zealand in Denmark in September-October 1989. (The error term is ± 1 S.E.) collected by University of Roskilde

		137Cs		134C	s	134Cs	g K
Territory	No.	Bq kg-1 fresh	Bq m⁻²	Bq kg-1 fresh	Bq m⁻²	¹³⁷ Cs	kg- ¹ fresh
1	4	43	1140	4.8	128	0.112	2.63
1	5	48	1610	5.2	1 76	0.109	1. 79
1	6	36	830	3.0	71	0.085	2.48
1 Arithmet	tic mean	42	1190	4.4	125	0.102	2.30
(n = 3)	S.E .	4	230	0.7	30	0.009	0.26
2	10	45	1080	4.9	117	0.108	2.10
2	11	42	1070	5.5	141	0.131	0.92
2	12	69	2900	5.2	220	0.075	11.2
2 Arithmet	licmean	52	1690	5.2	159	0.105	4.7
(n = 3)	S.E .	8	620	0.2	31	0.016	3.2
Geometric	mean			· · ·			
of 1 and 2		46	1310	4.7	134	0.102	2.5
(n = 6)S.E.	(factor)	1.09	1.20	1.09	1.17	1.09	1.40
Arithmetic	mean						
of 1 and 2	'	47	1440	4.8	142	0.104	3.5
(n = 6) S.E.		5	310	0.4	21	0.008	1.6

Table 5.13.2.1. Radiocesium in soil samples (0-5 cm layer) collected in spruce-forest in Gribskov in the north-east part of Zealand in Denmark October 26, 1989 collected by University of Roskilde

	137Cs		s	234C	s	134Cs	g K
Territory	No.	Bq kg ⁻¹ fresh	Bq m⁻²	Bq kg-1 fresh	8q m-2	¹³⁷ Cs	kg ⁻¹ fresh
1	1	53	2100	2.9	113	0.055	8.85
1	2	45	1980	2.8	121	0.062	10.46
1	3	47	1800	3.8	145	0.081	5.70
1 Arithmet	licmean	48	1940	3.1	127	0.066	8.3
(n = 3)	S.E.	2	76	0.3	10	0.008	1.4
2	7	34	1190	3.6	124	0.104	1.52
2	8	65	1310	8.4	170	0.129	0.93
2	9	65	2600	5.8	230	0.089	8.32
2 Arithmet	i c mea n	55	1690	5.9	174	0.107	3.6
(n = 3)	S.E.	10	440	1.4	30	0.012	2.4
Geometric	mean						
of 1 and 2		50	1760	4.2	146	0.083	4.3
(n = 6)S.E.(factor)	1.10	1.12	1.19	1.11	1.14	1.52
Arithmetic	mean						
of 1 and 2		51	1820	4.5	150	0.086	6.0
(n = 6) S.E.		5	210	0.9	18	0.011	1.6

Table 5.13.2.2. Radiocesium in soil samples (0-5 cm layer) collected in beech wood in Gribskov in the north-east part of Zealand in Denmark October 26, 1989 collected by University of Roskilde

÷

÷

Table 5.13.2.3. Radiocesium in soil samples collected in spruce-forest in Gribshov in the north-east part of Zealand in Denmark November 1, 1989 collected by University of Roskilde

	137C	s	134	s	134Cs g.K		
Layer	Bq kg ⁻¹ fresh	Bq m⁻²	Bq kg ⁻¹ fresh	8q m-2	¹³⁷ Cs	kg-1 fresh	
0-10 cm	27	1800	2.0	136	0.076	13.8	
10-20 cm	5.9	680	0.051	5.9	0.0086	14.4	
20-30 cm	2.0	300	B.D.L.	8.D.L.		15.7	
0-30 cm		Σ 2780		Σ142			

Table 5.13.2.4. Radiocesium in soil samples collected in beech wood in Gribshov in the north-east part of Zealand in Denmark November 1, 1989 collected by University of Roskilde

	137Cs		134C	S	134Cs	a K
Layer	Bq kg ⁻¹ fresh	Bq m ⁻²	Bq kg ⁻¹ fresh	Bq m⁻²	137Cs	kg- ¹ fresh
0-10 cm	22	2600	1.3 A	149 A	0.058	13.3
10-20 cm	0.97	161	B.D.L.	8.D.L.		16.0
20-30 cm	0.47	79	B.D.L.	B.D.L.		16.6
0-30 cm		Σ 2800		Σ149		

6. Strontium-90 and Radiocesium in Humans

6.1. Strontium-90 in Human Bone

(by A. Aarkrog)

Tables 6.1.1-6.1.6 A & B summarize the results from 1988 and 1989. The levels are decreasing for all age groups with an effective halflife of about 4 years (1985-1989).

6.2. Radiocesium in the Human Body

by B. Lauridsen and J. Søgaard-Hansen

Whole-body measurements of radiocesium were initiated at Riss in July 1963 (cf. 2.3 in Riss Report No. 85). The initial program stopped in 1977 due to very low body contents. The Chernobyl accident resulted in elevated radiocesium levels in foodstuff and the whole-body measurements were resumed in September 1986.

The new control group comprises a large fraction of the old supplemented with a few newcomers. In total there are about 20 persons in the group including 2 children.

Results from the early whole-body measurements are shown in Fig. 6.2.1. The figure shows the average yearly Bq 137 Cs (kg K)⁻¹ contents (± 1 S.E.) in the period 1963 to 1977. The measurements are compared with calculated values based on foodstuff data. For comparison the average values for 1986, 1987, 1988 and 1989 are given.

In Fig. 6.2.2 the measured mean values of $^{134}Cs + ^{137}Cs$ body content are shown for men, women and children. The figure, furthermore, shows the calculated levels based upon estimated intake of radiocesium with food. In Fig. 6.2.2 persons in the control group were omitted if they have been on official travel to countries with relatively high contamination levels. The measured body contents in 1989 are now well below the 1987 peak values and are approaching the pre-Chernobyl level. The calculated levels appear to be in good agreement with the observed values. The mean concentration in 1988 was 1250 Bq $^{134}Cs + ^{137}Cs/(kg K)$ (rel. S.D.: 27%). The mean concentration in 1989 was 555 Bq $^{134}Cs + ^{137}Cs/(kg K)$ (rel. S.D.: 12%).

6.3. Radionuclides in Human Milk

(by A. Aarkrog)

The mean concentrations in human milk were 0.099 ± 0.017 Bq ¹³⁷Cs l⁻¹ and 0.0020 ± 0.0004 Bq ⁹⁰Sr l⁻¹, 84% of the ¹³⁷Cs was from Chernobyl. Compared with the diet levels measured in Zealand in June and December 1988, we found that 29% of the daily intake of ¹³⁷Cs and 1.4% of the ⁹⁶Sr were excreted in 1 l of human milk. These observations are compatible with those made earlier for global fallout (*Aarkrog* 1979).

6.4. Human Urine

Since the last quarter of 1987, when the maximum 137 Cs level in human urine from Riso occurred (660 Bq 137 Cs (kg K)⁻¹) the concentrations have decreased with an effective halflife of 0.75 years. This decrease is in agreement with that observed for wholebody measurements (cf. 6.2).

The ratio between the annual mean values of Bq 137 Cs (kg K)⁻¹ in body and urine was 3.1 in 1988 and 2.9 in 1989. The maximum of 137 Cs in urine and body occurred approximately 0.5-1 year after the maximum in diet.

•

 Table 6.1.1.A. Strontium-90 in vertebrae from newborn children

 (< 1 month old) in 1988</td>

Zone	Age in days	Month of death	Sex	Bq (kg Ca)−1
11	27	4	м	19,6

 Table 6.1.1.B. Strontium-90 in vertebrae from newborn children

 (< 1 month old) in 1989</td>

No samples

Table 6.1.2.A. Strontium-90 in bone from infants (≤ 4 years) in 1988

Zone	Age in months	Month of death	Sex	Bq (kg Ca)-1
	8	4	F	28
111	3	4	F	23
111	1	4	M	18.0
IV	8	4	M	33 B

Table 6.1.2.B. Strontium-90 in bone from infants (≤ 4 years) in 1989

Zone (Lccation)	Age in Month of months death		Sex	Bq (kg Ca)-1
Jutland	3	8	F	11.5 B

Table 6.1.3.A. Strontium-90 in bone from children and teenagers (\leq 19 years) in 1988

No samples.

Table 6.1.3.B. Strontium-90 in bone from children and teenagers (≤ 19 years) in 1989

Zone	Age in years	Month of death	Sex	Bq (kg Ca)-1
ll	15	5	M	17.0
Vl	6	6	F	18.0

Fig. 6.1.1. Strontium-90 levels in bone from new-born (< 1 month) 1961-1989.

Fig. 6.1.2. Strontium-90 levels in bone from infants (> 1 month \leq 4 years) 1961-1989.

Table 6.1.4.A. Strontium-90 in vertebrae from adults (≤ 29 years) in 1988

Zone	Age in years	Month of death	Sex	Bq (kg Ca)-1
H	28	9	F	16.6
11	23	9	Μ	12.4
H	23	9	Μ	11.6
VI	20	5	Μ	23
VI	29	5	М	15.8

Table 6.1.4.B. Strontium-90 in vertebrae from adults (≤ 29 years) in 1989

Zone (Location)	Age in years	Month of death	Sex	Bq (kg Ca) ⁻¹
	20	6	M	12.0
11	21	6	М	11.3
VI	24	1	Μ	11.1
Jutland	23	5	Μ	14.1

Fig. 6.1.3. Strontium-90 levels in bone from children (> 4 years \leq 19 years) 1960-1989.

Fig. 6.1.4. Strontium-90 levels in bone from adults (> 19 years \leq 29 years) 1960-1989.

Zone	Age in	Month of	Sex	Bq (kg Ca)-1
	years	death		
I	32	4	М	16.5
ł	60	9	М	20
i	73	4	М	24
I	74	9	М	31
I	81	4	М	24
11	36	9	F	22
11	38	4	F	34
H .	46	4	F	17.6
11	49	4	F	25
11	51	4	F	24
11	63	4	F	14.4
II	32	4	М	14.3
H	37	9	Μ	20
łi –	53	10	Μ	19.6
II.	57	9	Μ	18.3
11	67	4	м	10.6 -
HI	57	10	M	19.5
IV	75	4	Μ	33
VI	47	4	F	21
VI	50	5	F	19.9
VI	53	4	F	21
VI	56	4	F	20
VI	58	12	F	10.1
VI	65	4	F	22
VI	35	4	Μ	14.8
VI	49	4	м	14.7
VI	54	12	М	11.3
VI	56	4	Μ	13.3 A
VI	63	4	Μ	15.0
VI	66	4	M	20

Table 6.1.5.A. Strontium-90 in vertebrae from adults (> 29 years) in 1988

Fig. 6.1.5. Strontium-90 levels in bone from adults (> 29 years) 1960-1989).

Table 6.1.5.B. Strontium-90 in vertebrae from adults (> 29 years) in 1989

Zone (Location)	Age in years	Month of death	Sex	Bq (kg Ca)-1
1	55	10	F	14.2
ł	70	10	F	29
I	85	10	F	25
ł	60	6	Μ	11.4
11	56	1	F	32
Н	73	6	F	24
11	85	10	F	19.6
li –	39	10	Μ	17.6
II	60	10	Μ	10.8
H	70	10	Μ	13.8
11	7 9	9	Μ	36
III	52	5	F	17.7
111	80	5	F	25
Ш	70	10	Μ	14.5
ŧ٧	84	5	F	20
VI	30	1	F	15.8
Vi	42	6	F	18.4
VI	43	6	F	7.4 A
VI	44	6	F	21
VI	52	6	F	12.4
VI	67	6	F	11.8
VI	34	6	Μ	11.7
VI	43	6	M	19.8
VI	43	6	M	26
VI	45	1	M	12.4 A
VI	54	1	M	10.7 A
VI	54	6	M	14.4
VI	56	6	M	17.0
VI	66	6	M	23
VI	66	6	M	14.6
VE	6/	1	M	8.1
VI	/1	1		21
	77	1		21
VI	78 25	I		0.98
Jutiand	35 20	0	r c	15.2
-	33			1/.3
-	42	10		19.8
~	43	10		13.1
	40	10		13.7
**	4/ 52	10 E	ivi NA	24 Q 7
**	52	5 10	ivi NA	J.Z 16 6
	57	10 E	N/	10.0
87	66	C E	NA	10.7
	00	U	141	13.0

Fig. 6.1.6. Strontium-90 in human bone from Danish cohorts 1960-1966. Abscissa: age in years. Ordinate: bone level in Bq ⁹⁰Sr (kg Ca)⁻¹.

Age group	Number of samples	Min.	Max.	Median	Arithmetic mean	Geometric mean
New-born						
(< 1 month) Infants	1	19.6	19.6	19.6	19.6	19.6
(≤ 4 years) Children	4	18.0	33	26	26	25
(≤ 19 years) Adults	0	•	-	-	-	-
(≤ 29 years) Adults	5	11.6	23	15.8	16.0	15.5
(> 29 years)	30	10.1	34	20.0	19.7	18.9

Table 6.1.6.A. Strontium-90 in human vertebrae collected in Denmark in 1988. (Unit: Bq (kg Ca)⁻¹)

Table 6.1.6.B. Strontium-90 in human vertebrae collected in Denmark in 1989. (Unit: Bq (kg Ca)⁻¹)

Age group	Number of samples	Min.	Max.	Median	Arithmetic mean	Geometric mean
New-born						
(< 1 month) Infants	0	•	-	-	-	-
(≤ 4 years) Children	1	11.5	11.5	11.5	11.5	11.5
(≤ 19 years) Adults	2	17.0	18.0	17.5	17.5	17.5
$(\leq 29 \text{ years})$	4	11.1	14.1	11.6	12.1	12.0
(> 29 years)	44	6. 9	36	17.2	17.7	16.6

No.	Date	Sex	Age	Bq Cs (kg K)-1	g K (kg)-1
2	February 2	F	44	3172	2.21
2	March 21	F	44	1834	2.04
2	April 18	F	44	1679	2.14
2	May 9	F	44	1505	1.87
2	June 15	F	45	1673	1.88
2	July 13	F	45	1387	1.82
2	October 10	F	45	1000	2.11
2	November 11	F	45	1089	1.89
2	December 12	F	45	730	2.01
3	February 11	F	55	1817	1.56
3	March 21	F	55	1003	1.87
3	April 13	F	55	932	1.94
3	May 16	F	55	1184	1.78
3	June 20	F	55	1036	1.84
3	July 19	F	55	1577	1.91
3	August 11	F	55	1850	1.82
3	October 11	F	55	2821	1.94
3	November 22	F	55	2473	2.02
3	December 13	F	56	2551	1.88
4	February 8	м	55	2787	1.78
4	March 15	М	55	2322	1.80
4	April 14	M	55	2027	1.80
4	May 16	Μ	55	1829	1.69
4	June 15	Μ	55	1691	1.65
4	July 19	Μ	55	1448	1.85
4	August 16	М	55	1351	1.84
4	November 14	м	56	1405	2.11
4	December 15	М	56	915	2.05
6	May 11	М	56	1486	1.79
6	June 15	М	56	1366	1.73
6	July 18	М	56	1133	1.86
6	August 10	М	56	909	1.87
6	October 6	М	56	1125	2.04
6	November 15	М	56	890	1.96
6	December 12	М	57	709	1.99
7	February 16	F	48	2197	1.66
7	March 16	F	48	1316	1.56
7	April 13	F	48	1458	1.59
7	June 14	F	48	1140	1.70
7	July 13	F	49	1091	1.70
7	August 12	F	49	1343	1.68
7	October 12	۴	49	901	1.81
7	November 11	F	49	1109	1.83
7	December 12	F	49	878	1.94
9	February 9	F	59	1788	1.74
9	April 12	F	59	1207	1.65
9	May 13	F	59	886	1.64

Table 6.2.A. Radiocesium (¹³⁴⁺¹³⁷Cs) in humans from Riso and environment measured in 1988

Table 6.2.A. (continued)

No.	Date	Sex	Age	Bq Cs (kg K)-1	g K (kg)-!
9	June 17	F	60	9 18	1.74
9	July 15	F	60	791	1.5 9
9	October 7	F	60	718	1.85
9	November 10	F	60	524	1.75
9	December 12	F	60	493	2.05
11	February 10	F	51	2097	1.56
11	March 23	F	51	1877	1.61
11	April 12	F	51	1574	1.36
11	May 9	F	51	1507	1.48
11	June 22	F	51	1530	1.39
11	August 11	F	51	869	1.64
11	October 11	F	51	956	1.67
11	November 14	F	51	621	1.60
11	December 13	F	51	556	1.76
13	December 19	М	41	496	2.69
14	February 9	Μ	45	1468	2.36
14	March 18	Μ	45	1045	2.09
14	April 13	Μ	45	1026	2.13
14	May 9	Μ	45	1042	2.16
14	June 15	Μ	45	9 24	2.24
14	August 16	Μ	45	82 3	2.26
14	October 13	Μ	45	644	2.52
14	November 15	М	46	609	2.61
14	December 12	Μ	46	534	1.99
15	February 10	F	46	2311	1.70
15	March 25	F	46	2223	1.64
15	April 12	F	46	1530	1.48
15	May 11	F	47	1527	1.61
15	June 16	F	47	1543	1.56
15	July 18	F	47	1352	1.52
15	October 10	F	47	1281	1.63
15	November 16	F	47	1185	1.67
15	December 15	F	47	917	1.71
17	February 16	Μ	28	1406	2.36
17	April 22	Μ	29	995	2.07
17	May 17	Μ	29	991	2.18
17	June 21	Μ	29	946	2.42
17	July 18	Μ	29	964	2.31
17	August 9	Μ	29	890	2.43
17	October 11	Μ	29	748	2.65
17	November 7	Μ	29	615	2.61
17	December 19	Μ	29	261	2.50
18	February 11	F	52	1250	1.55
18	March 18	F	52	792	1.44
18	April 20	F	52	1091	1.52
18	May 10	F	5.2	1340	1.46
18	Ju e16	F	52	881	1.67
18	July 15	F	52	960	1.62

Risø-R-570

Table 6.2.A. (continued)

No.	Date	Sex	Age	Bq Cs (kg K)-1	g K (kg)-1
18	August 11	F	52	765	1.72
18	October 11	F	52	723	1.84
18	December 18	F	52	357	1.96
19	February 16	F	49	1674	1.66
19	March 23	F	49	1198	1.80
19	April 11	F	49	893	1 61
19	May 10	F	49	953	1.55
19	June 21	F	49	1124	1 79
19	August 10	F	49	883	1.71
19	October 12	F	49	664	2.97
19	November 16	F	49	672	1.85
19	December 9	F	49	561	1.85
20	Cohe en C		AE	1410	0.10
20	February 5		40	1413	2.13
20	March 18	rv1 ∧.4	40	1204	1.00
20	April 13	M	45	1304	1.89
20	May IU		45	1327	1.72
20	June 14	M	45	1105	1.82
20	August 16	M	45	1108	1.89
20	October 13	M	45	1025	2.06
20	November 9	M	45	841	2.27
20	December 8	M	46	12/4	2.23
22	February 11	F	6	2282	3.35
22	March 22	F	6	1911	2.99
22	April 20	F	6	803	2.28
22	May 11	F	6	761	2.51
22	June 24	F	7	736	2.47
22	August 15	F	7	858	2.47
22	October 14	F	7	857	2.70
22	November 24	F	7	651	2.49
22	December 19	F	1	751	2.92
24	February 22	F	13	2462	1,91
24	March 23	F	13	1850	1.97
24	May 10	F	13	1553	1.65
24	June 14	F	13	924	1.90
24	August 12	F	13	916	1.74
24	October 7	F	13	731	2.09
24	November 22	F	13	538	1.85
24	December 13	F	13	425	2.16
25	February 10	M	11	2553	2.20
25	March 16	M	11	1150	1.69
25	April 13	м	11	1172	1.76
25	May 10	м	11	1265	1.56
25	June 13	м	12	981	1.74
25	August 12	М	12	844	1.84
25	October 11	М	12	977	2.06
25	November 24	М	12	512	2.00
25	December 7	M	12	551	2.13

٠

Table 6.2.A. (continued)

No.	Date	Sex	Age	Bq Cs (kg K)=1	g K (kg)-1
27	February 8	м	46	2842	1.77
27	March 15	м	46	2062	1.76
27	April 18	Μ	46	1807	1.67
27	May 13	Μ	46	1463	1.62
27	June 14	Μ	46	1383	1.75
27	July 14	Μ	46	1198	1.68
27	October 13	Μ	47	914	1.91
27	November 18	Μ	47	767	1.89
27	December 9	Μ	47	577	2.00
31	May 17	Μ	73	1353	1.57
31	June 14	Μ	73	1118	1.98
31	July 21	Μ	73	968	1.79
31	August 9	Μ	73	1106	1.86
31	October 11	Μ	73	1187	2.04
31	November 24	Μ	73	856	1.92
38	March 21	М	9	1289	2.33
38	April 18	Μ	9	1283	2.17
38	May 9	Μ	10	917	2.62
38	June 14	Μ	10	930	2.31
38	August 15	М	10	826	2.35
36	October 10	M	10	749	2.54
38	November 11	M	10	661	2.52
	December 12	М	10	521	2.77
Mear	n* February	1988		2015 ± 170	
	March 19	88		1530 ± 165	
	April 1988			1350 ± 100	
	May 1988			1315± 70	
	June 1988			1225 ± 75	
July 1988			1170±75		
August 1988			1090 ± 100		
	September 1988		3	-	
October 1988			1050 ± 40		
November 1988			975 ± 135		
	December 1988			785 ± 140	
*Monthly mean values (adults only) $^{134+137}$ Cs Bq (kg K)-1 ±1 S.E.					

An approximate estimate of the ^{137}Cs content may be obtained by multiplying the Bq Cs (kg K)-1 with 0.78

Fig. 6.2.1. A comparison between observed (±1 S.E.) and calculated (Aarbrog 1979) Bq¹³⁷Cs (kg K)⁻¹ levels in persons from Zealand.

Fig. 6.2.2. Radiocesium in Danish men, women and children from Zealand in 1986-1989. The curves represent the calculated levels based upon calculated diet measurements.

Risg-R-570

No.	Date	Sex	Age	Bq Cs (kg K)-1	g K (kg)-1
2 2 2 2 2 2	January 20 March 3 May 22 July 11 September 21	F F F F	45 45 45 46 46	619 655 557 488 368	2.19 2.04 2.03 2.05 2.58
3 3 3	March 20 May 23 July 19	F F F	56 56 56	1747 1554 1183	1.91 1.95 1.78
4 4 4 4	January 18 March 14 July 18 September 26	M M M	56 56 56 56	1138 744 706 657	1.63 1.93 1.78 2.02
6 6 6 6	January 19 March 16 May 19 July 18 September 21	M M M M	57 57 57 57 58	484 457 409 470 419	1.44 1.97 1.87 1.82 2.14
7 7 7 7 7 7	January 20 March 13 May 19 July 26 September 27	F F F F	49 49 49 50 50	752 349 472 832 320	1.47 2.03 1.90 2.33 1.91
9 9 9 9	January 17 March 15 May 25 July 19 September 27	F F F	60 60 61 61	644 438 582 522 694	1.25 1.82 1.84 1.80 1.92
11 11 11 11	January 19 March 14 May 30 July 26	F F F	52 52 52 52	524 556 497 504	1.42 1.70 1.66 1.75
14 14 14 14 14	January 18 March 14 May 24 July 19 September 22	M M M M	46 46 46 46	524 366 509 355 341	1.99 2.40 2.53 2.36 2.53
15 15 15 15 15	January 19 March 13 May 29 July 17 September 29	F F F F	47 47 48 48 48	955 583 749 651 644	1.29 1.65 1.52 1.64 1.53
17 17 17 17	January 23 March 28 May 22 July 11	M M M	29 20 30 30	376 420 282 254	2.13 2.61 2.62 2.65

Table 6.2.B. Radiocesium (13;+137Cs) in humans from Risø and environment measured in 1989

Table 6.2.B. (continued)

No.	Date	Sex	Age	Bq Cs (kg K)-1	g K (kg)-1	
17	September 25	м	30	116	2.78	
18	January 18	F	52	311	1.60	
18	March 15	F	53	375	1.78	
18	May 22	F	53	348	1.80	
10	January 20	E	50	777	1 52	
19	January 20 March 15	F	50	477	1.00	
10	May 21	F	50	500	1.05	
10	luly 26	F	50	521	1.75	
19	Sentember 22	F	50	298	2.06	
15	September 22	•	50	250	2.00	
20	March 21	м	46	393	1.96	
20	July 17	M	46	635	1.88	
20	September 25	Μ	46	438	2.00	
22	January 19	F	7	346	2.36	
22	March 21	F	7	599	2.39	
22	May 25	F	7	498	2.73	
22	July 26	F	8	396	2.84	
22	September 27	F	8	86	3.21	
24	February 2	F	14	442	1.68	
24	March 16	F	14	758	1.87	
24	June 1	F	14	502	2.01	
24	September 26	F	14	335	2.06	
25	January 17	м	12	448	1.51	
25	March 15	M	12	592	1.94	
25	May 30	M	12	517	1.78	
25	September 25	M	13	319	1.85	
27		N.4	47	570	1 25	
27	January 17 March 16	N/	47	250	1.20	
27	March 10	NA NA	4/	309	1.00	
27	IVIDY 25	IVI	4/	305	1.00	
31	March 20	М	74	564	2.14	
31	September 21	М	74	546	1.94	
38	January 30	М	10	488	2.25	
38	March 13	Μ	10	351	2.52	
38	May 1	Μ	11	450	2.25	
38	September 22	М	11	294	2.49	
Narch 1999 015 2 /0 March 1999 557 + 90						
March 1909						
luly 1989 597 + 170						
	Sentembe	or 1999		440 + 55		
<u> </u>						
*Monthly mean values (adults only) ^{134 + 137} Cs Bq (kg K) ⁻¹ ±1 S.E.						

An approximate estimate of the 137 Cs content may be obtained by multiplying the Bq Cs (kg K)-1 with 0.83

Fig. 6.4. Radiocesium (Bq 137 Cs (kg K) $^{-1}$ in diet, urine, and humans from Zealand in 1986-1987. (The human data were calculated from whole-body measurements of (134 Cs + 137 Cs) by multiplication with 0.67 in 1986, 0.72 in 1987, 0.78 in 1989 and 0.83 in 1989.

Period	Bq ¹³⁷ Cs	Bq ¹³⁷ Cs	¹³⁴ Cs	Bq ⁹⁰ Sr	Bq ⁹⁰ Sr
	I ⁻¹	(kg K) ⁻¹	¹³⁷ Cs	I⁻¹	(kg Ca)⁻¹
Aug 10-Sep 7 1988	0.121	280	0.21	0.00177	6.4
Sep 7-Oct 6 1988	0.110	260	0.23	0.00180 /	7.0 A
Oct 7-Nov 6 1988	0.C93	220	0.23	0.00185	7.3
Nov 7-Dec 2 1988	0.094	220	0.183	0.0027 /	10.3 A
Dec 6-Jan 12 1989	0.076	183	0.21	0.00178	6.9

Table 6.3. Radiocesium and ⁹⁰Sr in human milk collected in Himmelev near Roskilde in 1988-1989. Donor born in 1945, child born December 24, 1987

Table 6.4. Radiocesium in urine samples from a control group at Rise. 1988-1989

Date	40K g l ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	134Cs 137Cs
January 1988	2.20	420	0.29
April 1988	0.89	270	0.33
July 1988	1.46	320	0.16
October 1988	1.59	250	-
January 1989	1.43	193	-
April 1989	1.83	155	-
July 1989	0.79	138	-
October 1989	1.29	102	-

٠

7. Tritium in the Environment

by Heinz Hansen

7.1. Introduction

Tritium is produced naturally in the atmosphere by the interaction of cosmic-ray protons and neutrons with nitrogen, oxygen or argon. Surface waters contain about 0.4 kBq m⁻³ from this source (UNSCEAR 1982). Tritium is also produced and injected into the stratosphere as the result of thermonuclear explosions. At present, this latter source has enhanced the natural inventory by about a factor of ten (UNSCEAR 1982). Finally, tritium is produced as a by-product of the peaceful uses of atomic energy: it is released both during reactor operation and fuel reprocessing.

7.2. Assay of Tritium in Low-Level Amounts

The present assays of tritium levels in water are based on a relative enrichment of ${}^{3}\text{H}_{2}\text{O}$ by electrolysis and subsequent liquid scintillation counting as previously described (Risø Reports Nos. 386 etc. (Risø Reports 1957-1989)).

We have found that the tritium background in the air in our laboratory makes it impossible to produce reliable results if the concentrations are below 2 kBq m⁻³. (Personal Communication G. Östlund, 1984). Previously we have applied a constant background correction by subtraction of 1.2 kBq ³H m⁻³ from our measured values (cf. Appendix in Risø-R-527) (Risø Reports 1957-1989). This is not done any longer. Instead a blank is following the samples analysed and the ³H level in this blank is used for the correction.

7.3. Summary of Results

The tritium results are shown in detail in the chapters where the samples belong.

Tables 4.2.3 and 4.2.4 give the results for precipitation. The annual mean concentrations in rain in 1988 were: 4.4 kBq m⁻³ at Risø, 2.5 at Tylstrup, 2.3 at Jyndevad, and 3.2 at Bornholm. In 1989 the levels were 6.8, 2.3, 2.2, and 2.6, respectively. The enhanced tritium levels at Risø were due to discharges of the DR 3 reactor at the site. The median concentration of tritium in Danish ground water (cf. Table 4.3.1) was 1.4 kBq ³H m⁻³ in 1988 and 1989.

The tritium concentrations in Danish streams and lakes were 2.4 and 2.4 kBq m⁻³, respectively (Tables 4.3.2.1 and 4.3.2.2). Danish drinking water contained 1.8 kBq ³H m⁻³ in 1989 (Table 4.3.3.1).

8. Measurements of Background Radiation in 1988 and 1989

by L. Bøtter-Jensen and S.P. Nielsen

8.1. Instrumentation

Measurements of the background radiation were made with thermoluminescence dosimeters (TLD's), and a NaI(Tl) detector.

8.2. State Experimental Farms

The State experimental farms are situated as shown in Fig. 4.2. The results of the TLD measurements are shown in Table 8.2.1.A and B. The results of the NaI(Tl) detector measurements are shown in Table 8.2.2.A and B.

The γ -background measured with the NaI(Tl) detector in four groups of sampling stations is shown in Fig. 8.2.1 from 1962 to 1989.

8.3. Risø Environment

The five zones around Risø are located as shown in Fig. 8.3.1. The results of the TLD measurements are shown in Table 8.3.1.A and B, and the results of the NaI(Tl) detector measurements are shown in Table 8.3.2.A and B.

8.4. Gylling Næs Environment

The Gylling Næs environment is routinely monitored with TLDs, and the results from the site are given in Table 8.4.1.A and B. The locations are shown in Fig. 8.4.1.

8.5. Great Belt and Langeland Belt Areas

Locations on both shores of the Great Belt and the Langeland Belt (an international shipping route) are routinely monitored with TLDs; the results and locations are shown in Table 8.5.1.A and B and Fig. 8.5.1, respectively.

8.6. The Baltic Island of Bornholm

Locations on t¹ e island of Bornholm have been monitored with TLDs in the period May 1987 - April 1988 and May 1988 - May 1989. The results and locations are shown in Table 8.6.1.A and B and Fig. 8.6.1, respectively.

Location	Oct 1987 - Oct 1988 μR h ⁻¹		
Tylstrup	7.3		
Borris	7.1		
Ødum	6.5		
Askov	7.8		
St. Jyndevad	6.2		
Blangstedgård	8.2		
Tystofte	8.3		
Abed	8.9		
Mean	7.5		

Table 8.2.1.A. TLD-measurements of the background radiation (integrated over 12 months and normalized to $\mu R h^{-1}$) at the State experimental farms in 1987/88

Table 8.2.1.B. TLD-measurements of the background radiation (integrated over 12 months and normalized to $\mu R h^{-1}$) at the State experimental farms in 1988/89

Location	Sept 1988 - Sept 1989		
Tylstrup	7.5		
Borris	7.1		
Ødum	6.7		
Askov	7.9		
St. Jyndevad	6.2		
Blangstedgård	8.1		
Tystofte	8.4		
Abed	8.7		
Mean	7.6		

Location	March	August	December	Mean
Tylstrup	3.1	3.0	2.9	3.0
Borris	3.0	3.0	3.1	3.0
Kalø	4.1	3.8	3.7	3.9
Askov	3.7	3.6	3.6	3.6
St. Jyndevad	2.5	1.8	1.8	2.0
Arslev	4.8	4.8	4.8	4.8
Ledreborg	4.5	4. 9	4.8	4.7
Tystofte	4.8	5.3	5.2	5.1
Abed	4.9	5.7	5.5	5.4
Mean	3.9	4.0	3.9	4.0

Table 8.2.2.A. Terrestrial exposure rates at the state experimental farms measured with the NaI(Tl) detector in 1988 ($\mu R h^{-1}$)

No measurements at Tornbygård in 1988

Table 8.2.2.B. Terrestrial exposure rates at the state experimental farms measured with the NaI(Tl) detector in 1989 ($\mu R h^{-1}$)

Location	March	July	October	Mean
Tylstrup	2.8	3.3	3.3	3.2
Borris	3.3	3.4	3.4	3.4
Kalø	3.5	3.7	3.8	3.7
Askov	3.6	3.8	3.7	3.7
St. Jyndevad	2.4	2.2	2.3	2.3
Årslev	4.5	4.7	4.5	4.6
Ledreborg	4.8	4.6	5.2	4.8
Tystofte	5.1	4.6	4 .9	4.9
Abed	5.4	4.9	5.0	5.1
Tornbygård	(6.0)	6.0 *	(6.1)	6.0
Mean	4.1	4.1	4.2	4.2

*Measured May 30.

Fig. 8.2.1. Terrestrial exposure rates at the State experimental farms in 1962-1976 and 1978-1989 measured with the NaI(T1) detector ($\mu R h^{-1}$).

- Åkirkeby/Tornbygård
- _____ Abed, Blangstedgård/Årslev, Tystofte
- _____ Vırumgård/Ledreborg, Ødum/Kalø, Tylstrup
- ---- Jyndevad, Askov, Studsgård/Borris

Fig. 8.3.1. The environment of Risø. Locations for measurements of the background radiation.

Riso zone	Location	Oct 87 - Oct 88 R h ⁻¹
	1	
1	2	0.2
1	2	5.5 77 A
1	3	22.4 5.6
1		117
•	_	
Mean		12.0
11	1	7.5
H .	2	8.2
11	3	7.5
<u> </u>	4	8.0
Mean		7.8
111	1	8.7
111	2	8.3
III	3	8.0
Mean		8.3
IV	1	7.5
IV	2	8.6
IV	3	8.2
IV	4	7.2
١V	5	6.9
īV	6	7.9
īV	7	9.1
Mean		7.9
V	1	8.1
V	2	9.4
v	3	9.0
V	4	7.5
V	5	8.3
V	6	8.1
V	7	9.1
V	8	9.6
V	9	9.2
V	10	8.1
Mean		8.6

Table 8.3.1.A. TLD-measurements of the background radiation (mean of 2×6 months integration periods and normalized to $\mu R h^{-1}$) in five zones (I-V) around Riso in 1987, 38

•

Ri so zone	Location	Oct 88 - Oct 89 µR h⁻¹
1	1	7.8
I	2	9.0
I	3	20.9
I	4	8.5
<u> </u>	5	10.7
Mean		11.4
n	1	7.7
H	2	8.3
11	3	7.4
<u>[]</u>	4	7.8
Mean		7.8
111	1	8.2
111	2	8.0
	3	7.7
Mean		7.9
IV	1	7.1
.1	2	8.2
iV	3	8.9
IV	4	7,1
IV	5	6.5
IV	6	7.6
IV	7	8.9
Mean		7.8
v	1	7.8
V	2	8.7
V	3	8.7
V	4	7.8
V	5	8.2
V	6	8.1
V	7	8.5
V	8	9.2
V	9	9.0
V	10	7.6
Mean		8.4

Table 8.3.1.B. TLD-measurements of the background radiation (12-month integration period and normalized to $\mu R h^{-1}$) in five zones (1-1') around Riso in 1988/89

Rise zone	Location	January	April	August	October
	1	5.4	53	55	58
I.	2	6.5	6.9	7.5	7.4
t	3	70	78	70	73
1	4	5.4	5.4	6.0	5.9
<u> </u>	5	11.2	10.8	11.0	11.2
Mean		19.7	21	20	21
11	1	4.4	4.2	4.6	4.4
li –	2	5.0	5.0	5.4	5.2
H	3	4.2	4.3	4.5	4.6
	4	4.2	4.4	4.8	4.5
Mean		4.4	4.5	4.8	4.7
884	1		5.3		5.2
111	2		4.7		5.4
111	3		4.1		4.2
Mean			4.7		4.9
IV	1		4.3		4.3
IV	2		4.7		4.7
١٧	3		4.8		4.8
IV	4		4.5		45
iv.	5		3.8		3.4
iv	6		3.9		3.8
IV	77		4.7		4.4
Mean			4.4		4.3
v	1		4.6		4.4
V	2		5.6		5.8
V	3		4.7		5.2
V	4		4.7		5.2
V	5		5.2		5.5
V	6		5.6		5.4
V	7		4.4		4.2
V	8		4.4		4.2
V	9		5.0		4.9
<u>v</u>	10		4.3		3.8
Mean			4.8		4.9

Table 8.3.2.A. Terrestrial exposure rates at the Riso zones in 1988 measured with the NaI(Tl) detector (μ R h⁻¹)

Rise zone	Location	January	April	July	October
1	1	5.3	5.9	6.0	5.4
I	2	6.8	7.4	7.2	7.1
I	3	72	68	70	74
I	4	5.5	5.8	5.8	5.3
1	5	10.8	11.1	11.0	11.4
Mean		20	19.6	20	21
11	1	4.2	4.3	4.6	4.6
11	2	5.2	5.1	5.2	5.0
Н	3	4.8	4.7	4.2	4.1
11	4	4.4	4.6	4.7	4.3
Mean		4.6	4.7	4.7	4.5
111	1		5.2		5.7
litt	2		5.0		5.1
111	3		4.3		4.0
Mean			4.8		4.9
IV	1		4.4		4.4
IV	2		4.6		4.8
IV	3		5.0		4.6
IV	4		4.5		4.2
IV	5		3.1		4.2
IV	6		3.9		3.9
<u>IV</u>	7		4.6		4.5
Mean			4.3		4.4
v	1		4.4		4.6
v	2		5.4		4.9
V	3		4.9		5.2
V	4		5.0		5.3
V	5		5.5		5.4
V	6		5.2		4.9
V	7		4.3		5.7
V	8		4.1		4.3
V	9		4.4		4.2
<u>v</u>	10		4.1		3.7
Mean			4.7		4.8

Table 8.3.2.B. Terressrial exposure rates at the Riso zones in 1989 measured with the NaI(T1) detector ($\mu R h^{-1}$)

Fig. 8.4.1. The environment of Gylling Næs. Locations for measurements of the background radiation.

Fig. 8.5.1. The coasts of the Great Belt. Locations for measurements of the background radiation.

Risø-R-570

Table 8.4.1.A.	TLD-measurements of	f the background	radiation	(integrated over
12 months and	normalized to uR h-1	at the Gylling N	Vas site in	1987/88

Location	Oct 1987 - Oct 1989 R h ⁻¹		
1	8.5		
2	-		
3	8.9		
Mean	8.7		

Table 8.4.1.B. TLD-measurements of the background radiation (integrated over 12 months and normalized to $\mu R h^{-1}$) at the Gylling Nes site in 1988/89

-

Location	Oct 1988 - Oct 1989 µR h ⁻¹		
1	8.5		
2	-		
3	8.6		
Mean	8.6		

Table 8.5.1.A. TLD-measurements of the background radiation (integrated over 12 months and normalized to $\mu R h^{-1}$) along the coasts of the Great Belt and Langeland Belt in 1987/88

Location	Oct 1987 - Oct 1988 µR h ⁻¹
Røsnæs	8.0
Reersø	9.1
Svendstrup	7.8
Vesternæs	8.6
Frederiksdal	8.9
Kelds Nor	10.2
Tranekær	8.4
Hov	9.0
Fyns Hoved	8.3
Knuds Hoved	10.7
Mean	8.9

Fig. 8.6.1. Locations for measurements on Bornholm.

•

Table 8.5.1.B. TLD-measurements of the background radiation (integrated over 12 months and normalized to $\mu R h^{-1}$) along the coasts of the Great Belt and Langeland Belt in 1988/89

Location	Oct 1988 - Oct 1989 µR h ⁻¹				
Røsnæs	7.5				
Reersø	8.5				
Svendstrup	7.4				
Vesternæs	8.1				
Frederiksdal	8.2				
Kelds Nor	9.5				
Tranekær	8.2				
Hov	8.5				
Fyns Hoved	8.1				
Knuds Hoved	10.0				
Mean	8.4				

Table 8.6.1.A. TLD-measurements of the background radiation (integrated over 12 months and normalized to $\mu R h^{-1}$) on the island of Bornholm in 1987/88

Location	May 1987 - April 1988 µR h ⁻¹
1	9.7
2	9.7
3	8.6
4	17.1
Mean	11.3

May 1988 - May 1989 μR h ⁻¹		
9.5		
9.4		
9.7		
15.1		
10.9		

Table 8.6.1.B. TLD-measurements of the background radiation (integrated over 13 months and normalized to $\mu R h^{-1}$) on the island of Bornholm in 1988/89

9. Conclusion

9.1. Environmental Monitoring at Risø, Barsebäck, and Ringhals

No radioactive contamination of the environment originzting from the operation of Riss National Laboratory was ascertained outside its boundaries in 1988 and 1989.

Benthic brown algae, mussels, and fish collected at the Swedish nuclear plants at Barsebäck and Ringhals were analysed for radioactive pollution. Transfer factors from releases of various radionuclides to Fucus were calculated. The radioactive contamination of the marine environment due to the operation of the Swedish nuclear power plants resulted in doses of less than 1% of the background radiation to any individual eating 20 kg mussel and 100 kg fish per year.

9.2. Fallout in the Abiotic Environment

The mean content of 90Sr in air collected in 1988 and 1989 were 0.15 and 0.1 μ Bq m⁻³, respectively. This corresponds to an effective halflife since 1987 of a little less than 1 year.

The mean concentrations of 137 Cs in air from 1988 and 1989 were 2.5 and 1.6 μ Bq m⁻³, respectively, also corresponding to an effective halflife since 1987 of about 1 year.

The depositions of 90Sr at the ten State experimental farms in Denmark were 1 Bq m⁻² in 1988 and 0.5 Bq m⁻² in 1989 corresponding to an effective halflife since 1987 of 1.5 year. The corresponding depositions for ¹³⁷Cs were 12 and 3.5 Bq m⁻² and the halflife was 0.7 year.

Since 1987 the ¹³⁷Cs concentrations in Danish streams and lakes have decayed with effective halflives of 1.8 and 2.7 years, respectively.

The concentrations of 90Sr and 137Cs in the surface sea water of .nner Danish waters have been nearly unchanged since 1987, i.e. about 17 Bq 90Sr m⁻³ and 81 Bq 137Cs m⁻³.

9.3. Fallout Nuclides in the Human Diet

The mean concentrations in Danish milk were 0.06 Bq 90Sr 1-1 and 0.20 Bq 137Cs 1-1 in 1988 and in 1989 the levels were 0.056 and 0.13, respectively. The effective halflife of 90Sr in Danish milk was 10 years and of Chernobyl 137Cs it was 1 year, while for global fallout 137Cs it was 6 years.

Danish grain from 1988 contained 0.34 Bq ⁹⁰Sr kg⁻¹ and 0.12 Bq ¹³⁷Cs kg⁻¹ the corresponding figures for 1989 were 0.34 and 0.09, respectively. The effective halflife of ⁹⁰Sr in Danish grain is 10-15 years. Global fallout ¹³⁷Cs in Danish grain has decayed with a halflife of 12 years and Chernobyl ¹³⁷Cs with about 5 years halflife.

Danish vegetables (cabbage and carrots) contained 0.2-0.3 Bq ⁹⁰Sr kg⁻¹ and 0.03 Bq ¹³⁷Cs kg⁻¹ in 1988 and 1989. Potatoes showed mean concentrations of 0.03 Bq ⁹⁰Sr kg⁻¹ and 0.07 Bq ¹³⁷Cs kg⁻¹.

The intakes of ⁹⁰Sr with total diet were 0.16 and 0.15 Bq d⁻¹ in 1988 and 1989, respectively and the corresponding ¹³⁷Cs intakes were 0.46 and 0.33. The effective halflife of Chernobyl ¹³⁷Cs in Danish total diet is 3 years, while

global fallout ¹³⁷Cs decays with approx. 5 years halflife. Strontium-90 has decayed with an effective halflife similar to the radiological halflife.

9.4. Strontium-90 and Cesium-137 in Humans

The ⁹⁰Sr mean content in adult human bone (vertebrae) collected in 1988 was 20 Bq (kg Ca)⁻¹ and in 1989 the level was 17.

Wh de-body measurements of ¹³⁷Cs were resumed after the Che:nobyl accident. The measured mean level in 1988 was 980 Bq ¹³⁷Cs (kg K)⁻¹ and in 1989 the mean was 460, i.e. the effective halflife of Chernobyl ¹³⁷Cs in humans was 1 year.

9.5. Tritium in Environmental Samples

The tritium mean concentrations in 1988 and 1989 in ground, stream, lake, and drinking water were around 2 kBq m⁻³. The mean content of precipitation in 1988 and 1989 was 2.4 kBq m⁻³. Sea water from the inner Danish waters contained 3-5 kBq .ritium per m³.

9.6. Background Radiation

The average total background exposure rate measured with TLDs at the State experimental farms was 7.6 μ R h⁻¹. The mean of the terrestrial exposure rates at the State experimental farms measured with the Nal(Tl) detector was 4.1 μ R h⁻¹. The annual means in 1988-1989 are not different from the levels prior to the Chernobyl accident.

Acknowledgements

The authors wish to thank the staff of the former Health Physics Department for their conscientious performance of their work of this report.

We are specially indebted to the staffs of the ten State experimental farms at Tylstrup, Kalø, Borris, Askov, St. Jyndevad, Årslev, Tystofte, Ledreborg, Abed, and Tornbygård, who have continued to supply us with a number of the most important samples dealt with in this report.

R/V DANA belonging to the Ministry of Fisheries have collected surface water samples from the North Sea, the Danish Straits, and the Baltic Sea in 1988 and 1989.

R/V GAUSS from the German Hydrografic Institute in Hamburg, the German lightships: Borkumriff and Elbe I and R/V Gunnar Thorsen from the National Environmental Research Institute, Denmark, collected a substantial number of the sea water samples in this report.

Part of this work was supported by the CEC Radiation Protection Programme.

Appendix A

Calculation of Revised Models for ¹³⁷Cs in Danish Grain

Until 1983 the ¹³⁷Cs concentrations in Danish grain were nearly proportional to the fallout rates of ¹³⁷Cs in May-August of the harvest year (Riso-R-437) (*Aarlong* 1979).

After 1964, however, an increasing discrepancy between observed and predicted ¹³⁷Cs concentrations in grain was noticed. This was a result of the growing importance of root uptake relative to direct contamination, which was dominating as long as fresh ¹³⁷Cs still was present in the atmosphere.

In order to estimate the soil factor b in the prediction model:

Bq ¹³⁷Cs kg⁻¹ grain (year i) = a Bq ¹³⁷Cs m⁻² (May-Aug (i)) + b Bq ¹³⁷Cs m⁻² (accumulated by (i))

we made the following calculations for Danish grain from 1985:

- From the old prediction models (Table C.2.2.4 in Rise-R-437) (Aarkrog 1979), which includes the rate factor a only, and from the fallout rates in May-August 1985 the predicted ¹³⁷Cs levels in Danish grain from 1985 were calculated.
- 2. The differences between observed and predicted levels were calculated.
- 3. The differences were divided by the accumulated ¹³⁷Cs fallout in 1985 obtained from Appendix D.3 (Jutland: 2894 Bq ¹³⁷Cs m⁻² and the Islands: 2312 Bq ¹³⁷Cs m⁻²). This gave the b values in the revised prediction models shown below:

Rye	Jutland :	$Bq kg_{(i)} = 0.074 d_{i(Max-Ame)} +$	0.032-10-3 A _i
Rye	Islands :	$Bq kg_{(i)} = 0.078 d_{i(May-Ang)} +$	0.005-10-3 Ai
Barley	Jutland :	$Bq kg_{(1)} = 0.063 d_{i(Max-Ang)} +$	0.017-10-3 Ai
Barley	Islands :	$Bq kg_{(i)} = 0.052 d_{i(Max-Aug)} +$	0.001-10-3 A
Wheat	Jutland :	$Bq kg_{(i)} = 0.063 d_{i(Mm,Am)} +$	0.017-10-3 A
Wheat	Islands .	$Bq kg_{(1)} = 0.045 d_{i(Max,Aug)} +$	0.006-10-3 A
Oats	Jutland :	$B_{\eta} kg_{(1)} = 0.052 d_{\mu} (M_{mr}, A_{mr}) +$	0.064 10 ⁻³ A
Oats	Islands :	$Bq kg_{(i)} = 0.049 d_{i(Max-Aug)} +$	0.005·10 ⁻³ A _i

where $d_{i(May-Aug)}$ is the fallout rate in Bq ¹³⁷Cs m⁻² in May-Aug in year (i) and A_i is the accumulated fallout by year (i) in Bq ¹³⁷Cs m⁻² according to Appendix D.3.

4. In order to check whether the contribution of ¹³⁷Cs from root uptake seems reasonable, we made a calculation of the observed ratios between the ¹³⁷Cs concentrations in grain and in the ploughing layer (0-20 cm).

The soil concentrations were based on two sets of measurements of ¹³⁷Cs in countrywide collected Danish soils: One in 1975 (Table 4.2.8 in Risø-R-345) (Risø-Reports 1957-1989) and another in 1983 (Table 4.5.3 in Risø-R-563) (Risø Reports 1957-1989). The effective halflife of ¹³⁷Cs in cultivated soil in

Risø-R-570

Denmark has been measured to 13 years (Rise-R-563) (Rise Reports 1957-1989). The soil data from 1975 and 1983 were decay corrected with this halfilife to 1985 and the mean concentrations in the 0-20 cm ploughing layer became: 6.7 ± 0.9 Bq ¹³⁷Cs per kg dry soil in Jutland and $\pm 6 \pm 0.1$ Bq ¹³⁷Cs kg ⁻¹ in the Islands (the error term was ± 1 S.E. of the means of the two determinations).

The differences calculated under 2. were divided by the respective soil concentrations of ¹³⁷Cs and the observed mean ration between grain and soil (dry matter) ¹³⁷Cs activities was (0.9 ± 0.35) -10⁻² (± 1 S.E.; n=8). This was compatible with the values expected for Danish soils (sandy clay) according to IAEA's =Handbook of parameter values for prediction of radionuclide transfer in the terrestrial and fresh water environments= (2nd draft March 1967). According to this publication the expected values for sand vary between 1:10⁻² and 3.4-10⁻² and for clay between 0.8-10⁻² and 2.8-10⁻² according to pH of the soil.

Appendix B

Statistical information

Zane		in tun ²	MPopulation in thousands	⁴ Annual milt production in mega-ty	Annual wheet production in mega-bg	Annual rye production in mega-kg	-Annual potato production in mega-kg	4Grass and green fodder production in mega-kg
ł:	North Jutland	6,171	482	893				
. :	East Judand	7,561	909	1.427	6 000			17.60
#:	West Jutland	12,104	711	1,326	360	443	350	17,043
N:	South Jutlend	3,929	250	663				
V :	Funen	3,466	455	357				
Vi:	Zealand	7,435	2,115*	306				
VII:	Lolland-Faister	1,795	141	76	332	، 4 0	120	4.5.5
VIII:	Bornholm	588	4?	51				
Total		43,069	5,110	5.099	1,972	565	ĩ.100	20,185

*1,170,000 people were living in Greater Copenhagen and 945,000 in the remaining part of Zealand.

4 (ref. D: nmarks Statistik 1986)

45 (ref. Denmarks Statistik 1988)

444 (ref. Danmarks Statistik 1972)

Appendix C

A Comparison Between Observed and Predicted Levels in the Human Food Chain in Denmark in 1988 and 196?

Table C.I. A Comparison Lettmeen observed and predicted ¹⁰Sr levels in environm.ntal samples collected in 1988

Sample	Location	Unit	Number observet-ons in mean	Observeu = 1 S E (Anthmetic meen)	Predicted	Obs.pred	Model in reference (Janing 1979)
Oned mik	Jutiand	Bç ⁹⁹ Sr (kg Cat-'	4	6 0 = 5	110	0 55	C 3 2 1 No 1
- - .	Islands		3	41 =2	37	1 11	C 3 2 1 No 3
Rye	jutland	Bq Sr kg-1	5	043 =010	0.42	1 02	C221 No 1
-	islands		5	0 28 = 0 05	0 12	2 33	C 2 2 1 No. 3
Barey	Jutland	·~.	7	045 = 003	0 55	u 78	C 2 2 1 No. 4
-	islands	-*-	10	03U ±006	0 22	T 36	C221No 6
Whest	Jutland	· · ·	7	045 =011	0 44	1 11	C 2 2 1 No 8
-	islands		9	0 25 = 0 04	0 19	1 32	C221 No 10
Oats	Jutiand	.~.	4	051 =006	1 2S	0.40	C221 No 12
-	Islands	·	4	035 = 008	0 61	0 57	C 2 2 1 No 13
Potatoes	Jutiand	·~·	5	0 036 = 0 006	0 097	0 37	C 2 5 1 No 8
-	islands	. - .	5	0 037 = 0 003	0 067	0.43	C 2 5 1 No. 10
Cabbage	Jutiand			0 28	0 30	0 93	C 2 5 1 No 1
-	islands	· • •		0 187	0 26	0 72	C 2 5 1 No. 3
Carrot	Jutiand			0.41	0 51	0 90	C 2 5 1 No 5
-	islands	·*•		0 190	0 15	1 27	C 2 5 1 No 6
Apples	Denma.k	·~.	2	0 036 = 0 0005	0 612	3 00	C 2 5 1 No 13
Pork	-	. • .		0 0067	0 023	0 29	C341 No 3
Beef	-	·~.		0 0061	0 033	0 25	C341 No 1
Eggs	-	·~.		0 024	0 01 2	2 00	C 3 6 1 No 6
Total diet C	-	Bg 99Sr (kg Ca)-1		145	137	1 06	C 4 2 1 No 1
Total diet P	-			122	106	: 15	C421 No 7
Human bone							
> 29 yr	-	.~.	30	197 ±11	38	0 52	C431 No 13
Whole year							
grass	Islands	· - .	4	360 :: 36	425	0 85	C241 No 1
Fucus							
vesiculosus	-	. . .	4	154 ±11	442	0 35	C 2 7 1 No 3
Ground							
water**	Denmark	8q 995r m-3	10	0.38 ±0.19	0 23	1 65	C141No 1
Stream water					6 20		C141No 3
Lake water*	-	·*·			34		C 1.4 1 No. 6
			_				

**Mean of all ground water samples except Feldbak (cf. 4.3.1)

* No samples in 1988

Sample	Location	Unk	Number observations in mean	Obse = 1 S (Anthm	eved E Blic means	Predicted	Obs.pred	Modei in reference (Jarling 1979)
Dred mit	Jutland	Bq #Sritig Cal-1	4	56	=2	104	0 54	C 3 2 1 No 1
	Islands		3	36	= 3	34	1 12	C 3 2 1 No 3
Rye	Jutland	8q #Sr kg-1		0 40		0 36	1 05	C 2 2 1 No 1
-	Islands	. - -	-	0 20		011	1 82	C.2.2.1 Nc. 3
Barley	Jutland		2	0.44	= 9 02	0.56	0.79	C 2 2 1 No 4
-	islands		2	0 27	= 0 00	0.21	1 29	C.2.2.1 No 6
Wheat	Jutland		2	0 56	= 0 30	0.40	1.40	C 2 2 1 No 8
-	islands		2	0.15	= 0 06	G 175	0.86	C.2.2 1 No. 10
Óats	Jutland			0 60		1.25	0 48	C.2.2 T No. 12
-	islands	- - -		0 54		0.59	0.92	C 2 2 1 No 13
Potatoes	Jutland		5	0 037	=0.011	0.094	0 39	C 2 5 1 No 8
-	Islands	.	5	0 036	= 0 007	0.085	0 42	C 2 5 1 No 10
Cabbage	Jutland			0 28		0.30	0 93	C 2 3 1 No 1
-	islands	. - .		0 152		0 25	0 61	C 1 5 1 No 3
Carrot	Jutland			0 28		0.50	0 56	C 2 5 1 No 5
-	Islands	. - .		0 099	•	0.14	0 71	C 2 5 1 No 6
Apples	Denmark		2	0 917	4 = 0 0019	0 01 2	1 45	C 2 5 1 No 13
Pork	-			< 0 001	1	0.022		C.341 No.3
Beef	-			0 073	1	0 032	0.41	C341No 1
Eggs	-			0 012	1	0.010	1 21	C 361 No 6
Total diet C	-	8q 99Sr (kg Ca)		133		132	1 01	C421No 1
Total diet P	-			96		101	0 95	C421No7
Human bone								
> 29 yr	-		44	177	= 0 98	37	C 48	C 4 3 1 No 13
Whole year								
grass	islands	.~.	4	310	= 27	765	0 85	C 2 4 1 No 1
Fucus								
vesiculosus	-		4	146	= 23	418	0 35	C 2 7 1 No 3
Ground								
water**	Denmark	8q 995r m-3	10	0 24	=013	0 21	1 14	C 1 4 1 No 1
Stream water	•	· • ·	8	68	= 0 95	59	1-15	C 1 4 1 No 3
Lake water	-		8	14.0	=27	34	0.41	C141No 6

Table C.I.B. Comparison between observed and predicted ⁹⁰Sr levels in environmental samples collected in 1969

**Mean of all ground water samples except Feldbak (cf. 4.3.1)

Sample	Location	Unit	Number observations in mean	Observed ±1 S.E. (Arithmetic mean)	Predicted	Obs./pred.	Model in reference (Aarkrog 1979)
Dried milk	Jutland	Bq ¹³⁷ Cs (kg K)-1	48	250 ±18	211	1.18	C.3.2.2 No. 1
- " .	Islands	·	36	57 ±5	66	0.86	C.3.2.2 No. 3
Rye	Jutlang	Bq ¹³⁷ Cs kg ⁻¹	5	0.27 ±0.12	0.52	0.52	Appendix A
	Islands	.".	5	0.098±0.032	0.34	0.29	Appendix A
Barley	Jutland	- * -	7	0.26 ±0.105	0.40	0.65	Appendix A
-	Islands	-*-	10	0.066 ± 0.024	0.22	0.30	Appendix A
Wheat	Jutiand	- " -	7	0.137±0.022	0.40	0.34	Appendix A
~	Islands -	- * -	9	0.048±0.012	0.21	0.23	Appendix A
Oats	Jutland	-"-	4	0.51 ±0.25	0.53	0.96	Appendix A
-	Islands	- * -	4	0.109±0.044	0.22	0.50	Appendix A
Potatoes	Jutland	- " -	5	0.144±0.030	0.199	0.72	C.2.5.3 No. 5
**	islands	- ** -	5	0.045±0.017	0.034	1.32	C.2.5.3 No. 7
Cabbage	Denmark	·"·	8	0.045 ± 0.014	0.078	0.058	C.2.5.3 No. 1
Carrot	*	- " -	8	0.043±0.016	0.071	0.61	C.2.5.3 No. 3
Apples		. <i>"</i> .	8	0.066±0.016	0.60	0.11	C.2.5.3 No. 11
Pork	*	-"-		0.47	1.38	0.34	C.3.4.2 No. 3
Beef	.,	• <i>"</i> •		1.36	1.32	1.03	C.3.4.2 No. 1
Eggs	••	- · -		0.102	0.091	1.12	C.3.6.2 * o. 6
Total diet C	••	5q ¹³⁷ Cs (kg K)-1		165	1140	0.14	C.4.2.2 No. 1
Total diet P	,,	.".		112	580	0.19	C.4.2.2 No. 6

Table C.2.A. Comparison between observed and predicted ¹³⁷Cs levels in environmental samples collected in 1988

Sample	Location	Unit	Number observations in mean	Observed ±1 S.E. (Arithmetic mean)	Predicted	Obs/pred.	Model in reference (<i>Aarkrog</i> 1979)
Dried milk	Jutiand	Bq ¹³⁷ Cs (kg K)-1	48	155 ±10	142	i.09	C.3.2.2 No. 1
. <i>"</i> -	isiands	- " -	36	42 ±3	41	1.02	C.3.2.2 No. 3
Rye	Jutland	Bq ¹³⁷ Cs kg ⁻¹	5	0.24 ± 0.076	0.24	1.00	Appendix A
*	Islands	- " -	4	0.041 ± 0.015	0.073	0.56	Appendix A
Barley	Jutland	.".	10	0.097 ± 0.015	0.160	0.01	Appendix A
**	Islands	- " -	8	0.080 ± 0.060	0.042	1.91	Appendix A
Wheat	Jutland	· ⁻ ·	6	0.23 ±0.067	0.160	1.44	Appendix A
*	Islands	- " -	9	0.026 ± 0.004	0.052	0.50	Appendix A
Oats	Jutiand	- <i>"</i> -	5	0.43 ±0.162	0.33	1.30	Appendix A
**	Islands	-*-	5	0.108 ± 0.049	0.052	2.08	Appendix A
Potatoes	Jutiand	- " -	5	0.164 ± 0.061	0.167	0.98	C.2.5.3 No. 5
*	isiands	- " -	5	0.065 ± 0.023	0.008	8.1	C.2.5.3 No. 7
Cabbage	Denmark	- " -	8	0.045 =: 0.021	0.066	0.68	C.2.5.3 No. 1
Carrot		<i>."</i> .	8	0.058 ± 0.023	0.048	1.21	C.2.5.3 No. 3
Apples	*	- " -	8	0.069 ± 0.014	0.30	0.23	C.2.5.3 No. 11
Pork	~	- " -		0.52	0.62	0.84	C.3.4.2 No. 3
Beef	-	- " -		1.14	0.83	1.37	C.3.4.2 No. 1
Eggs	**	- " -		0.042	0.059	0.71	C.3.6.2 No. 6
Total diet C	"	Bq ¹³⁷ Cs (kg K)-1		105	52	2.02	C.4.2.2 No. 1
Total diet P	*	- " -		125	480	0.26	C.4.2.2 No. 6

Table C.2.B Comparison between observed and predicted ¹³⁷Cs levels in environmental samples collected in 1988

Appendix D

Fallout Rates and Accumulated Fallout (mCi ⁹⁰Sr km⁻²) in Denmark 1950-1989

d_i

Annual fallout rate in mCi ⁹⁰Sr km⁻² y⁻¹ or Bq ⁹⁰Sr m⁻² y⁻¹. Accumulated fallout by the end of the year (i) assuming effective half-lives of ⁹⁰Sr of 28.8 y. Unit: mCi ⁹⁰Sr km⁻² or Bq ⁹⁰Sr m⁻².

di(May-Aug) and di(July-Aug):

The fallout rates in the periods: May-Aug and July-Aug, respectively. Unit: mCi ⁹⁰Sr km⁻² period⁻¹ or Bq ⁹⁰Sr m⁻² period⁻¹. The fallout rate (d_i) was based on precipitation data collected for all Denmark in the period 1962-1984 (cf. Table 4.2.1) (Risø Reports 1957-1989). Before 1962 the levels in the tables were estimated from the HASL data for New York (HASL Appendix 291, 1975) (HASL 1958-1978) considering that the mean ratio between ⁹⁰Sr fallout in Denmark and New York was 0.7 in the period 1962-1974.

The $d_{i(May-Aug)}$ and $d_{i(July-Aug)}$ values were also obtained from 4.2 (Risø Reports 1957-1989) for the period 1962-1984. For the years 1959-1961 the values were calculated from data obtained from ⁹⁰Sr analysis of air (1959) and precipitation samples (1962 and 1961) collected at Risø. Before 1959, the values were estimated from the corresponding d_i values assuming that the ratios $d_{i(May-Aug)}/d_i$ and $d_{i(July-Aug)}/d_i$ were constant in time and equal to the means found for the period 1962-1974, which were 0.54 (1 S.D.: 0.09) and 0.24 (1 S.D.: 0.06), respectively.

Table D.1 shows the mCi ⁹⁰Sr km⁻² figures and Table D.2 gives the Bq m⁻² values.

	Den	rnark	Jut	Jutland		ands
Year	di	Ai _(28.82)	di	Ai _(28.82)	di	Ai _(28.82)
1950	0.021	0.020	0.022	0.021	0.020	0.020
1951	0.101	0.118	0.114	0.132	0.088	0.105
1952	0.198	0.309	0.224	0.347	0.172	0.270
1953	0.500	0.789	0.566	0.891	0.434	0.687
1954	1.901	2.623	2.152	2.967	1.650	2.279
1955	2.501	4.997	2.831	5.655	2.171	4.340
1956	3.101	7.898	3.510	8.939	2.692	6.858
1957	3.101	10.728	3.510	12.142	2.692	9.313
1958	4.302	14.658	4.869	16.5 9 1	3.734	12.725
1959	6.102	20.247	6.908	22.918	5.297	17.576
1960	1.140	20.859	1.291	23.610	0.990	18.107
1961	1.481	21.787	1.676	24.661	1.285	18.913
1962	7.428	28.493	7.976	31.830	6.880	25.155
1963	16.695	44.071	18.453	49.041	14.937	39.101
1964	10.412	53.136	11.685	59 .225	9.139	47.048
1965	3.954	55.679	4.204	61.861	3.704	49.497
1966	2.145	56.395	2.166	62.445	2.124	50.345
1967	1.047	56.023	1.176	62.048	0.918	49.997
1968	1.403	56.006	1.568	62.045	1.237	49.968
1969	1.035	55.632	1.241	61.721	0.829	49.542
1970	1.647	55.863	1.993	62.140	1.301	49.586
1971	1.506	55.951	1.726	62.288	1.286	49.615
1972	0.435	54.993	0.457	61.194	0.413	48.792
1973	0.192	53.821	0.215	59.891	0.168	47.750
1974	0.710	53.183	0.779	59.171	0.643	47.197
1975	0.414	52.272	0.452	58.150	0.376	46.397
1976	0.103	51.082	0.116	56.826	0.090	45.33 9
197 7	0.384	50.204	0.405	55.827	0.362	44.581
1978	0.463	49.426	0.538	54.985	0.388	43.867
1979	0.166	48.37 9	0.174	53.810	0.156	42.947
1980	0.095	47.244	0.114	52.556	0.078	41.932
1 9 81	0.451	46.358	0.309	51.559	0.269	41.15 9
1982	0.046	45.257	0.048	50.332	0.043	40.184
1983	0.036	44.174	0.036	49.123	0.037	39.227
1984	0.029	43.110	0.033	47.941	0.026	38.283
1985	0.022	42.067	0.020	46.776	0.023	37.360
1986	1.041	42.042	1.081	46.674	1.000	37.412
1587	0.03 9	42.022	0.038	46.649	0.040	37.396
1988	0.027	41.049	0.024	45.564	0.030	36.537
1989	0.0147	40.088	0.0112	44.492	0.0183	35.687

Appendix D.1. Fallout rates and accumulated fallout (mCi ⁹⁰Sr km⁻²) in Denmark 1950-1989

Denmark		Jut	land	isla	islands	
di _(May-Aug)	di _(July-Aug)	di _(May-Aug)	di(July-Aug)	di _(May-Aug)	di _(July-Aug)	
0.01	0.01	0.01	0.01	0.01	0.01	
0.05	0.02	0.06	0.03	0.05	0.02	
0.11	0.05	0.12	0.05	0.09	0.04	
0.27	0.12	0.31	0.14	0.23	0.10	
1.03	0.46	1.16	0.52	0.89	0.40	
1.35	0.60	1.53	0.68	1.17	0.52	
1.67	0.74	1.90	0.84	1.45	0.65	
1.67	0.74	1.90	0.84	1.45	0.65	
2.32	1.03	2.63	1.17	2.01	0.90	
2.50	0.68	2.76	0.75	2.24	0.61	
0.47	0.31	0.52	0.34	0.42	0.28	
0. 6 6	0.47	0.73	0.52	0.590	0.42	
4.223	1.857	4.566	2.052	3.880	1.662	
9.965	5.629	10.753	5.932	9.177	5.327	
6.235	2.568	7.170	2.910	5. 299	2 226	
2.029	0.850	2.094	0.852	1.964	0.848	
1.049	0.418	0.984	0.496	1.114	0.340	
0.367	0.141	0.380	0.134	0.354	0.148	
0.848	0.426	0.910	0.460	0.786	0.392	
0.614	0.276	0.723	0.319	0.505	0.233	
0.908	0.547	1.076	0.632	0.740	0.462	
0. 9 92	0.405	1.154	0.516	0.830	0.294	
0.253	0.084	0.262	0.084	0.244	0.084	
0.075	0.033	0.093	0.039	0.057	0.027	
0.421	0.190	0.463	0.219	0.378	0.162	
0.159	0.075	0.179	0.091	0.157	0.060	
0.032	0.010	0.032	0.011	0.032	0.009	
0.178	0.107	0.164	0.085	0.190	0.129	
0.232	0.096	0.275	0.098	0.188	0.093	
0.086	0.030	0.087	0.031	0.084	0.029	
0.051	0.022	0.064	0.025	0.038	0.0180	
0.175	0.060	0.176	0.058	0.174	0.061	
0.022	0.0071	0.024	0.0085	0.020	0.0058	
0.013	0.0048	0.015	0.0055	0.0114	0.0043	
0.013	0.0075	0.016	0.0090	0.0106	0.0059	
0.0086	0.0054	0.0075	0.0046	0.0088	0.0062	
0.74	0.052	0.78	0.055	0.70	0.048	
0.0159	0.0068	0.0178	0.0068	0.0141	0.0070	
0.0121	0.0075	0.0125	0.0074	0.0117	0.0076	
0.0077	0.0042	0.0059	0.0025	0.0095	0.0060	

	Denmark		Jutland		Islands	
Year	di	Ai(28.82)	di	Ai _(28.82)	di	Ai _(28.82)
1950	0.777	0.75 9	0.814	0.795	0.740	0.722
1951	3.737	4 .389	4.218	4.894	3.256	3.884
1952	7.326	11.436	8.288	12.868	6.364	10.004
1953	18.500	29.225	20. 9 42	33.007	16.058	25.443
1954	70.337	97.196	79.624	109.954	61.050	84.438
1955	92.537	185.224	104.747	209.599	80.327	160.849
1956	114.737	292.833	129.870	331.402	99.604	254.264
1957	114.73	397.884	129.870	450.310	99.604	345.458
1958	159.17	543.820	180.153	615.481	138.158	472.124
1 9 59	225.774	751.306	255.59 6	850.377	195.989	652.236
1960	42.180	774.629	47.767	876.800	36.630	672.495
1961	54.797	809.716	62.012	916.502	47 545	702.929
1962	274.836	1058.779	295.112	1182.821	254.560	934.736
1963	617.715	1636.653	682.76 1	1 821.24 9	552.669	1452.058
1964	385.244	1973.849	432.345	2200 039	338.143	1747.659
1965	146.298	2069.764	155.548	2299 .609	137.048	1839.918
1966	79.365	2098.057	80.142	2323.199	78.588	1872.915
1967	38.739	2086.017	43.512	231J.468	33.966	1861.566
1968	51.911	2087.122	58.016	2312.200	45.769	1862.009
1969	38.295	2074.909	45.917	2302.078	30.673	1847.704
1970	60.939	2085.092	73.741	2319.360	4 8.137	1850.789
1971	55.722	2089.939	63.862	2326.587	47.582	1853.258
1972	16.095	2055.987	16.909	2287.806	15.281	1824.135
1 9 73	7.104	2014.063	7.955	2241.204	6.216	1786.854
1974	26.270	1991.847	28.823	2216.082	23.791	1767.617
1975	15.318	1959.467	16.724	2179.746	13.912	1739.193
1976	3.811	1916.622	4.292	2132.136	3.330	1701.114
1977	14.208	1884.946	14.985	2096.097	13.3 9 4	1673.764
1978	17.131	1856.876	19.906	2065.718	14.356	1648.004
197 9	6.142	1818.745	6.438	2022.914	5.772	1614.475
1980	3.504	1778.945	4.229	1979.966	2.869	1577.924
1981	10.662	1747.079	11.447	1944.499	9 .967	1549.659
1 9 82	1.691	1707.212	1.782	1900.127	1.601	1514 297
1983	1.344	1667.954	1.32 9	1856.433	1.359	1479.475
1984	1.094	1629.385	1.209	1813.506	0.980	1445.264
1985	0.806	1591.452	0.744	1771.286	0.868	1411.618
1986	38.5	1591.218	40	1766.622	37	1415.882
1987	1.44	1554.810	1.41	1726.017	1.47	1383.670
1988	0. 9 89	1518.827	0.874	1685.853	1.105	1351.867
1989	0.544	1483.265	0.413	1646.193	0.677	1320.402

Appendix D.2. Fallout rates and accumulated fallout (Bq ⁹⁰Sr m⁻²) in Denmark 1950-1989

Denmark		Jutland		Islands		
Year	di _(May-Aug)	di _(Juiy-Aug)	di _(May-Aug)	di _(July-Aug)	di _(May-Aug)	di _(July-Aug)
1950	0.370	0.370	0.370	0.370	0.370	0.370
1951	1.850	0.740	2.220	1.110	1.850	0.740
1952	4.070	1.850	4.440	1.850	3.330	1.480
1953	9.990	4.440	11.470	5.1 80	8.510	3.700
1954	38.110	17.020	42.920	19.240	32.930	14.800
1955	49.950	22.200	56.610	25.1 60	43.290	19.240
1956	61.790	27.380	70.300	31.080	53.650	24.050
1957	61.790	27.380	70.300	31.080	53.650	24.050
1958	85.840	38 .110	97.310	43.290	74.740	33.300
1959	92.500	25.160	102.120	27.750	82.880	22.570
1960	17.390	11.470	19.240	12.580	15.540	10.360
1961	24.420	17.390	27.010	19.240	21.830	15.540
1962	156.251	68.709	168.942	75.924	143.560	61.494
1963	368.705	208.273	397.861	219.484	339.549	197.099
1964	230.695	95.016	265.290	107.670	196.063	82.362
1965	75.073	31.450	77.478	31.524	72.668	31.376
1966	38.813	15.466	36.408	18.352	41.218	12.580
1967	13.579	5.217	14.060	4.958	13.098	5.476
1968	31.376	15.762	33.670	17.020	29.082	14.504
1969	22.718	10.212	26.751	11.803	18.685	8.621
1970	33.596	20.239	39.812	23.384	27.380	17.094
1971	36.704	14.985	42.698	19.092	30.710	10.878
1972	9.361	3.108	9.694	3.108	9 .028	3.108
1973	2.775	1.221	3.441	1.443	2.109	0.999
1974	15.577	7.030	17.131	8.103	13.986	5.994
1975	5.883	2.775	6.623	3.367	5.80 9	2.220
1976	1.184	0.370	1.184	0.407	1.184	0.333
1977	6.586	3.959	6.068	3.145	7.030	4.773
1978	8.584	3.552	10.175	3.626	6.956	3.441
1979	3.182	1.110	3.21 9	1.147	3.108	1.073
1980	1.903	0.816	2.386	0.936	1.420	0.664
1981	6.464	2.205	6.494	2.144	6.433	2.265
1982	0.816	0.263	0.876	0.314	0.755	0.215
1983	0.483	0.178	0.544	0.202	0.423	0.160
1984	0.438	0.277	0.581	0.336	0.395	0.216
1985	0.318	0.200	0.276	0.169	0.326	0.230
1986	27.4	1.91	28.8	2.05	26.0	1.76
1987	0.59	0.25	0.66	0.25	0.52	0.26
1988	0.447	0.276	0.462	0.272	0.432	0.280
19 89	0.285	0.157	0.219	0.093	0.351	0.221

	Denmark		Jutland		Islands	
Year	di	Ai _(30.02)	di	Ai(30.02)	di	Ai _(30.02)
1950	1.243	1.215	1.302	1.273	1.184	1.157
1951	5.979	7.030	6.749	7.83 8	5.210	6.221
1952	11.722	18.323	13.261	20.618	10.182	16.029
1953	29.600	46.830	33.507	52.889	25.693	40.770
1954	112.539	155.731	127.398	176.173	97.680	135.290
1955	148.059	296.8 57	167.595	335.922	128.523	257.792
1956	183.579	469.471	207.792	531.304	159.366	407.637
1957	183.579	638.145	207.792	722.227	159.366	554.062
1 9 58	254.678	872.445	288.245	987.409	221.053	757.424
1959	361.238	1205.526	408.954	1364.492	313.582	1046.561
1960	67.488	1243.959	76.427	1408.032	58.608	1079.940
1961	87.675	1301.241	99.219	1472.849	76.072	1129.632
1962	439.738	1701.242	472.179	1900.635	407.296	1501.949
1963	988.344	2628.199	1092.418	2924.739	884.270	1331.659
1964	616.390	3170.535	691.752	3533.949	541.029	2807.121
1965	234.077	3326.905	248.877	3696.486	219.277	2957.324
1966	126.984	3375.057	128.227	3737.418	125.741	3012.697
1967	61.982	3358.593	69.619	3720.145	54.346	2997.040
1968	83.058	3363.098	92.826	3725.944	73.230	3000.195
1969	61.272	3346.212	73.467	3712.693	49.077	2979.675
1970	97.502	3365.115	117.986	3743.247	77.019	2986.928
1971	89.155	3375.430	102.17 9	3757.659	76.131	2993.148
1972	25.752	3323.554	27.054	3698.331	24.450	2948.724
1973	11.366	3258.804	12.728	3626.358	9.946	2891.141
1974	42.032	3225.498	46.117	3588.654	38.066	2862.350
1975	24.509	3175.828	26.758	3532.894	22.25 9	2818.771
1976	6.098	3109.302	6.867	3458.970	5.328	2759.642
1977	22.733	3060.549	23.976	3403.451	21.430	2717.597
1978	27.410	3017.479	31.850	3356.893	22.970	2678.016
1979	9.827	2958.211	10.301	3290.341	9.235	2625.917
1980	5.606	2896.171	6.766	3221.854	4.591	2570.470
1981	17.059	2846.738	18.316	3166.216	15.948	2527.385
1982	2.706	2784 409	2.851	3096.736	2.561	2472.203
1983	2.151	2722.959	2.126	3028.134	2.175	2417.902
1984	1.751	2662.521	1.935	2960.911	1.567	2364.247
1985	1.290	2603.012	1.191	2894.495	1.388	2311.642
1986	1210.000	3725.984	1340.000	4137.847	1080.000	3314.232
1987	29.000	3669.280	32.000	4074.674	26.000	3263.994
1988	11.900	3597.161	13.400	3994.768	10.300	3199.562
1989	3.500	3518.480	4.510	3907.998	2.530	3129.007

Appendix D.3. Fallout reses and accumulated fallout (Bq ¹³⁷C: m⁻²) in Denmark 1950-1989

Denmark		Jutland		Islands		
Year	di _(May-Aug)	di _(July-Aug)	di _(May-Aug)	di _(July-Aug)	di _(May-Aug)	di _(July-Aug)
1950	0.592	0.592	0.592	0.592	0.592	0.592
1951	2.960	1.184	3.552	1.776	2.960	1.184
1 9 52	6.512	2.960	7.104	2.960	5.328	2.368
1953	15.984	7.104	18.352	8.288	13 616	5.920
1954	60.976	27.232	68 .672	30.784	52. 68 8	23.680
1955	79.920	35.520	90.576	40.256	69.264	30.784
1956	98.864	43.808	112.480	49.728	85.840	38.480
1957	98.864	43.808	112.480	49.723	85.840	38.480
1958	137.344	60.976	155.696	69.264	119.584	53.280
1959	148.000	40.256	163.392	44.400	132.608	36.112
1960	27.824	18.352	30.784	20.128	24.864	16.576
1961	39.072	27.824	43.216	30.784	34.928	24.864
1962	250.002	109.934	270.307	1 21.478	229.696	98.390
1963	589.928	333.237	636.578	351.174	543.278	315.358
1964	369.112	1 52 .026	424.464	172.272	313.701	131.779
1965	120.117	50.320	123.965	50.438	116.269	50.202
1966	62.101	24.746	58.253	29.363	65. 9 49	20.129
1967	21.726	8.347	22.496	7.933	20. 9 57	8.762
1 9 68	50.202	25.21 9	53.872	27.232	46.531	23.206
1969	36.349	16.339	42.802	18.885	29.896	13.794
1970	53.754	32.382	63.699	37.414	43.808	27.350
1971	58.726	23.976	68.317	30.547	49.136	17.405
1972	14.5.3	4.973	15.510	4.9 73	14.445	4.973
1973	4.440	1.954	5.506	2.309	3.374	1.598
1974	24.923	11.248	27.410	12.965	22.378	9.5 9 0
1975	9.413	4.440	10.597	5.387	9. 29 4	3.552
1976	1.894	0.592	1.894	0.651	1.894	0.533
1977	10.538	6.334	9.70 9	5.032	11.248	7.637
1978	13.734	5.683	16.280	5.802	11.130	5.506
1979	ະ 091	1.776	5.150	1.835	4.973	1.717
1980	3.045	1.305	3.818	1.498	2.271	1.063
1981	10.342	3.528	10.390	3.431	10. 294	3.624
1982	1.305	0.420	1.401	0.503	1.208	0.343
1983	0.773	0.285	0.870	0.324	0.677	0.256
1984	0.781	0.443	0.929	0.538	0.632	0.347
1985	0.508	0.320	0.441	0.270	0.522	0.368
1986	772.000	78.000	790.000	94.000	754.000	63.000
1987	12.000	5.400	12.500	5.500	11.400	5.300
1988	4.800	2.400	5.310	2.620	4.160	2.080
1989	1.110	0.570	1.490	0.730	0.740	0.410

References

- Aarkrog, A. (1979). Environmental Studies on Radioecological Sensitivity and Variability with Special Emphasis on the Fallout Nuclides ⁹⁹Sr and ¹³⁷Cs. Risp-R-437.
- Aarkrog, A. (1988). Studies of Chernobyl Debris in Denmark, Environment International 14, 149-155.
- Aarkrog, A. (1989). Radioecological Lessons Learned from Chernobyl, Proceeding of the XVeth Regional Congress of IPRA, Visby, Gotland, Sweden, 10-14 Sept., 1989, 129-134.
- Bryant, F.J., Morgan, A. and Spicer, G.S. (1959). The Determination of Radiostrontium in Biological Materials. AERE-R 3030.
- Danmarks statistik. Statistisk årbog 1972 (Statistical Yearbook) (Copenhagen, 1972).
- Danmarks statistik, Landbrugsstatistik 1985. (Statistical Yearbook) (Copenhagen, 1986).
- Danmarks statistik. Statistisk årbog 1987 (Statistical Yearbook) (Copenhagen 1988).
- Hald, A. (1958). Private communication.
- Harley, John H. (1972). Manual of Standard Procedures. HASL-300.
- HASL (1958-1978). General reference to: Environmental quarterly. Quarterly reports from Health and Safety Laboratory, U.S. Atomic Energy Commission, later U.S. Energy Research and Development Administration and latest Environmental Measurements Laboratory, Department of Energy (New York).
- Lippert, J. (1975). Statdata, Risø-M-1780.
- Osmond, R.G., Owers, M.J., Healy, C. and Mead, A.P. (1959). The Determination of Radioactivity due to Caesium, Strontium, Barium and Cerium in Waters and Filters. AERE-R 2899.
- Quittner, P. (1969). Nucl. Instr. and Methods 76, 115-124.
- **Rise Reports** Nos. 1, 3, 9, 14, 23, 41, 63, 85, 107, 130, 154, 180, 201, 220, 245, 265, 291, 305, 323, 345, 361, 386, 403, 421, 447, 469, 487,509, 527, 540, 549 and 563 (1957-89).
- Roos, N., Nørby Jenser, M., Lundmark Jensen, N. (1990). Radioaktivt Cesium i Svamperindersøgelse af 6 arter i Gribskov (in Danish) 58 pp. University of Ros: ade.
- Sydkraft: Barsebäckverket-Månadsrapport; Vattenfall: Ringhalsverket. Månadsrapport ..., and Vattenfall: Forsmarkverket - Miljörapport. (Monthly reports to the Swedish authorities on discharges from Barsebäck, Ringhals and Forsmark, respectively) (in Swedish).
- UNSCEAR. (1982). United Nations Scientific Committee on the Effects of Atomic Radiation.. Ionizing Radiation: Sources and biological effects. (New York) 773 pp.
- Vestergaard, J. (1964). Analysis of Variance with Unequal Numbers in Group. GIER System Library No. 211 (A/S Regnecentralen, Copenhagen, 1964).

Bibliographic Data Sheet Risp-R-570

Tite and under(s) Environmental Radioactivity in Denmark in 1988 and 1989 A. Aarkrog, J., Bøtter-Jensen, Chen Qing Jiang, H. Dahlgaaro, Heinz Hansen, Elis Holm, Bente Lauridsen, S.P. Nielsen and J. Søgaard-Hansen

Groups over reg. number(s)	Project/contract no.
Department	July 1991
Health Physics	
Dept. or group	Dute
	0106-407X
87-550-1720- 7	0106-2840
ISBN	ISSN

Pages	Tables	Illustrations	References
213	212	76	51

Abstract (Max. 2000 characters)

Superium-90, radiocesium, and other radionuclides were determined in samples from all over the country of air, precipitation, stream water, lake water, ground water, drinking water, sea water, soil, sediments, dried milk, fresh milk, meat, fish, cheese, eggs, grain, hvead, potstoes, vegetables, fruit, grans, moss, licken, sea planes, wall diev, and humans. Estimates are given of the mean countents of radiostructions and radiocesium in the human diet in Deamark during 1908 and 1909. Tritium was determined in precipitation, ground water, other fresh waters, and sea water. The y-background was measured regularly by TLD's and a Nal detector. The marine caviruantess at Bursebück and Ringhals were mositered for ¹³²Cs and corrosion products (⁴⁰Co, ⁴⁰Co, ⁴⁵Za, ⁵⁴Ma).

During 1968 or 4 1969 the expanded programme initiated after the Cernobyl accident in 1966 was brought back to the pre-Chernobyl level.

Descriptors INIS/EDB

AIR; ANTIMONY ISOTOPES; AQUATIC ECOSYSTEMS; AT-MOSPHERIC PRECIPITATIONS; BACKGROUND RADIATION; BARSEBAECK-I REACTOR; BARSEBAECK-2 REACTOR; BONE TISSUES; CERIUM ISOTOPES; CESIUM 134; CESIUM 137; CHERNOBYLSK-4 REACTOR; CHROMIUM 51; COBALT ISO-TOPES; DENMARK; DIET; ENVIRONMENT; FALLOUT DE-POSITS; FISHES; FOOD, FOOD CHAINS; GLOBAL FALLOUT; GROUND WATER; IODINE 131; IRON 59; LOCAL FALLOUT; MAN; MANGANESE 54; MILK; NIOBIUM 95; NUMERICAL DATA; PLANTS; RADIOACTIVITY; REACTOR ACCIDENTS; RINGHALS-3 REACTOR; RISOE NATIONAL LABORATORY; RUTHENIUM ISOTOPES; SEAWATER; SEAWEEDS; SEDI-MENTS; SILVER 100; STRONTIUM 90; TECHNETIUM 99; TRITIUM; VEGETABLES; ZINC 65; ZIRCONIUM 95;

Avsilable on request from Rise Library, Rise National Laboratory, (Rise Bibliotek, Forskningscenter Rise), P.O.Box 49, DK-4000 Roskilde, Denmark. Telephone + 45 42 37 12 12, ext. 2268/2269 Telex 43 116. Telefax + 45 46 75 56 27.