Technical University of Denmark

Environmental Radioactivity in Denmark in 1987

Aarkrog, Asker; Bøtter-Jensen, L.; Chen, Q.J.; Dahlgaard, H.; Hansen, H.; Holm, E.; Lauridsen, B.; Nielsen, Sven Poul; Søgaard-Hansen, J.

Publication date: 1989

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Aarkrog, A., Bøtter-Jensen, L., Chen, Q. J., Dahlgaard, H., Hansen, H., Holm, E., ... Søgaard-Hansen, J. (1989). Environmental Radioactivity in Denmark in 1987. (Denmark. Forskningscenter Risoe. Risoe-R; No. 563).

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

DK 8900095

Environmental Radioactivity in Denmark in 1987

A. Aarkrog, L. Bøtter Jensen, Chen Qing Jiang, H. Dahlgaard, Heinz Hansen, Elis Holm⁺, Bente Lauridsen, S.P. Nielsen and J. Søg ard-Hansen

+International Laboratory for Marine Radioactivity, Monaco

Risø National Laboratory, DK-4000 Roskilde, Denmark May 1989

Environmental Radioactivity in Denmark in 1987

A. Aarkrog, L. Bøtter-Jensen, Chen Qing Jiang, H. Dahlgaard, Heinz Hansen, Elis Holm⁺, Bente Lauridsen, S.P. Nielsen and J. Søgaard-Hansen

+ International Laboratory for Marine Radioactivity, Monaco

Risø National Laboratory, DK-4000 Roskilde, Denmark May 1989 Abstract. Strontium-90, radiocesium, and other radionuclides were determined in samples from all over the country of air, precipitation, stream water, lake water, ground water, drinking water, sea water, soil, sediments, dried milk, fresh milk, meat, fish, cheese, eggs, grain, bread, potatoes, vegetables, fruit, grass, moss, lichen, sea plants, total diet, and humans. Estimates are given of the mean contents of radiostrontium and radiocesium in the human diet in Denmark during 1987. Tritium was determined in precipitation, ground water, other fresh waters, and sea water. The γ -background was measured regularly by TLD, ionization chamber, and on site γ -spectroscopy at locations around Risø, at ten of the State experimental farms, along the coasts of the Great Belt and around Gylling Næs. The marine environments at Barsebäck and Ringhals were monitored for ¹³⁷Cs and corrosion products (⁵⁸Co, ⁶⁰Co, ⁶⁵Zn, ⁵⁴Mn).

The expanded programme initiated after the Cernobyl accident in 1986 was carried on in 1987 with minor reductions.

ISBN 87-550-1532-8 ISSN 0106-2840 ISSN 0106-407X

Grafisk Service 1989

Contents

Abbreviations and Units 5

1. Introduction 7

2. Facilities 8

- 2.1. Detectors 8 2.2. Data Treatment 8
- 2.2. Data Treatment 8

3. Environmental Monitoring at Risø, Barsebäck, and Ringhals 8

3.1. Environmental Monitoring at Risø

3.2. Marine Environmental Monitoring at Barsebäck and Ringhals 10

3.2.1. y-Emitting Radionuclides in Brown Algae 11

3.2.2. y-Emitting Radionuclides in Benthic Invertebrates and Fish 13

- 3.2.4. y-Emitting Radionuclides in Sea Sediments 14
- 3.2.5. Field Experiments at Ringhals, Barsebäck, and Forsmark 15

4. Fallout Nuclides in the Abiotic Environment 24

4.1. Air 24

- 4.1.1. Strontium-90 in Air 24
- 4.1.2. Radiocesium in Air 26
- 4.1.3. lodine-131 in Air 29
- 4.2. Precipitation 30
- 4.2.1. Strontium-90 in Precipitation 30
- 4.2.2. Radiocesium in Precipitation 32
- 4.2.3. Shorter-lived γ -Emitters in Precipitation 35
- 4.2.4. Tritium in Precipitation 36
- 4.3. Fresh Water 37
- 4.3.1. Radionuclides in Ground Water 37
- 4.3.2. Strontium-90, Radiocesium and Tritium in Fresh Water from Danish Lakes and Streams 39
- 4.3.3. Radionuclides in Danish Drinking Water 43
- 4.4. Radionuclides in Sea Water 44
- 4.5. Strontium-90 and Radiocesium in Soil Samples 57
- 4.6. Sediments 59

5. Danish Food and Various Vegetation 62

- 5.1. Strontium-90 and Radiocesium in Dried Milk from the Entire Country 62
- 5.2. Other Milk Products 67
- 5.2.1. Strontium-90 and Radiocesium in Consumers Milk 67
- 5.2.2. Strontium-90 and Radiocesium in Danish Cheese 67
- 5.3. Strontium-90 and Radiocesium in Grain from the Entire Country 58
- 5.4. Strontium-90 and Radiocesium in Bread from the Entire Country 71
- 5.5. Strontium-90 and Radiocesium in Potatoes from the Entire Country 75
- 5.6. Strontium-90 and Radiocesium in Vegetables and Fruits from the Entire Country 76
- 5.7. Strontium-90 and Radiocesium in Total Diet from the Entire Country 81
- 5.8. Radionuclides in Meat, Fish, Eggs, and Various Vegetable Foodstuffs 85
- 5.8.1. Strontium-90 and Radiocesium in Meat 85

- 5.8.2. Radionuclides in Fish and Mussels 86
- 5.8.3. Strontium-90 and Radiocesium in Eggs 89
- 5.8.4. Strontium-90 and Radiocesium in the Variety of Vegetable Food 89
- 5.9. Estimate of the Mean Contents of ⁹⁰Sr and Radiocesium in the Human Diet in Denmark in 1987 90
- 5.10. Grass and Fodder Samples 94
- 5.10.1. Grass Collected Around Rise 94
- 5.10.2. Radionuclides in Grass Collected at the State Experimental Farms 95
- 5.10.3. Straw, Beets, and Beet Leaves in 1986 and 1987 97
- 5.11. Sea Plants 99
- 5.11.1. Sea Plants Collected in Roskilde Fjord 99
- 5.11.2. Sea Plants Collected at Klint (55°58'N, 11°35'E) 100
- 5.11.3. Sea Plants Collected in Danish Waters 101
- 5.12. Moss and Lichens 104

6. Structium-90 and Radiocesium in Humans in 1987 105

- 6.1. Strontium-90 in Human Bone 105
- 6.2. Radiocesium in the Hunan Body 113
- 6.3. Radionuclides in Human Milk 118
- 6.4. Radiocesium in Urine Samples 119

7. Tritium in the Environment 120

- 7.1. Introduction 120
- 7.2. Assay of Tritium in Low-level Amounts 120
- 7.3. Summary of Results 120

8. Measurements of Background Radiation in 1987 121

- 8.1. Instrumentation 121
- 8.2. State Experimental Farms 121
- 8.3. Rise Environment 123
- 8.4. Gylling Næs Environment 125
- 8.5. Great Belt and Langeland Belt Areas 126
- 8.6. The Baltic Island of Bornholm 127

9. Conclusion 128

- 9.1. Environmental Monitoring at Rise, Barsebäck, and Ringhals 128
- 9.2. Fallout in the Abiotic Environment 128
- 9.3. Fallout Nuclides in the Human Diet 129
- 9.4. Strontium-90 and Cesium-137 in Humans 129
- 9.5. Tritium in Environmental Samples 129
- 9.6. Background Radiation 129

Acknowledgements 130

Appendices

- Appendix A. A Reinvestigation of Radiocesium in Soil Samples from S-Jutland with Emphasis on the Possible Effect of the Pretreatment of the Samples Before Measurement 130
- Appendix B. Statistical Information on Population Density, Area of the Zones, and Milk, Grain, Vegetable, and Fruit Production in the Zones 132
- Appendix C. A Comparison Between Observed and Predicted Levels in the Human Food Chain in Denmark in 1987 133
- Appendix D. Fallout Rates and Accumulated Fallout (mCi ⁹⁰Sr km⁻²) in Denmark 1950-1987 135

References 140

Abbreviations and Units

joul :: the unit of energy; 1 J = 1 Nm (= 0.239 cal)]: Gy: gray: the unit of absorbed dose = 1 J kg^{-1} (= 100 ad) Sv: sievert: the unit of dose equivalent = 1 J kg⁻¹ (= 100 rem) Bq: becquerel: the unit of radioactivity = 1 s^{-1} (= 2/ pCi) c⁻: celorie = 4.186 J -.m: 0.01 Sv 'i: curie: 3.7×10^{9} Bq (= 2.22×10^{2} dpm) **E**: exa: 1018 P٠ peta: 1015 T: tera: 1012 **G**: giga: 10⁹ M: mega: 10⁶ k: **kilo: 10**² m: milli: 10-3 μ: micro: 10-6 а: nano: 10-9 pico: 10-12 **p**: f: femto: 10-15 atto: 10-18 a: pro capite: per individual TNT: trinitrotoluol; i Mt TNT: nuclear explosives equivalent to 109 kg TNT. yr^{-1} : per year (a^{-1}) cpm: counts per minute dpm: disintegrations per minute OR: observed ratio CF: concentration factor FP: fission products μ R: micro-roentgen, 10⁻⁶ roentgen S.U.: pCi ⁹⁰Sr (g Ca)⁻¹ O.R.: observed ratio M.U.: pCi ¹³⁷Cs (g K)⁻¹ **V**: vertebrae male m: f: female nSr: natural (stable) Sr eqv. mg KCl: equivalents mg KCl: activity as from 1 mg KCl $(\sim 0.96 \text{ dpm} = 0.016 \text{ Bq}; 1 \text{ g K} = 30.65 \text{ Bq})$ S.D.: standard deviation:

 $\frac{\Sigma(\bar{\mathbf{x}} \cdot \mathbf{x}_i)}{n(n-1)}$

S.E.: standard error

- U.C.L.: upper control level
- L.C.L.: lower control level
- S.S.D.: sum of squares of deviation: $\Sigma(\mathbf{x}-\mathbf{x}_i)^2$
- f: degrees of freedom
- s²: variance
- v^2 : ratio of the variance in question to the residual variance
- P: probability fractile of the distribution in question
- η : coefficient of variation, relative standard deviation
- anova: analysis of variance
- A: relative standard deviation 20-33%
- B: relative standard devition > 33%, such results are not considered significantly different from zero activity
- B.D.L.: below detection limit

In the significance test the following symbols were used:

- : probably significant (P > 95%)
- ** : significant (P > 99%)
- ***: highly significant (P > 99.9%)

1. Introduction

1.1.

The present report is the thirty-first of a series of periodic reports (cf. ref. 1) dealing with measurements of radioactivity in Denmark. The organization of the material in the present report corresponds to the report of last year. After the introduction and a chapter on organization and facilities, there follows a chapter on environmental monitoring around nuclear facilities (Risø, Barsebäck, and Ringhals). Chapter four deals with fallout nuclives in the abiotic environment, i.e. air, water, and soil. Chapters five and six comprise fallout nuclides in the human diet, various vegetation and human tissues. Chapter seven is devoted to a general discussion of environmental tritium studies. External radiation is treated in chapter-eight. The names of the authors of each chapter appear at its head.

Although the programmes were expanded substantially after the Chernobyl accident in Ukraine in April 1986, we have not found it necessary to change the organization of the material.

1.2.

The methods of radiochemical analysis²⁻⁴⁾ and the statistical treatment of the results^{5,12}) are still based on the principles establishe 1 in previous reports¹⁾.

1.3.

The detailed tables of the environmental monitoring programme for Risø National Laboratory appear in the two semiannual reports: Radioactivity in the Risø district January-June 1987 and July-December 1987, which are available from Risø Library.

1.4.

The report contains no information on sample collection and analysis except in cases where these procedures have been altered.

1.5.

In 1987 the personnel of the Environmental Control Section of the Health Physics Department consisted of three chemists (incl. one guest scientist), one biologist, one physicist, ten laboratory technicians, three sample collectors, and two laboratory assistants. The group for Electronics Development and Maintenance gave assistance with the maintenance of counting equipment.

1.6.

The composition of the average Danish diet used in this report is identical with that proposed in 1962 by the late Professor E. Hoff-Jørgensen, Ph.D.

2. Facilities^{1,6,7,8)}

By S.P. Nielsen

2.1. Detectors

The samples are measured as follows:

Alpha (²³⁹Pu, ²⁴¹Am): 22 solid-state surface barrier detectors connected to multichannel analyzers (512 channels per detector) and another two for total alpha counting.

Beta (90Y mainly): Six "multidetector"-systems each containing 5 sample counters and a common anticoincidence shield are used.

Gamma (natural and fallout isotopes): A total of 10 germanium detectors in 10 cm lead shields are used for gamma spectrometric measurements. 5 detectors are connected to hard-wired multichannel analyzers and 5 to MCA-cards in a personal computer. The efficiencies of the detectors are in the range 12-40% relative to a $3^{"} \times 3^{"}$ NaI(Tl) detector. An $8^{"} \times 4^{"}$ NaI(Tl) detector and a detector unit with three $4^{"} \times 4^{"} \times 16^{"}$ NaI(Tl) crystals are used in an underground shielded room for gamma-spectrometric whole-body measurements.

2.2. Data Treatment

Measured spectra are transferred to a Burroughs B7800 computer for evaluation.

A program system STATDATA¹⁶) is developed for registration and treatment of environmental measurements including multichannel analyzer spectra. To date, approximately 95 000 sets of results have been registered covering the period from 1957.

3. Environmental Monitoring at Risø, Barsebäck, and Ringhals

by H. Dahlgaard

3.1. Environmental Monitoring at Risø

From the two semiannual reports: Radioactivity in the Risø district January-June 1987 and July-December 1987 the results of the environmental monitoring at Risø are presented. The reports are available from the Risø Library.

The various anthropogenic radionuclides measured outside the Risø area came from non-Risø sources.

Fig. 3.1.1. Sampling locations at Ris ϕ National Laboratory. 1-5: locations for rain bottles (0.03 m^2 each), ion-exchange columns (0.06 m^2 each), and grass samples.

3.2. Marine Environmental Monitoring at Barsebäck and Ringhals

The radiological monitoring of the marine environment around the two nuclear power plants at Barsebäck and Ringhals in Sweden¹) was continued in 1987.

Figures 3.2.1.1 and 3.2.1.2 show the sampling locations.

Fig. 3.2.1.1. Sampling locations at Barsebäck. 49 and 50 indicate fishing tracks. Arrows indicate cooling water intake and outlet.

Fig. 3.2.1.2. Sampling locations at Ringhals. 14 and 16 indicate fishing tracks. Arrows indicate cooling water intake and outlet.

3.2.1. y-Emitting Radionuclides in Brown Algae

Tables 3.2.1.1 and 3.2.1.2 show the radionuclide concentrations found by γ -spectrometric analysis in brown algae sampled near Ringhals in 1987. Monthly data on radionuclides in seaweed from Barsebäck and Ringhald are reported from the experimental programme in Chapter 3.2.5. The data are expressed on the basis of dry weight. Dry matter contents are given.

Table 3.2.1.3 shows a comparison of the 3 fucoids Fucus vesiculosus, Fucus serratus, and Ascophyllum nodosum. The levels of significance of differences from unity are indicated.

Station No.**	7	5	9*
% drv matter	20.7	22.6	22.2
Species	Fu.ve.	Fu.se.	Fu.se.
Distance from outlet in km	0.2	4.1	1.1
⁵⁴ Mn ⁵⁷ Co	11.2 0.4 B		5.6
58Co	36	61	28
106Ru	16 A	01	130
^{110т} дд ¹³⁴ Сs	14.3 4.1	4.3	6.0 A 5.5
¹³⁷ Cs	14.9	17.3	19.5

Table 3.2.1.1. Radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus servatus (Fu.se.) collected at Ringhals 12-13 May 1987. (Unit: Bq kg⁻¹ dry matter)

* Locations south of the outlet; the other locations were situated north of the outlet. **Cf. Fig. 3.2.1.2.

Table 3.2.1.2. Radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus serratus(Fu.se.) collected at Ringhals 15-16 December 1987 (Unit: Bq kg⁻¹ dry matter)

Station No.**	7	7	6	6	5	8	9*	13*
% dry matter	24.6	21.9	18.5	18.8	20.2	20.8	32.0	18.2
Species	Fu.ve.	Fu.se.	Fu.ve.	Fu.se.	Fu.se.	Fu.ve.	Fu.se.	Fu.ve.
Distance from								
outlet in km	0.2	0.2	1.9	1.9	4.1	4.8	1.1	4.1
⁵⁴ Mn	53	37	2.8	3.8	3.4	2.3	16.1	4.6
57Co	2.7	3.0					1.18	0.60 A
58Co	330	330	48	50	30	21	162	58
⁶⁰ Co	800	750	95	94	52	34	230	50
⁶⁵ Zn	130	131	16.7	14.5	5.7	4.0 A	34	6.6
110mAg	12.6	16.1	3.7 A	3.5 B	2.7	2.8 A	21	4.9
¹³⁴ Cs	3.8 A	3.8 A	2.5	3.2	2.6	3.1	2.9	1.3 B
137Cs	12.1	22	12.2	14.6	13.9	13.4	12.2	12.3

* Locations south of the outlet; the other locations were situated north of the outlet. ** Cf. Fig. 3.2.1.2.

Isotope	Fu.ve/Fu.s	е.	F	: ve/As	no.
60Co	0.82*** ±0.045	(n = 32)	1.5*	±0.13	(n = 17)
58Co	0.83*** ± 0.038	(n = 31)	2.4***	± 0.27	(n = 15)
⁵⁴ Mn	0.99 ± 0.066	(n = 27)	3.5***	$t \pm 0.33$	(n = 8)
⁶⁵ Zn	0.82*** ± 0.056	(n = 27)	1.2	±0.17	(n = 16)
110mAg	1.46** ±0.149	(n = 20)	1.2	±0.18	(n = 11)
¹³⁷ Cs	1.02 ± 0.035	(n = 31)	1.4***	± 0.05	(n = 15)
131]	0.94	(n = 1)	1.2		(n = 1)
95Zr	0.89	(n = 1)			
¹²⁴ Sb	0.70	(n = 1)	1.3		(n = 1)
57Co	0.90	(n = 1)	0.8		(n = 1)
¹³⁴ Cs	0.99 ± 0.054	(n = 7)	1.5	±0.04	(n = 2)
¹⁰³ Ru	1.29 ± 0.249	(n = 5)	2.5	±1.17	(n = 2)
106Ru	1.25 ±0.261	(n = 5)	2.3	±0.39	(n = 2)
144Ce	0.47	(n=1)			
The error ter	rm was 1 S.E.				

Table 3.2.1.3. Ratios of activity concentrations on dry weight basis in Fucus vesiculosus (Fu.ve.), Fucus serratus (Fu.se.) and Ascophy^{*} m nodosum (As.no.) collected at Ringhals 1978-1987

3.2.2. y-Emitting Radionuclides in Benthic Invertebrates and Fish

Table 3.2.2.1 shows results of the γ -countings on benthic animals and fish from Ringhals and Barsebäck in 1987. The dose commitment to a hypothetical critical individual consuming 20 kg Mytilus edulis soft parts (fresh weight) yearly would be approximately 18 μ Sv yr⁻¹ based on mussels from Barsebäck, Table 3.2.2.1. This is < 1% of the background radiation dose (= 2 mSv yr⁻¹). The Barsebäck mussels are not normally consumed.

Consumption of 100 kg dab meat would give approximately 5 μ Sv from radiocesium based on data in Table 3.2.2.1. The cesium isotopes do not originate from the two power plants.

 Table 3.2.2.1. Gamma-emitting radionuclides in benthic animals and fish collected at Ringhals and Barsebäck in 1987. (Unit: Bq kg⁻¹ fresh)

Species	Dab	Dab	Dab	Mytilus edulis soft part	Mytilus edulis soft part
Date	26⁄6	16/12	13/5	⊿10	3/ 11
Location	Barsebäck	Ringhals	Ringhals	Barsebäck	Barseback
Station No.*	30	8	14	25	25
% dry matter	-	•	-	9.2	8.2
Depth in m	12-20	13	32	0,1	0.1
54Mn 60Co 65Zn 134Cs 137Cs	0.83 3 37	0. 79 3.41	0.56 2.93	5.6 111 9.4 A 7.2	2.6 A 95 9.1 A 2.7 A 9.0
*Cf. Figs. 3.2.1.1 a	nd 3.2.1.2.				

3.2.4. y-Emitting Radionuclides in Sea Sediments

Results from sediment samples collected at Ringhals with the HAPS bottom corer are shown in Table 3.2.4.2. The sediment sampling at Barsebäck failed in 1987.

At both power plants the ⁶⁰Co that has been detectable in the sediments for several years has been compared with the reported annual discharges from Tables 3.2.5.2 and 3.2.5.10. The total amount of ⁶⁰Co accumulated in the sediments at Ringhals location 2 and Barsebäck location 38 expressed as Bq m⁻² has been divided for each year with the total amount of ⁶⁰Co discharged from each power plant (GBq, decay corrected) summed up till the year of sampling. The result is a transfer factor from the total accumulated discharge to one square meter of sediment at the specified location, i.e. Bq m⁻²/GBq or m⁻² × 10⁻⁹.

These sediment transfer factors are shown in Figs. 3.2.4.1 and 3.2.4.2. A stable transfer factor would indicate that the deposited ⁶⁰Co remains in the sediment, whereas a significant leaking of sedimented ⁶⁰Co would be seen as a decreasing transfer factor. It is seen that the variation in the measured ⁶⁰Co deposition at the two sediment sampling locations is too large to see any tendency in the results. From the present material it cannot be judged whether this is due to inhomogeneity within the sampling locations or reflects actual variations in ⁶⁰Co loads in the sediments.

 Table 3.2.4.2. Gamma-emitting radionuclides in sediment samples collected at Ringhals, 57°15'N 12°04'E, location 2, in 1987. (Area: 0.0145 m²)

Date	Layer in cm	⁶⁰ Co Bq kg-1 dry	⁶⁰ Co Bq m⁻²	105Ru Baj kg-1 dry	¹⁰⁶ Ru Bq m-2	¹²⁵ Sb Bq kg-1 dry	⁷²⁵ Sb Bq m ⁻²	¹ 34Cs Bq kg-1 dry	134Cs Bq m-2	137Cs Bq kg-1 dry	¹³⁷ Cs Bq m ⁻²
13⁄5	0-3	16.3	330	22 A	440 A	-	•	4.0	81	24	490
	3-6	23.0	600	-	-	4.5 A	120 A	1.3 A	34 A	21	560
	6-9	7.9	180	-			-	•	-	14.5	330
	9-12	2.8	56	-			•	-	•	9.4	188
	0-12		Σ1170		Σ 440		Σ 120		Σ115		Σ1570

Fig. 3.2.4.1 Total accumulated discharge of ${}^{60}Co$ (GBq, decay-corrected) from Barsebäck (\Box_J , and transfer factor to one square meter of sediment c: location 38 (×) calculated as Bq m⁻²/GBq.

Fig. 3.2.4.2. Total accumulated discharge of 60 Co (GBq, decay-corrected) from Ringhals (\Box) and transfer factor to one square meter of sediment at location 2 (×) calculated as Bq m⁻²/GBq.

3.2.5. Field Experiments at Ringhals, Barsebäck, and Forsmark

The time-integrated water samplings at Forsmark were stopped May 1987. At Barsebäck and Ringhals, the monthly sampling programme had again 3 parts: 1) Local Fucus vesiculosus plants and at Ringhals also Fucus serratus; 2) uncontaminated Fucus vesiculosus transplanted to the contaminated areas one month prior to sampling; and 3) contaminated plant transplanted to an uncontaminated area, where they should be sampled monthly for 6 months. The transplantations to and from the power plants were brought to an end during 1987, whereas the monthly sampling of the "native" plants is planned to continue. The overall idea of this programme was to gather data to support a model that especially describes seasonal variation in bioindicator response.

Ringhals Results

Tables 3.2.5.1-3.2.5.8 give the Ringhals data. The concentrations of anthropogenic gamma emitters in Fucus outside the northern cooling water intake channel was as found earlier lower than in Fucus sampled in the channel even if the last site is 200 m further away from the power plant. Table 3.2.5.5 gives annual average values for the ratio.

The ratios seem to group in two: ⁴⁰K and ⁶⁵Zn, which do not show different values, and the rest showing higher levels in the channel. Also the radionuclides that do not originate from Ringhals show highest concentrations in the channel. These are the Chernobyl radionuclides and the short-lived cosmic nuclide ⁷Be. Furthermore, radiocesium has higher values in the channel both before and after Chernobyl even if its physiological analog ⁴⁰K gives equal values.

These observations makes the explanation less plausible that the difference could be caused by intake of another water mass with a higher concentration of power plant discharges in the cooling water channel. Thus, the reason for the higher concentration inside the channel compared with that outside can only be speculated upon. One suggestion could be that the constant high water flow through the channel exposes the surface of the Fucus plants to a higher total amount of radionuclides, even if the concentration in the water is not higher. If this were the case, it implies that the uptake of radionuclides under normal "calm" circumstances is 'limited by the exchange of water through the seaweed "blanket"; i.e. the average concentration in the microlayer in close contact with the seaweed surface will be depleted for metals and radionuclides. If this were the case, local differences in water exchange and seaweed population densities should be considered as parameters causing variation in bioindicator response. This speculative suggestion could be followed up by laboratory experiments. It is hard to understand, however, why ⁶⁵Zn did not react like the other nuclides. Another explanation could be that the growth conditions in the channel may be less favorable, thus showing less growth dilution of earlier accumulated material.

 Table 3.2.5.1. Reported monthly liquid discharges from Ringhals in 1987, reference

 36. (Unit: Bq month⁻¹)

Isotop	Jan	Feb	March	April	Мау	June	July	Aug	Sept	Oct	Nov	Dec
51Cr	1.1 x 1 0 #	8.4×10 ⁵	2.8×10 [#]	3.5×10	4.5 × 10 ⁸	6.6 × 10 ⁸	2.1×10 [®]	9.6×10 ⁸	1.1×109	6.6×10 ⁸	1.7×10 [₽]	3.0 × 109
54Mn	3.1 x 10 ⁶	6.1 × 10 ⁷	3.1 × 10 ⁶	4.8×10 [®]	2.4 × 10 ⁹	6.9×10 ⁰	2.0×10 [®]	8.1 × 10 [#]	5.2×10 ⁶	2.7×10 ⁸	1.9×10 ⁸	1.4×10 ⁸
57Co	1.8×10 ⁷	2.2×105	2.2 × 107	3.1×107	8.2 × 10 ⁵	6.3 × 10 ²	1.7 x 10 ⁷	5.2 × 107	2.9×10 ⁰	1,7×107	3.2 × 107	67×10 ^C
58Co	1.2×10 ⁹	2.6×10 ⁶	1.8×10 ⁹	6.7 × 10 ⁹	4.1 × 109	2.4 × 1010	4.3×10 [#]	1.8×1010	8.0 × 10 ⁹	2.4×109	4.4 × 10 ⁹	1.2×109
SIFe	0	Đ	1.6×107	1.9×10 ⁸	4.3 × 107	6.6 × 10 ⁷	1.0 x 10 ^e	5.5×10 ⁸	7.0 × 10 ⁷	8.6×10 [€]	2.9×10 ⁸	4.8×107
••Co	3.7 × 10 [#]	1.3×10 ⁹	3.3×10 ⁹	1.6×10 ¹⁰	2.5×10 ⁹	1.1 × 10 ¹⁰	2.3×10 ⁸	4.9×10 ⁹	8.1 × 10 ⁹	4.6 x 10 ⁹	4.9×10 [®]	26×109
#5Zn	6.4 × 10 ⁷	4.2×107	1.4×10 ⁸	1.5×10 ⁸	9.8×107	2.4 × 10 ⁹	5.1 × 10 ⁷	1.5×10 ⁹	6.4×10 ⁸	1.0×10 ⁹	1.7×10 ⁹	1.4×10 ⁸
110mAg	1.1 × 107	2.0×10 ⁶	3.9×107	1.1 × 107	1.5×107	1.3 × 107	4.1 × 10 ⁶	6.4×10 ⁶	6.4×10 ⁶	2.7×10	12×10 ⁶	7.8×107
131	1.1×10 [®]	3.2 × 107	1.4×10 ⁸	5.4×10 ⁸	5.9×107	3.9 × 107	2.1 × 10 ⁷	4.0 × 10 ⁵	7.0 x 10 ⁸	1.6×10 ⁷	3.4×10 ⁶	8.3×10 ⁶
134Cs	1.6×10 ⁸	4.9×107	1.8×10 ⁹	6.4 x 10 ⁹	3.2 × 10 ⁰	9.8 × 10 ⁸	1.6×10 ⁸	9.2 × 10 ⁸	7.5 x 19 ⁸	1.2×10 ⁸	1.6×10 ⁸	9.3×10 ⁷
137Cs	3.2×10 [#]	1.3×10 ⁸	3.2 x 10 ⁸	9.1 × 10 ⁸	5.9×10 ⁸	1.6×10 ⁹	28×10 ⁸	8.4 × 10 ⁸	1.4 x 1 0 9	8.4×10 [#]	3.8 × 10 ⁸	9.8×107

Table 3.2.5.2. Reported annual liquid discharges from Ringhals 1975-1987, reference 36. (Unit: Bq year-1)

Isotope	1 975	1976	1977	1978	1979	1980	1 98 1	1982	1983	1984	1985	1986	1987
51C-		2.3 = 109	1.3# 1011	3.9 + 1010	7.5×109	60×109	1.6 = 1010	55×109	1.4 × 1010	8.1 x 109	19×1010	1.0 × 1010	13+1010
54Mn		3.4 × 10 ⁹	3.3 × 1010	1 T x 1010	5.2 × 109	5.4×109	4.0 × 10 ⁹	2.2 = 109	7.8 = 109	81×10 ⁹	51 # 109	5.5 + 109	427109
*'Cn						1.6 # 108	1.1×10 ⁸	2.2 # 107	49×107	1.1 × 109	26710	3.1 = 104	567:0
90Co	0	1.5 × 1010	3.1 # 1011	51=1010	2.7 × 1010	1 8×1010	26×1010	1.8 = 1010	59×1010	1 2 × 1017	67 - 1010	91 - 1010	73+1019
50F.e		C	1.1 x 1 0 *	1 1 # 1010	1.3×109	9.9×10 ⁰	1,1 # 109	1.1 × 1 0 P	6.5×10 ⁸	66×109	27×109	8.0 = 108	227:02
‰Co	4.4 × 105	2.2 = 1010	1.1 x 1011	9.8 = 1010	5.2 × 1010	93×1010	6.5×1010	3.3 # 1010	7.8 = 1010	1.2 # 1011	57 - 1010	8.6 × 1010	6.5 # 1019
65Zn		8.1 × 109	3.8 × 1010	4.0 × 1010	8.5 × 10 ¹⁰	4.2 = 1010	88×1010	2.2 × 1010	2.0 × 1010	9.7 × 109	3.6 = 109	4.6 × 109	41=109
110mAg		3.0 × 109	9.3×10	4.6 = 109	1,1 × 109	1 1 × 109	9.8×10 ⁹	6.0 × 100	5.2 × 10*	5.1 × 10P	31+109	60×10ª	58×108
1211		24×109	C	36×10'	0	2.4 = 109	1.8×10	3.0 × 10*	3.4 = 109	48×10 ⁸	951	6.1×10 ⁶	17+109
134Cs			6.2 × 109	1.2 × 1010	4.9 = 1010	1 5 = 1010	1 5×1010	25×1010	8.8×10 ⁹	2.8×10 ⁹	1.8 = 109	7.9×10 ⁹	4.5 + 109
137Cs			8.4 × 10 ⁹	2 6×10ta	6.6 × 10 ⁷⁰	2.1 = 1010	2.0 × 1010	3.3 + 1010	1.5 = 1010	6.2×10 ⁹	38×109	1.5 = 1010	77=102

Cate	n	55	16	vī	10	1/9	1/10	211	1/12	3012	Mean	S.E.	N	Mean	S.E.	N
% dry Fulve	-	19.5	16.7	16.2	18.5	18.3	17.6	21.8	22.3		1987			1983-		
metter Fuse	20.6	20.0	19 ,1	19.2	22.0	19.9	21.1	20.6	22.7	20.8		_		1987		
Sala Fuve			2.9A	3.9		5.3		6.8	4.0							
Fu.se	3.6	3.4	-	4.1	3.1	•	5.7		4.3	3.0						
Fu.ve/Fu.se	•	•	•	0.95		·		-	0 53	•	0.94	0.010	2	0.99	0.044	31
≌Co fuve.	-	9.0	28	56	31	49	81	71	54							
Fu.se.	20	10.3	31	70	54	64	85	59	46	41						
.ve/Fuse	•	0.87	0.90	0.80	0.57	0.77	0.95	1.20	1.18	•	0.91	0.074	8	0.60	0.040	40
MCo Fulve.		50	34	25	20	75	75	80	81				•			
Fu.se.	78	96	79	40	43	41	76	72	74	79						
Fu.ve/in.se.		0.53	0.43	0.65	0.47	0.61	2.59	1,11	1.09	-	0.73	9.100	•	0.80	0.035	40
eliza fuive.					-	-		1 0 .1	9.6							
Fu.se.	9.4		-	7.0	4.4A	38	11.6	8.7	8.5							
Fu.ve/Fu.se	-	•	-		•	·	•	1.16	1 13		1.15	0.016	2	0.84	0.040	28
108Au Fu.Se	36	35			-	-	•									
110mAg Fulve.		6.8	38		-	38		2.3A	2.2							
Fu.se.	13.5	7.7	6A	2.6	3.7				2.8	4.1						
Fu.ve/Fu.se.		0.88	0.5	•	·	•	•		0.79	•	0.72	0.115	3	1.08	0.003	16
134Cs Fulve.			5.8	4.1		50	3.8	3.8	3.6							
Fu.se.	3.2	3.6	6.8	3.9	2.6	4,4	3.1	2.8	33	28						
Fu.ve/Fu.se.	•	-	0.85	1. 05	•	1,14	1.23	1.36	1.09	-	1.12	0.069	6	1,72	0.070	9
139Cs Fulve.	-	16,7	21	15.5	7.7	18.9	13.3	13.8	15.3							
fuse.	9.9	16.2	24	14.8	9,1	17.8	12.9	13.3	12.6	8.0						
Fu.ve/Fu.se	-	1.03	0.88	1.05	0.85	1.06	103	1.04	1 71		1 07	0.041			0.029	40

Table 3.2.5.3. Gamma-emitting radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus servatus (Fu.se.) outside the northern cooling-water intake at Ringhals (location 98, 2.3 km north of the outlet) in 1987. (Unit: Bq kg⁻¹ dry weight)

Fulse, 1 October 1987: 0.4 Bq 57Co kg-1 dry weight.

Table 3.2.5.4. Gamma-emitting radionuclides in Fucus vesiculosus collected from the northern cooling-water intake channel at Ringhals in 1987 (location 95 (local), 2.5 km north of the outlet). (Unit: Bq kg⁻¹ dry weight)

Date	2/2	24	1⁄5	1/6	1/7	1/9	1/10	2/11	1/12
% dry matter	18.2	21.9	17.5	15.0	16.6	17.6	18.9	20.9	161
51 Cr	-	-	-	-		-	99 B	-	
54Mn	6.6	A 3.5	6.5	10.2	4.3 A	10.0	23	12.4	13.7
57Co	-		•	•	•	•	0.93 A	•	•
5ºCo	30	11.2	39	84	79	119	179	81	84
SOFe	-	•		-	-		-	14.4	-
€Со	114	69	66	88	43	69	210	144	260
€Zn	10	В-	-	-	•	-	14.0	7.2 A	6.9A
\$5Zr	•		•	•	•	•	20		•
106RU	79	33	•	•	•	•	-		•
110mAg	11.4	7.5	•	-	-	-	-	7.8	
134Cs	9.7	8.3	8.4	12.2	5.9	5.8	8.1	6.9	10,7
137CS	33	25	29	40	22	22	31	29	48

Table 3.2.5.5. Ratios of activity concentrations in Fucus vesiculosus sampled in the northern cooling-quater channel at Ringhals (locations 95 and 99) to those just outside the channel (location 98). Mean values and S.E. for 1983 - 1987 are given

	'Be	401(54%An	5 %	saCo	₿5Zn	103kJu	106RU	110m Ag	^{13*} Cs	
1983	2.50±0.46	0.93 ± 0.03	2.40±0.57	2.36 ± 0.66	1.70±0.17	1.06±0.12			1.45±0.37		• 2
	(n = 7)	(n = 8)	(n = 7)	(n = 8)	(n = 7)	(n = 8)			(n = 6)		<u> </u>
1984	3.20±0.30	1.01 ± 0.04	1.92±0.17	1. 77 ±0 .16	2.07 ± 0.27	0.97 ± 0.07			0.88±0.13		2 :: 0.20
	(n = 13)	(n = 13)	(n = 13)	(n = 13)	(n = 13)	(n = 13)			(n = 3)		.r = 1_
1985	3.42±0.51	0.91 ± 0.05	1.99±0.32	1.82±0.30	2.01 ± C 42	1. 05±0 .14			1.1 2±0 .14		169±.11
	(n = 7)	(n = 10)	(n = 10)	(n = 10)	(n = 10)	(n = 8)			(n = 2)		(n =);
1586	3.67±1.07	0.99±0.08	2.45±0.27	2.30 ± 0.43	1.97±0.22	0.89±0.10	3.38 ± 0.64	2.56 ± 0.33	1.38±0.20	1.9. 0.9	2.71 0.48
	(n = 4)	(n = 7)	(n = 6)	(n = 8)	(n = 8)	(n = 2)	(n = 4)	(n = 3)	(n = 3)	= .]	(n = 8)
1987		0.84±0.08	2.36±0.49	2.30±0.42	2.32 ± 0.27	0.77±0.00			2.77±0.07	1 J.26	1.57 ± 0.24
		(n = 7)	(n = 5)	{n = 7}	(n = 7)	(n = 2)			(n == 1)	v ⁽ = 6)	(n = 7)
1983-	3.15±0.24	0.94 ± 0.02	2.15±0.15	2.06±0.17	2.02±0.14	0.99 ± 0.05	3.38±0.64	2.56 ± 0.33	1.37 ± 0.15	1.36±0.17	1.94±0.12
1 987	(n = 31)	(n = 45)	(n = 41)	(n = 46)	(n = 45)	(n = 33)	(n = 4)	(n = 3)	(n = ?5)	(n = 10)	(r. = 45)

Table 3.2.5.6. Gamma-emitting radionuclides in Fucus vesiculosus transplanted from Stora Näss, Varberg (57°07'N 12°11'E) to the northern cooling-water intake channel at Ringhals in 1987 one month before sampling. (Unit: Bq kg⁻¹ dry weight)

Period of accumulation	2/1-2/2	2/2-2/3	2/4-2/5	2⁄5-1⁄6	1/6-1/7
% dry matter	23.4	37.0	16.9	14.9	14.2
54Mn			8.0	7.5	6.3 A
58Co			58	62	97
50Co	13.9	17.3	48	39	30
106RU			55 A		
110mAg	5.7		6.0 A		
134Cs	5.6	6.2	7.4	7.2	7.5
137Cs	14.7	23	19.7	23	27

Table 3.2.5.7. Fucus vesiculosus. Transfer factors obtained during one month of accumulation after transplantation to Ringhals in 1987. (Unit: Bq kg⁻¹ dry Fucus/GBq discharged) (cf. Tables 3.2.5.1 and 3.2.5.5)

	Jan	Feb	April	May	June	x	S.E.	N
54Mn			16.6	31.3	9.13	19.0	6.5	3
58Co			8.66	15.1	4.04	9.3	3.2	3
60Co	3.76	13.3	3.00	15.6	2.72	7.9	2.9	5
110mAg	518		545			527	19	2

% dry matter 19.9 23.3 15.8 13.8 18.2 20.6 18.4 24.3 14.2 22.2 22. Species Fu.se. Fu.se. Fu.se. Fu.ve. Fu.ve. Fu.se. Fu.ve. Fu.ve. Fu.se. Fu.ve. Fu.ve. Fu.se. Fu.se. Fu.ve. Fu.ve. Fu.se. 54Mn 1.4 A - - - 0.8 A - - 1.1 B - 54Mn 1.4 A - - - 0.8 A - - 1.1 B - 54Mn 1.4 A - - - 0.8 A - - 1.1 B - 50Co 9.4 11.0 6.0 6.5 4.3 4.6 4.7 4.4 7.4 6.2 5.1 106Ru 12.5 A 18.4 A - <th>Date</th> <th>2⁄1</th> <th>2/4</th> <th>1⁄5</th> <th>1⁄6</th> <th>1/7</th> <th>1⁄8</th> <th>1⁄9</th> <th>1/10</th> <th>1/10</th> <th>2⁄11</th> <th>1/12</th>	Date	2⁄1	2/4	1⁄5	1⁄6	1/7	1⁄8	1⁄9	1/10	1/10	2⁄11	1/12
Species Fu.se. Fu.ve. Fu.ve. Fu.se. Fu.ve. Fu.se. Fu.se.	% dry matter	19.9	23.3	15.8	13.8	18.2	20.6	18.4	24.3	14.2	22.2	22.1
54Mn 1.4 A - - - 0.8 A - - 1.1 B - 60Co 9.4 11.0 6.0 6.5 4.3 4.6 4.7 4.4 7.4 6.2 5. 106Ru 12.5 A 18.4 A -<	Species	Fu.se.	Fy.se.	Fu.ve.	Fu.ve.	Fu.ve.	Fu.se.	Fu.ve.	Fu.se.	Fu.ve.	Fu.ve.	Fu.ve.
60Co 9.4 11.0 6.0 6.5 4.3 4.6 4.7 4.4 7.4 6.2 5. 106Ru 12.5 A 18.4 A -<	54Mn	1.4 A	-	-		-	0.8 A		-	-	1.1 B	•
106Ru 12.5 Å 18.4 Å -	60Co	9.4	11.0	6.0	6.5	4.3	4.6	4.7	4.4	7.4	6.2	5.7
110mAg 3.9 3.6 A - <t< td=""><td>106Ru</td><td>12.5 A</td><td>18.4 A</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>•</td><td>-</td><td>-</td><td>-</td></t<>	106Ru	12.5 A	18.4 A	-	-	-	-	-	•	-	-	-
¹³⁴ Cs 6.7 6.7 4.7 8.6 4.9 5.3 6.2 3.3 6.1 4.5 4. ¹³⁷ Cs 19.9 24 20 26 18.1 19.9 23 15.5 21 18.5 17.	110mAg	3.9	3.6 A	-	-	-	-	•	-	-	-	-
¹³⁷ Cs 19.9 24 20 26 18.1 19.9 23 15.5 21 18.5 17.	134Cs	6.7	6.7	4.7	8.6	4.9	5.3	6.2	3.3	6.1	4.5	4.2
	137Cs	19.9	24	20	26	18.1	19.9	23	15.5	21	18.5	17.2

Table 3.2.5.8. Gamma-emitting radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus serratus (Fu.se.) collected at Stora Näss, Varberg (57°07'N 12°11'E) in 1987. (Unit: Bq kg⁻¹ dry weight)

The experimental translocations of low-active Fucus vesiculosus plants from Varberg to the cooling water intake channel at Ringhals one month prior to sampling was discontinued in 1987. Tables 3.2.5.6 and 3.2.5.7 show the last results. It was not possible to extract a clear seasonal effect on the accumulation of radionuclides by Fucus. The background activity at Varberg is shown in Table 3.2.5.8.

Transfer factors from the Ringhals discharge (Table 3.2.5.1) to Fucus vesiculosus from location 98 (Table 3.2.5.3) calculated as the ratio of Bq kg⁻¹ dry Fucus to the monthly discharge (GBq) averaged over the previous 6 months were given in the previous report as Figs. 3.2.1.3-3.2.1.7 including 1987. The results are rather variable. However, it appears clearly that ^{110m}Ag increased above what could be explained by power plant discharges after the Chernobyl accident.

Barsebäck Results

Tables 3.2.5.9-3.2.5.12 give the Barsebäck data. Table 3.2.5.12 and Fig. 3.2.5.1 give the last results from the transplantation studies from Barsebäck. Table 3.2.5.13 shows the background activity in Fucus from Limhamn south of Barsebäck.

Table 3.2.5.9 shows a single value for ^{110m}Ag in Fucus vesiculosus from Barsebäck. The gamma spectra of Fucus from Barsebäck location 25 from 1986 have been recalculated with the aim of finding ^{110m}Ag. This gave the following results in Bq ^{110m}Ag kg⁻¹ dry Fucus (± 1 S.D.): 2/6-86: 12.3 \pm 27%; 1/10-86: 11.7 \pm 24% and 2/1-87: 3.3 \pm 42%. These values should be included in the previous report.

Transfer factors from Barsebäck discharge (Table 3.2.5.9) to Fucus vesiculosus from location 25 (Table 3.2.5.11) calculated as the ratio of Bq kg⁻¹ dry Fucus to the monthly discharge (GBq) averaged over the previous 6 months were reported in the previous report as Figs. 3.2.1.8-3.2.1.11.

Isotope	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Dec
51Cr	1.7×10 ⁹	9.8×10 ⁸	3.1 × 10 ⁹	6.3×10 ⁸	1.2×10 ⁹	8.8×10 ⁸	3.5×109	1.4×10 ⁹	5.3 × 10 ⁸	4.2×10 [#]	2.3×10 ⁸	0
54Mn	3.8×10 ^ª	3.7×10 ⁶	1.6×10 ⁸	1.2×10 ⁸	1.7×10 [#]	1.1 × 10 ⁸	1.4×10 ⁹	6.0 × 10 ⁸	1.1×10 ⁹	35×10 ⁸	1.0 × 10 ⁸	8.7×107
58Co	2.0×10 ⁸	1.7×10 ⁸	5.4×10 ⁸	1.5×10 [#]	1.4×10 ⁸	1.1×10 ⁸	3.4×10 ⁹	1.4×10 ⁹	1.9×10 ⁹	3.9×10 [#]	1.3×10 ⁸	69×107
59Fe	0	0	0	0	0	0	9.6×10 ⁷	1.2 × 20 ⁷	0	0	0	0
€Co	3.4 × 109	2.0 × 10 ⁹	2.4×10 ⁹	6.3 × 10 ⁸	4.3×109	1.3×10 ⁹	9.5×109	2.1 × 10 ⁹	3.8×10 ⁹	1.3×10 ⁹	4.8×10 ⁸	7 2 × 10 ³
€Zn	4.1 × 10 ⁷	2.2 × 10 ⁷	0	0	6.8×10 ⁷	1.1 × 10 ⁷	1.0×10 ⁸	0	0	1.6×10 ⁷	0	0
110mAg	0	9.4 × 10 ⁸	0	0	0	0	0	0	0	0	0	0
131)	7.5 x 10 ⁷	0	0	0	0	0	0	0	0	0	0	0
134Cs	0	0	0	1.3 × 10 ⁷	7.2 × 10 ⁷	1.7×10 ⁷	0	0	5.4 × 10 ⁷	0	0	4.8 × 106
137Cs	3.1 × 107	0	0	3.1 × 10 ⁷	1.6×10 ⁸	5.0 × 10 ⁷	1.8×10 ⁷	3.9 × 107	4.9×10 ⁷	5.3×10 ⁷	2.0×107	1.2×107

Table 3.2.5.9. Reported monthly liquid discharges from Barsebäck in 1987, reference 36 (Unit: Bq month⁻¹)

Table 3.2.5.10. Reported annual liquid discharges from Barsebäck 1975-1987, reference 36 (Unit: Bq year-1)

Isolope	1975	1 976	1 977	1978	1979	1960	1 90 1	1992	1983	1984	1985	1986	1987
*Cr	1.2×1010	1.7×1010	1, 3 ×10 ¹⁰	3.2 × 1019	1,7×1010	4.2 × 10	2.7×10 ¹⁰	6.7 × 10 ⁰	7.2×109	4.7 # 109	66×109	1 8×1010	1 5x 1010
54Mm	5.6 × 107	2.0 × 10 ⁴	2.1 × 10 ⁰	3.9 × 109	2.0 × 109	1,7×10 ⁰	2.0 = 10	3.3×10	2.7 × 10 ⁹	37 = 109	3.7 × 10=	1 5 × 1015	5.0 = 10 ⁰
MCo	6.6 × 10 ⁰	2.6 × 1010	1.3 × 1010	3.4 x 1010	7.8 × 10 ⁹	7.2 × 10P	6.5 x 10 ⁹	4.0 × 10P	T.8 x 10 ⁹	4.9 × 109	26×10	90 - 109	86x 10 ⁹
90F.e					2.4 x 109	5.3 x 10 ⁷	1.5#10	12×10	1.3 # 109	5.5 x 10 ⁰	7.8 = 107	1 1 × 109	11#1 0
œCo	2.6 × 10 ⁰	1.4 x 10 ¹⁰	2.8 × 1010	5.4 x 1010	2 2 # 10""	3.7 × 10 ¹⁰	4.3 x 10 ¹⁶	7.3 × 1010	49+1010	5.0 = 1014	4.2 = 1015	96+1014	32 # 10 ¹⁰
₩Zn	3.7 × 107	3.1 x 10 ⁹	7.0 x 10 ^p	1.0 x 10%	5.5×109	5.8×10*	5.5×10P	7.7 × 109	2.6 × 109	1 2 × 109	75×10	22+109	26×10
110mAg	C	2.2 = 109	1.8×10P	3.6 x 109	8.6 × 10 ⁴	2.9 × 10	2.4 × 10 ⁸	1 3×10	38×107	57 x 10 ²	C	1.3 = 107	94+10
121									75×10	2 2 × 10 ⁰	37×1¢7	1 2 × 10°	75=107
134Cs					0	C	46=10*	1.9 x 10 ¹⁰	65×10	40×10 ⁰	47=10	1 2 × 109	3 6# 10 ⁶
1 ³⁹ Cs	G	C	6.5×10*	1.9 x 107	0	0	6.1 x 10 ⁰	26×1016	T 2 = 1010	9.2 × 10 ⁹	1.9.#109	51 x 1 C P	46#10

Table 3.2.5.11. Gamma-emitting radionuclides in Fucus vesiculosus collected at Barsebäck, location 25 (55°48'80N 12°54'45E) in 1987. (Unit: Bq kg⁻¹ dry weight)

Sampling date	e 1/4	1⁄5	1⁄6	1/7	1⁄8	1⁄9	2⁄10	3/11	2/12
% dry matter	14.9	25.5	8.9	13.2	17.3	16.8	20.5	18.3	18.1
54Mn 57Co	70	53	43	4 ∂	58	107	142 0.7A	119	104
58Co	14.7	13.7		7	B 86	139	172	108	77
60Co	1110	640	510	560	600	480	600	420	403
65Zn	46	21			14.	5		10.7	
110m,Ag				5.4	Α				
134Cs	13.4	21	21	16.1	13.	7 15.3	12.5	11.7	11.3
137Cs	37	60	59	44	39	45	40	38	34

Transplanting dat	te	1 May					
Sampling date	1⁄5	1⁄6	V1	1⁄8			
% dry matter	25.5	9.9	11.6	13.1			
54Mn	53	21	28	17			
58Co	13.7			5.7 A			
©Co	640	360	290	230			
⁶⁵ Zn	21						
134Cs	21	18.7	19.5	15.8			
137Cs	60	54	58	46			

Table 3.2.5.12. Gamma-emitting radionuclides in Fucus vesiculosus transplanted from Barsebäck (Table 3.2.5.10) to Limhamn (55°35'N 12°55'E) in 1987. (Unit: Bq hg⁻¹ dry weight)

Fig. 3.2.5.1. Concentration of ⁶⁰Co in Fucus vesiculosus translocated from Barseback to Limmunn (low activity). Data from Table 3.2.5.12 and previous reports.

Date	2⁄1	1⁄5	1⁄6	1/7	1⁄8	1⁄9	2⁄10	3/11	2/12
% dry matter	17.7	16.3	11.7	12.6	13.4	16.8	18.0	18.6	17.7
54Mn	1.5 A	+	-	-	1.9 A	1.6 B	-	-	-
58Co	-	-	-	-	2.5 A	-	-	-	-
60Co	9.6	5.1	-	3.4	6.6	4.6	5.3	3.8	6.8
110mAg	2 B	-	-	-	-	-	-	-	-
134Cs	5.8	15.9	24	18.2	13.5	14.2	9.3	11.9	10.3
137Cs	17.0	44	70	55	42	37	32	41	34

Table 3.2.5.13. Gamma-emitting radionuclides in Fucus vesiculosus collected at Limhann (SS°3S'N 12°SS'E) in 1987. (Unit: Bq kg⁻¹ dry weight)

Forsmark Results

Tables 3.2.5.14-3.2.5.17 show data on radionuclides in water from the Biotest area, discharge from Forsmark and calculated transfer factor from discharge to water. The time-integrated water sampling procedure was described in the 1983-report¹).

The calculation of the transfer factors to water (Table 3.2.5.17) is less exact than wanted, as samplings did not follow the calendar months used in reporting discharges. The extreme outlier for ⁶³Zn may be caused by that reason, and it is excluded from the means. The water sampling from Forsmark was discontinued during 1987.

The water samplings at Forsmark were performed by the National Swedish Environmental Protection Board, and the results should be compared with their measurements on biota and sediments. A map of the location is shown in Fig. 3.2.5.3.

Table 3.2.5.14. Reported monthly liquid discharges from Forsmark I and II in 1987, reference 36 (Unit: Bq month⁻¹)

Isotope	Jan	Feb	March	April	May	June	July	Aug	Sept	Oct	Nov	Der
чCr	3.3×10	1.9×10	6,1 × 10 ⁷	77×10	5.4 × 10 ⁰	4.0 × 10 ⁰	6.0×10 ⁰	5.6×10 ⁰	0	2.5×10	7.3 x 10 ⁸	33×
54Min	3.6×10 ⁸	6.7 × 10 ⁸	1.3×10	2.5×10 [®]	3.3 × 10°	9.2 × 10 [®]	5.8 × 10 ⁰	5.2 × 10 ⁰	2.7 × 10 ⁷	7.2 × 10 ⁷	1.3×10 ⁸	TTX
s>Co	8.3×10#	2.6×10 ⁷	5	1.4 × 107	0	2.5 × 10 ⁷	6.8×10 [#]	0	0	0	0	0
#Co	1.1 x 1 0 P	2.7 × 10P	2.3×10	8.4 × 10 ⁸	7.6×10 ⁰	3.2 × 10 ⁰	2.0×10 ⁸	2.3 × 10 ⁰	2.4×10	2.4×10 ⁸	3.9×10 ⁸	3.8×
SFe	0	0	0	0	0	0	0	0	0	0	0	0
⇔ Co	2.6×1010	4.1 × 1010	7.9×10 ⁰	1.2 × 10 ¹⁰	1.8×10 ¹⁰	2.2 × 10 ¹⁰	2.1 × 1010	2.5×1010	3.6 × 10 ⁰	2.9×10	6.8 × 10 ⁹	53×1
eszn	1.4×10	2.8×10 ⁰	2.6×107	8.6×10 ⁰	9.8×10 ⁸	1.2×10	9.4×10 ⁸	1.6×10 ⁸	4.6 × 10 ⁸	2.8 × 10 ⁸	4.3 x 10 ⁸	33×'
95.Zr	0	0	0	0	0	0	0	0	0	0	0	0
SNB	0	0	0	0	2.2 × 10 ⁷	0	0	0	0	0	0	0
163RU	0	0	0	0	0	0	0	0	0	0	0	0
110m,4g	3.4 x 109	1,4×10 [®]	6.1 × 107	4.8 × 10 ⁸	2.4×10	6.5×10 ⁸	3.9×10 ⁸	5.7 × 10 [#]	7.4 x 107	9.7 × 107	0	13x1
:2456	0	0	5.7 × 10 ⁷	11×10#	5.2 × 10 ⁴	4.8×10 [#]	9.0×10 ⁸	1.8×10 [®]	3.3×10	3.1 x 10 ⁸	2.6 × 10 ⁸	20×
12550	0	0	0	0	2.2 × 10 ⁸	0	0	5.5 + 10 ⁸	0	0	0	0
134	3.4×10 ⁰	1.6×10 ⁰	1.0 × 10 [#]	T,T×10 [#]	0	1.3×10 ⁸	0	0	0	0	0	0
IMCs	0	O	0	0	0	23×10 [#]	4.4×10 ⁸	0	0	2.9 x 107	8.6×10 ²	0
13PCs	0	0	0	2.4×107	0	2.4×10 ⁸	4.5×10 ⁸	1.9×10	0	3.3×107	7.8×10'	5.2×
1408a	0	0	0	0	0	G	0	0	0	0	0	Ð
140.2	0	0	0	0	0	0	0	0	0	0	0	Э
141Ce	0	3.8×107	0	0	0	0	0	0	0	0	0	0

Isotope	1934	1985	1986	1987
51Cr	4.9±10 ¹¹	3.3±10 ¹⁰	1.9±10 ¹⁰	1.0 ± 10^{10}
54Mn	4.7 ± 10 ⁹	6.1 ± 10 ⁹	7.8±10 ⁹	4.1 ± 10 ⁹
57Co	9.0±10 ⁸	4.1 ± 10^{7}	9.4±10 ⁷	8.0±10 ⁷
58Co	3.8±10 ¹⁰	5.2±10 ¹⁰	2.8±10 ¹⁰	1.4±10 ¹⁰
59Fe	4.7±10 ⁷	0	0	0
60Co	9.2±10 ¹⁰	2.0 ± 10^{11}	3.5±10 ¹¹	1.9±10 ¹¹
65 _{Zn}	2.4±10 ¹⁰	3.1 ± 10^{10}	3.5±10 ¹⁰	1.1 ± 10^{10}
95Zr	1.8±10 ⁸	0	0	0
95Nb	5.3±10 ⁸	0	0	2.2 ± 10^7
103Ru	2.9±10 ⁸	0	0	0
^{110m} Ag	5.6±10 ⁹	4.8±10 ⁹	7.6±10 ⁹	4.4±10 ⁹
124Sb	8.1 ± 10 ⁹	2.2±10 ¹⁰	5.2±10 ⁹	5.0±10 ⁹
125Sb	1.4±10 ⁹	6.4±10 ⁸	1.2±10 ⁹	7.7 ± 10 ⁸
131]	1.7±10 ¹⁰	4.4 ± 10^{9}	1.5±10 ⁹	8.4±10 ⁸
134Cs	8.6±10 ⁷	3.6±10 ⁹	2.6±10 ⁸	7.8±10 ⁸
¹³⁷ Cs	3.7 ± 10^{8}	4.4±10 ⁹	6.5±10 ⁸	1.1±10 ⁹
140Ba	5.2 ± 10^9	0	0	0
140La	2.8±10 ⁹	6.1 ± 10 ⁷	2.4±10 ⁸	0
¹⁴¹ Ce	1.6±10 ¹²	1.6±10 ⁸	4.7±10 ⁸	3.8±10 ⁷

Table 3.2.5.15. Reported annual liquid discharges from Forsmark I and II in 1984-1987, from reference 36

Table 3.2.5.16. Radiocobalt and Zn-65 in time-integrated water samples collected at the outlet from the biotest areas, Forsmark in 1987. (Unit: Bq m⁻³)

Isotope	8/1-3/2	5⁄2-9⁄3	16/3-7/4	22⁄4-18⁄5
58Co	-	-	-	-
60Co	111	110	71	35
65Zn	11 A	9.3 A	6.2 A	4.2 A

Table 3.2.5.17. Transfer factor from reported monthly discharge (GBq) to monthly time-integrated mean water concentration (Bq m⁻³) at the outlet from the biotestarea, Forsmark in 1987 (Bq m⁻³/GBq month⁻¹ or $10^{-9} \times \text{month}^{-3}$)

Isotope	Jan	Feb	March	May	x	S.E.	N
60Co	4.27	2.68	9.0	1.94	4.5	1.6	4
65 <u>7</u> n	7.85	3.32	(238)	4.28	5.2	1.4	3

Fig. 3.2.5.3. The biotest basin at Forsmark. The water samples were taken at the outlet from the basin.

4. Fallout Nuclides in the Abiotic Environment

by A. Aarkrog and Heinz Hansen

4.1. Air

4.1.1. Strontium-90 in Air

The mean air activity for 1987 was 0.37 μ Bq 90 Sr m⁻³, mean of big and small air samplers and glass fibre filters. This is a decrease by a factor of 70 since last year. The 90 Sr disappeared more rapidly from the air than the radiocesium. Compared to 1985 the 90 Sr levels in 1987 were 20% higher. There may thus still be a small 90 Sr contribution in the air from the Chernobyl accident, probably due to resuspension.

At Bornholm (Table 4.1.1.2) the mean concentration was 0.22 μ Bq ⁹⁰Sr m⁻³ in 1987.

Figure 4.1.1 shows the quarterly levels of ⁹⁰Sr in air since 1957.

Period	Big air sampler	Small air sampler
Jan-March	0.52±0.15	0.55
April-June	0.22	0.30 A
July-Sept	0.52 B	0.19 B
Oct-Dec	0.24±0.01	0.40 A
1987	0.38	0.36

Table 4.1.1.1. Strontium-90 in air collected at Ris ϕ in 1987. (Unit: μ Bq m⁻³)

The error term is 1 S.E. of the mean of double determinations.

Table 4.1.1.2. Strontium-90 in air collected at Bornholm 1987. (Unit: $\mu Bq m^{-3}$)

Period	Big sampler, glass fibre filter, shunt
Jan-March	0.31
April-June	0.23
July-Sept	0.08 B
Oct-Dec	0.25
1987	0.22

Fig. 4.1.1. Strontium-90 in ground level air at Risø, 1957-1987.

4.1.2. Radiocesium in Air

The mean concentration of ¹³⁷Cs in air in 1987 dect-ased by a factor of approximately 200 compared to 1986. The mean concentration at Risø (Table 4.1.2.1) was 6.0 μ Bq ¹³⁷Cs m⁻³. At Bornholm (Table 4.1.2.2) we measured 8.4 μ Bq m⁻³. Hence the air at Bornholm showed a ¹³⁷Cs/⁹⁰Sr ratio (38) two times higher than that at Risø (18).

Figures 4.1.2.⁴.1.2.2 show the concentrations of ¹³⁷Cs in air collected at Risø and Bornholm in 1987.

As already mentioned in the previous report (Risø-R-549)¹), the air concentrations did not decrease so rapidly as would be expected from a tropospheric event.

Month	137Cs	134Cs/137Cs	(N)
January	10.7	0.42 ± 0.05	(9)
February	6.8	0.43 ± 0.04	(7)
March	11.0	0.41 ± 0.04	(੪)
April	14,7	0.43 ± 0.08	(9)
May	5.0	0.40 ± 0.04	(4)
June	2.1	0.47 ± 0.01	(3)
July	3.0	0.40 ± 0.04	(5)
August	2.1	0.42 ± 0.10	(6)
September	1.65	0.53 ± 0.24	(2)
October	6.7	0.32 ± 0.02	(5)
November	1.77	0.41 ± 0.11	(5)
December	6.8	0.32 ± 0.03	(4)
1987	6.0		

Table 4.1.2.1. Radiocesium in air collected in glass-fibre filters by the large air sampler at Ris ϕ in 1987. (Unit: μ Bq m⁻³) (The error term is I S.D.)

Table 4.1.2.2. Radiocesium in air collected at the large air sampler in Bornholm in 1987. (Unit: $\mu Bq m^{-3}$) (The error term is 1 S.D.)

Month	¹³⁷ Cs	134Cs/137Cs	(N)
January	19.1	0.42±0.01	(5)
February	10.5	0.44 0.04	(4)
March	10.0	0.39 ± 0.04	(4)
April	25.3	0.42 ± 0.02	(4)
May	8.4	0.38 ± 0.02	(5)
June	3.2	0.34 ± 0.06	(3)
July	4.4	0.40 ± 0.04	(3)
August	2.9	0.36 ± 0.07	(4)
September	2.9	0.28 ± 0.00	(3)
October	8.2	0.32 ± 0.04	(5)
November	2.6	0.32 ± 0.05	(2)
December	2.8	0.37 ± 0.07	(3)
1987	8.4		

Year	fCi m ⁻³	µBq m⁻³
1958	4.2	155
1959	13.1	480
1960	1.98	73
1961	2.3	84
1962	23	850
1963	66	2400
1964	31	1150
1965	10.6	390
19 6 6	5.7	210
1967	2.1	79
1968	2.4	88
19 69	2.4	91
1970	3.4	127
1971	2.7	98
1972	1.37	51
1973	0.47	17.3
1974	1.96	73
1975	1.30	48
1976	0.42	15.5
1977	1.62	6 0
1978	1.70	63
1979	0.62	23
1980	0.24	8.7
1 981	0.81	30
1982	0.146	5.4
1983	0.053	1.97
1984	0.036	1.35
1985	0.0184	0.68
1986	36	1340
1987	0.161	6.0

Table 4.1.2.3. Cesium-137 in air collected at Risø 1958-1987

Risø Bornholm m-1 m-1 July-Sep 1986 4.75.10-8 2.95.10-8 Oct-Dec 1986 2.39.10-8 2.23.10-8 Jan-March 1987 1.19.10-8 2.13.10-8 April-June 1987 9.08·10-9 1.98.10-8 2.81.10-9 July-Sep 1987 5.48.10-9 Oct-Dec 1987 6.36·10-9 7.31·10-9 Jan-March 1988 4.68·10-9 7.44·10-9 April-June 1988 4.41.10-9 8.40·10⁻⁹ July-Sep 1988 1.26.10-9 2.41·10-9

Table 4.1.2.4. Resuspension factors for $^{137}Cs m^{-1}$ calculated for 1986–1988. (Quarterly means)

Chernobyl has shown us that after the deposition of the debris there is a period with resuspension which may last more than a year after the deposition.

At Risø the resuspension factor became $6.0 \cdot 10^{-6}/800 = 7.5 \cdot 10^{-9} \text{ m}^{-1}$, and at Bornholm we found $8.4 \cdot 10^{-6}/620 = 1.35 \cdot 10^{-8} \text{ m}^{-1}$ in 1987. (Cf. also Table 4.1.2.4 and Fig. 4.1.2.3).

Fig. 4.1.2.1. Cesium-137 in air collected at Risø, Denmark in the period December 1, 1986 - December 31, 1987.

Fig. 4.1.2.2. Cesium-137 in air collected at Bornholm, Denmark in the period December 1, 1986 - December 31, 1987.

Fig. 4.1.2.3. Resuspension factor for Chernobyl cesium-137.

4.1.3. Iodine-131 in Air

In March and August 1987 we saw ¹³¹I in air samples from Risø as well as from Bornholm (Table 4.1.3). In March the integrated levels were 0.54 mBq ¹³¹I m⁻³d at Risø and 0.39 mBq m⁻³d at Bornholm. In August the levels were 0.35 and 0.092, respectively. Other countries in northern Europe have made similar observations. The source of the ¹³¹I in August was identified to be a leaking underground nuclear test explosion at Novaya 7.emlya¹⁴).

in Denmark in 1987. (Unu: $\mu Bq m^{-3}$)							
Period	Risø	Bornholm					
March 2-5 March 5-9	0 70	} 19.4					
March 9-12 March 12-16	70 12	36					
Aug 10-11	57	Ĵ					

152

88

29 6.4 13.1

Table 4.1.3. Iodine-131 in air collected on glass-fibre filters in Denmark in 1987. (Unit: μBq m⁻³)

Aug 11-12

Aug 12-13 Aug 13-14

Aug 14-17

4.2. Precipitation

4.2.1. Strontium-90 in Precipitation

Samples of rain water were collected in 1987 from the State experimental farms (cf. Fig. 4.2) in accordance with the principles laid down in Risø Report No. 63, p. 51¹).

Tables 4.2.1.1 and 4.2.1.2 show the results of the ⁹⁰Sr determinations and Tables 4.2.1.3 and 4.2.1.4 the analysis of variance of the results.

The mean levels for ten State experimental farms were 1.44 Bq ⁹⁰Sr m⁻² and 2.2 Bq ⁹⁰Sr m⁻³. The fallout rate in 1987 was 26 times less than that observed in 1986. The ⁹⁰Sr mean deposition in 1987 was the same in Jutland as in the Islands.

Compared with 1985 the ⁹⁰Sr fallout in 1987 was 80% higher indicating that there was still a significant contribution from the Chernobyl accident. However, there was no relation between the ⁹⁰Sr deposition in 1987 and that from Chernobyl in 1986 (cf. Fig. 4.2.2). We thus found no indication of local resuspension of ⁹⁰Sr. But as observed earlier, we saw significantly higher ⁹⁰Sr concentrations in the precipitation from Bornholm than from other parts of

Location	Jan-Feb	March-April	May-June	July-Aug	Sept-Oct	Nov-Der:	Weighted mean
Tyistrup	2.6	2.2	2.8	1.74	1.07	0.20 B	1.53
Kale	4.2	5.7	2.7	1.21	1.87	1.33	2.30
Borris	1.17	2.1 A	3.2 B	1.68	1.38	0.36	1.52
Askov	6.4	3.6	2.9	2.4	0. 9 7	0.62	1.99
St. Jyndevad	1.94	2.3	2.3	1.05	0.59	1.24	1.36
Aarslev	7.6	3.5	2.8	2.4	2.5	1.48	2.57
Tystofte	3.0 A	1.03 B	0.51	0.37 A	0.68 A	0.25 A	0.57
Ledreborg	2.2	3.2	1.91	0.47	2.1	0.94	1.40
Abed	2.1	2.6	3.0	1.74	2.2	1.60	3.37
Bornholm	9.1	5.0	3.3	7.9 B	11.4	2.2	5.44
Weighted							
mean	5.5	3.2	2.6	1.75	1.95	0.96	2.11
x mm	35.7	62.2	129.8	143.8	156.1	156.2	

Table 4.2.1.1. Strontium-90 fallout in Denmark in 1987. (Unit: Bq m-3)

Table 4.2.1.2. Strontium-90 fallout in Denmark in 1987. (Unit: Bq m⁻²)

Location	Jan-Feb	March-April	May-June	Ju ly -Aug	Sept-Oct	Nov-Dec	1987	mm
Tylstrup	0.132	0.20	0.32	0.31	0.150	0.036 B	1.15	754
Kalø	0.20	0.36	0.42	0.191	0.35	0.162	1.68	730
Borris	0.059	0.139 A	0.46 B	0.198	0.41	0.079	1.35	889
Askov	0.27	0. 26	0.43	0.37	0.22	0.129	1.68	845
St. Jyndevad	0.083	0.157	0.41	0.173	0.131	0.25	1.20	884
Aarslev	0.174	0.22	0.33	0.30	0.32	0.21	1.55	603
Tystofte	0.053 A	0.047 B	0.055	0.041 A	0.071 A	0. 034 A	0.30	522
Ledreborg	0.049	0.120	0.195	0.099	0.20	0.103	0.77	550
Abed	0.71	0.129	0.31	0. 26	0.193	0.150	1.75	519
Bornholm	0.23	0.34	0.43	0.5 9 B	1.00	0.35	2.94	540
Mean	0.20	0.20	0.34	0.25	0.30	0.150	1.44	684

Table 4.2.1.3. Analysis of variance of ln Bq 90Sr m⁻³ precipitation, January-December 1987 (from Table 4.2.1.1)

Variation	SSD	f	s²	v²	P
Between months	16.99	5	3.40	12.33	> 99.95%
Between locations	18.82	9	2.09	7.59	> 99.95%
Remainder	12.40	45	0.275		

Table 4.2.1.4. Analysis of variance of ln Bg ⁹⁰Sr m⁻² precipitation, January-December 1987 (from Table 4.2.1.2)

Variation	SSD	f	s²	v ²	Р
Between months Between locations	5.76 19.22	5 9	1.15 2.14	5.53 10.25	> 99.95% > 99.95%
Remainder	9.38	45	J.208		

Table 4.2.1.5. Strontium-90 in precipitation collected at Risø in 1987

Month	10 m² ion exct Bq m²	ange sampler Bq m ⁻³	Eight rain bottle: Bq m ⁻²	s total area: 0.23 m² Bq m ⁻³
Jan Feb March	0.097 0.058 0.020	9.6 6.5 1.66	0.076	1.14
April May June	0.037 0.0182 0.031	1.37 0.51 0.43	0.0 6 3 A	0.38 A
July Aug Sep	0.034 0.0126 0.0181	0.25 0.27 0.34	0.091	0.35
Oct Nov Dec	0.0115 0.0082 0.0070	0.78 0.143 0.173	0.098	0.77
1987	Σ0.52 (513 mm) (v	x̄:1.01 veighted mean)	Σ0.33 (619 mm)	x̄:0.53 (weighted mean)

the country. The air concentrations at Bornholm were apparently not higher than those observed at Risø (Tables 4.1.1.1 and 4.1.1.2), but the ¹³⁷Cs concentrations at Bornholm were enhanced (Tables 4.1.2.1 and 4.1.2.2).

Table 4.2.1.5 shows the ⁹⁰Sr in precipitation collected at Risø partly by the 10 m² ion exchange sampler, partly in the 8 rain bottles located at Risø and elsewhere ²¹). The total sampling area of these bottles is 0.23 m².

The mean concentrations of 90 Sr in the Risø rain samples were in reasonable agreement with that from the two Zealand State experimental farms. The deposition differed significantly between the two Risø sample systems; the bottles collected 0.33 Bq m⁻² (619 mm) while the 10 m² ion exchange sampler gave 0.52 Bq m⁻² (513 mm). The mean concentration found in the ion exchange sampler was two times higher than that in the rain bottles.

4.2.2. Radiocesium in Precipitation

The measurements of ¹³⁷Cs and ¹³⁴Cs in precipitation collected at the Danish State experimental farms are shown in Tables 4.2.2.1 and 4.2.2.2. The mean deposition was 28.6 Bq ¹³⁷Cs m⁻² and the mean concentration was 42 Bq ¹³⁷Cs m⁻³. Compared with 1986 the ¹³⁷Cs deposit had decreased by a factor of 37. If we assume that all ¹³⁷Cs deposition in 1987 came from resuspension, we concluded that 28.6/1356 = 0.021 of the Chernobyl deposit (measured in soil in September 1986¹) was deposited once more in 1987. The ratio ¹³⁴Cs/¹³⁷Cs found in precipitation in 1987 shows that all radiocesium came from the Chernobyl accident.

Location	Jan	Feb	Marci	h-April	May	June	July	-Aug	Sep	t-Oct	Nov	-Dec	Weighted
	137Cs	134Cs	- 137Cs	134Cs	- 137Cs	134Cs	137Cs	134 <u>Cs</u> 137Cs	כו אינו	139Cs	137Cs	134Cs 137Cs	mean
Tyistrup	45	0.43	48	0.41	45	0.37	31	0.34	20	0.37	4.3	0.46	28
Kalo	143	0.45	205	0.40	54	0.38	23	0.35	15.2	0.35	12.8	0.32	49
Borris	10.4	•	16.2	•	2.2	0.51	3.4	0.30	2.1	-	1.66	•	3.7
Askov	270	0.46	250	0.40	101	0.40	83	0.38	36	0.36	35	0.33	83
St. Jyndevad	103	0.44	72	0.41	34	0.44	33	0.39	15.6	0.40	18.1	0.36	32
Aarslev	270	0.45	132	0.44	85	0.42	62	0.36	36	0.41	28	0.34	70
Tystofte	94	0.55	44	0.45	21	0.45	19.5	0.34	13.8	0.40	4.2	0.35	19.5
Ledreborg	116	0.50	82	0.39	42	0.39	18.0	0.34	31	0.42	21	0.34	33
Abed	171	0.41	132	0.41	107	0.40	62	0.36	49	0.44	19.6	0.36	75
Bornholm	102	0.47	69	0.43	22	0.34	46	0.34	28	0.25	16.9	0.29	35
Weighted mean	124		104		50		38		21		15.8		42
Mean		0.46		0.42		0.41		0.35		0.38	-	0.35	
S.D.		0.04		0.02		0.05		0.02		0.06		0.05	
Theoretical ratio		0.43		0.40		0.38		0.36		0.34		0.33	

Table 4.2.2.1. Cesium-137 (Bq m⁻³) and ¹³⁴Cs/¹³⁷Cs in precipitation in Denmark in 1987

Table 4.2.2.2. Cesium-137 deposition with precipitation in Denmark in 1987. (Unit: Bq m^{-2})

Location	Jan-Feb	March-April	May-June	July-Aug	Sept-Oct	Nov-Dec	1987 Σ	mm
Tylstrup	2.2	4.4	5.2	5.4	2.9	0.76	21	754
Kalø	7.0	12.9	8.3	3.7	2.8	1.55	36	730
Borris	0.53	1.05	0.31	0.39	0.63	0.36	3.3	889
Askov	11.3	15. C	14.9	12.8	8.3	7.2	70	845
St. Jyndevad	4.4	4.9	6.2	5.4	3.5	3.7	28	884
Aarslev	6.2	9.4	9.8	7.8	4.6	3.8	42	603
Tystofte	1.66	2.0	2.3	2.2	1.45	0.55	10.2	522
Ledreborg	2.6	3.1	4.3	3.8	2.2	2.2	18.2	550
Abed	5.8	6.5	11.1	9.2	4.5	1.83	39	519
Bornholm	2.6	4.7	2.8	3.5	2.4	2.7	18.7	540
x	4.43	6.46	6.52	5.42	3.33	2.47	28. 6 4	684
mm	357	622	1298	1438	1561	1562		

Table 4.2.2.3. Analysis of variance of in Bq ¹³⁷Cs m⁻³ precipitation, January-December 1987 (from Table 4.2.2.1)

Variation	SSD	f	s²	v²	Р
Between months	34.12	5	6.83	50.84	> 99.95%
Between locations	43.53	9	4.84	36.04	> 99.95%
Remainder	6.04	45	0.134		

Table 4.2.2.4. Analysis of variance of in Bq ¹³⁷Cs m⁻² precipitation, January-December 1987 (from Table 4.2.2.2)

Variation	SSD	t	s²	v ²	Р
Between months	7.38	5	1.48	13.07	> 99.95%
Between locations	40.17	9	4.46	39.54	> 9 9. 95%
Remainder	5.08	45	0.113		

The mean 90Sr/137Cs in precipitation in 1987 was: 1.44/28.6 = 0.05. However, if we look at the individual State experimental farms, two locations were atypical: Borris and Bornholm (Tornbygaard). At Borris, the ratio was 1.35/ 18.7 = 0.157. In Riss air, 90Sr/137Cs was 0.062 and the air at Bornholm showed a mean ratio of 0.026 in 1987.

The resuspension at Borris seems to be very low compared with the other locations. This means that the Chernobyl contribution is relatively low here compared with the global fallout, and as the 90Sr/137Cs in global fallout is 0.625, it is reasonable to get a high ratio (0.41) at this location. At Bornholm, the high ratio is probably due to an artefact. The rain collectors at Bornholm contains relatively much soil. This soil retains 137Cs more efficiently than 90Sr. The soil is removed from the sample before the precipitation of the Cs with AMP, and although the sample has been treated with acid, some Cs may still be retained in the soil which is discarded. Hence the precipitation at Bornholm seems to be depleted with 137Cs relative to 90Sr. However, Bornholm also shows a 2-3 times higher 90Sr concentration than the other Danish locations (Table 4.2.1.1) and this was also the case in 1982, 1983, 1984 and 1985¹).

The rain collectors at Tornbygaard on the west coast of Bornholm are situated 70 metre above sea level on a slope 4 km from the Baltic sea. We have shown earlier that dry deposition increases with height^{1,21}; furthermore, the nearness of Tornbygaard to the Baltic Sea may give rise to sea spray. In 1982 the global fallout decreased significantly and the relative importance of resuspension may therefore had become greater at that time. This may have resulted in higher ⁹⁰Sr (and ¹³⁷Cs) concentrations in the rain samples from Bornholm than from the other Danish locations because of the higher dry deposition at Tornbygaard, but, as mentioned above, the ¹³⁷Cs may partly have been removed from the samples with the impurities of soil.

The 10 m² ion exchange rain collector at Risø (Table 4.2.2.5) showed a 137 Cs deposit in 1987 of 20 Bq m⁻² or 40 times less than in 1986. The 90 Sr/ 137 Cs was 0.026 at Risø which is half of what we found in air (0.062) and also lower than the countrywide mean for precipitation (0.05).
Month	8q 137Cs	8q 137 Cs	134Cs	mm
	m-2	m-3	137Cs	precipitation
Jan	9.8	970	0.42	10.1
Feb	2.3	260	0.43	9.0
March	1.32	107	0.43	12.3
April	1.24	46	0.41	27
May	0.98	27	0.38	36
June	1.19	1 6 .7	0.40	71
July	1.24	9.1	0.35	136
Aug	0.71	15.5	0.36	46
Sept	0.43	8.2	0.37	5?
Oct	0.31	21	0.36	147
Nov	0.28	4.8	0.32	57
Dec	0.24	6.0	0.35	41
1987	Σ 20	39		∑ 513
	(v	veighted mea	n)	

Table 4.2.2.5. Radiocesium in precipitation collected in the 10 m² ion exchanger at Ring in 1987

Fig. 4.2.2. Strontium-90 in 1987 related to "Sr deposited from Chernobyl.

4.2.3. Shorter-lived y-Emitters in Precipitation

At the beginning of 1987 it was still possible to measure shorter-lived γ -emitters from the Chernobyl accident in precipitation. As for radiocesium this deposition is considered to be a result of resuspension. For ¹⁰⁶Ru we estimated the resuspension in January-March 1987 to be ~ 2% of the original (decay-corrected) deposit.

.

The washout ratios (Bq m³ rain/ μ Bq m³ air) calculated for Risø was 1.01/ 0.37 = 2.7 for ⁹⁹Sr and 39/6.0 = 6.5 for ¹³⁷Cs (Table 4.2.6). These values were significantly higher than the usually observed washout ratio of 1.9²¹), either suggesting a more efficient washout of resuspended Chernobyl debris than of global fallout or less adherence of large resuspended particles to the air ülters.

	Jan	Feb	March
\$5Zr	0.58		
\$5Nb	1.45	0. 061 A	
103Ru	0.37	0. 06 B	
106Ru	4.2	1.70	0.46
110mAg	0.187		
144Ce	1.17	0.36 A	
mm precipitation	10.1	9.0	12.3

Table 4.2.3. Various y-emitters in precipitation collected in the 10 m² ion exchanger at Risp in January-March 1987. (Unit: Bq m⁻²)

4.2.4. Tritium in Precipitation

As in previous years, the Risø rain (Table 4.2.4.1) contained higher tritium concentrations than those observed in other parts of the country.

Table 4.2.4.2 shows the tritium concentrations in rain water from three other locations in Demark. Compared with Rise, the average concentration for these three stations was approx. 2 times lower than that from Rise $(1 \text{ m}^2 \text{ sampler})$.

Month		1 m ² rain collector		1 m ² rain collector	10 m² rain	collector
	m	kBq m-3	k8q m ⁻²	kBq m-3	k8q m- 2	
Jan	0.010	1.8±0.3	0.018	1.7±0.3	0.017	
Feb	0.009	1.3 ± 0.1	0.012	2.2 ± 0.0	0.020	
March	0.012	2.3 ± 0.1	0.028	1.6±0.1	0.019	
April	0.027	2.5 ± 0.0	0.068	4.7 ± 0.2	0.127	
May	0.036	2.0 ± 0.0	0.072	6.4 ± 0.2	0.23	
June	0.071	4.6 ± 0.3	0.33	6.4 ± 0.2	0.45	
July	0.136	4.8±0.2	0.65	9.7 ± 0.9	1.32	
Aug	0.046	4.6 ± 0.8	0.21	4.6 ± 0.3	0.21	
Sept	0.053	4.8±0.6	0.25	19.2±0.7	1.02	
Oct	0.015	2.8 ± 0.3	0.042	4.8 ± 0.0	0.072	
Nov	0.057	2.2 ± 0.3	0.125	5.8±0.1	0.33	
Dec	0.041	2.6 ± 0.1	0.107	1.4±0.1	0.057	
1987	0.513	x 3.1	Σ 1.612	x 7.5	Σ 3.872	
The error term is 1 S.E. of the mean of double determinations						

Table 4.2.4.1. Tritium in precipitation collected at Risø in 1987

Date	Tylstrup	Jyndevad	Bornholm
January	1.0±0.2	B .D.L.	1.6±0.1
February	1.6±0.4	0.9 ± 0.0	1.2±0.0
March	1.5±0.4	1.6±0.2	1.3±0.2
April	2.8±0.1	1.7	1.3±0.2
May	3.1 ± 0.2	1.2±0.1	1.8±0.0
June	2.2±0.0	0.9±0.1	1.2±0.1
July	3.2±0.2	1.9±0.0	2.9±0.3
August	2.6±0.2	2.0 ± 0.0	2.4±0.3
September	2.2±0.2	0.9±0.2	1.1±0.3
October	1.3±0.2	1.0±0.2	1.3±0.1
November	1.3±0.1	1.3±0.0	2.0±0.0
December	B.D.L .	1.1±0.3	1.4±0.2
Mean	1.9	1.2	1.6

Table 4.2.4.2. Tritium in precipitation collected in Denmark in 1987. (Unit: kBq m⁻³)

4.3. Fresh Water

4.3.1. Radionuclides in Ground Water

As in previous years¹), ground water was collected from the nine locations selected by the Geological Survey of Denmark. Figure 4.3.1.1 shows the sample locations and Table 4.3.1 the results of the ⁹⁰Sr and tritium analyses.

Location	Date	Bq ⁹⁰Sr m⁻ 3	kg Ca m ⁻³	kBq ³H m⁻³
Hvidsten	Feb	0.069 A	0.082	B.D.L.
Feldbak	Feb	73	0.039	2.4 ± 0.1
Reme	Feb	0.191	0.027	B.D.L.
Klemensker	May	0.012 B	0.055	B.D.L.
Robberdai	May	0.057 A	0.0144	2.6 ± 0.3
Hassele	Feb	0.0106 B	0.077	B.D.L.
Fåretofte	Feb	0.080	0.146	5.2 ± 0.2
Kalundborg	Feb	0.124	0.089	1.6 ± 0.6
Ravnholt	Feb	0.081 A	0.105	4.6 ± 0.1
Fredericia	Feb	0.27	0.080	2.0 ± 0.0
Geometric me	an	0.065*	0.071**	1.8**
Median		0.063	0.078	1.8

Table 4.3.1. Radionuclides in ground water collected in 1987

A sample of ground water from Maglekilde in Roskilde contained 1.39 Bq 90 Sr m⁻³, 4.5 ± 0.4 kBq 3 H m⁻³ and 0.20 kg Ca m⁻³.

*Feldbak was not included in the geometric mean.

The error term is 1 S.E. of the mean of double determinations.

The median level of ⁹⁰Sr in 1987 was compatible with the values found since 1967 (cf. Fig. 4.3.1.2).

The tritium concentrations in 1987 were a little higher than the 1986 levels.

As appears from Fig. 4.3.1.3, the ⁹⁰Sr levels in ground water from Feldbak have been on the order of 50-100 Bq m⁻³ in later years. The arithmetic mean of ⁹⁰Sr in Danish ground water in 1987 (excluding Feldbak and including Maglekilde) was 0.23 Bq m⁻³. The predicted mean (cf. Appendix C.1) was 0.26 Bq m⁻³.

Fig. 4.3.1.2. Median ⁹⁰Sr levels in Danish ground water, 1961-1987.

4.3.2. Strontium-90, Radiocesium and Tritium in Fresh Water from Danish Lakes and Streams

The mean levels in 1987 were 9.7 Bq ⁹⁰Sr m⁻³ in streams and 21 Bq ⁹⁰Sr m⁻³ in lakes. The level in lakes in 1987 was 74% of that in 1986, and streams were unchanged (Tables 4.3.2.1 and 4.3.2.2).

Fig. 4.3.2.1. Sample locations for fresh water from Danish streams (å) and lakes (sø).

Stream	Bq ⁹⁰ Sr m ⁻³	kg Ca m ⁻³
Bangsbo å	8.0	0.055
Gudenå	6.6	0.045
Skjern å	7.9	0.026
Ribe à	5.7	0.051
Odense å	9.9	0.093
Susâ	11.1	0.099
Halsted å	12.4	0.172
Læs å (May)	16.2	0.031
Mean	9.7	0.072
Relative S.E.	13%	24%

Table 4.3.2.1. Strontium-90 in Danish stream water collected in February 1987

Table 4.3.2.2. Strontium-90 in Danish lake water collected in February 1987

Lake	Bq ⁹⁰ Sr m ⁻³	kg Ca m ^{_3}
Norssø	19.9	0.0126
Mossø	7.9	0.021
Flyndersø	10.0	0.0197
Hostrupsø	26	0.0138
Arreskovsø	30	0.041
Arresø	20	0.062
Søndersø	25	0.054
Almindingen sø (May)	26	0.023
Mean	21	0.031
Relative S.E.	14%	22%

Table 4.3.2.3. Radiocesium in Danish stream water collected in February 1987

Stream	Bq ¹³⁷ Cs m ⁻³	134Cs/137Cs
Bangsbo å	2.0 A	
Gudenå	6.7	0.44
Skjern å	2.3 A	
Ribe å	2.2 A	
Odense å	2.6	
Susa	3.1	
Halsted å	1.8 B	
Læs å (May)	2 B	<u> </u>
Mean	2.8	
Relative S.E.	20%	

Table 4.3.2.4. Radiocesium in Danish lake water collected in February 1987

Lake	Bq ¹³⁷ Cs m ⁻³	134Cs/137Cs
Norssø	9.9	0.41
Mossø	3.3	
Flyndersø	28	0.38
Hostrupsø	35	0.41
Arreskovsø	14.8	0.36
Arresø	36	0.39
Søndersø	38	0.46
Almindingen sø (N	1ay) 1.98 A	
Mean	21	0.40
Relative S.E.	26%	3%

In the case of ¹³⁷Cs (Tables 4.3.2.3 and 4.3.2.4), the mean level in streams was 2.8 Bq m⁻³ and in lakes we found 21 Bq m⁻³. The ¹³⁴Cs/¹³⁷Cs ratios suggest that all ¹³⁷Cs found in Danish streams and lakes in 1987 arose from the Chernobyl accident.

Since October 1986 the mean concentrations in streams decreased by a factor of 2.8 ± 1.54 (N = 6; ± 1 S.D.) and in lakes by a factor of 2.9 ± 3.5 (N = 7; ± 1 S.D.). Hence some lakes actually increase in ¹³⁷Cs activity.

Compared with rain water in January-February 1987 which showed a mean concentration of 124 Bq ¹³⁷Cs m⁻³, the stream water contained 2% and the lake water 17% of this level.

The tritium contents in streams (Table 4.3.2.5) and in lakes (Table 4.3.2.6) were a little higher than those observed in 1986.

Appendix Cl shows that the observed ⁹⁰Sr level in streams is 1.52 times that predicted, and in the case of lake water the observed mean concentration is 5.3 times that predicted, suggesting a poor prediction model for lake water.

Stream	kBq ³ H m- ³
Bangsbo å Gudenå Skjern å Ribe å Odense å Suså Halsted å Læs å (May)	3.0 ± 0.0 1.5 ± 0.2 2.0 ± 0.0 2.1 ± 0.1 1.5 ± 0.3 1.5 ± 0.0 B.D.L. 2.9 ± 0.3
Mean	1.81
Relative S.E.	19%

Table 4.3.2.5. Tritium in Danish stream water collected in February 1987

The error term is 1 S.E. of the mean of double determinations.

Table 4.3.2.6. Tritium in Danish lake water collected in February 1987

Lake	kBq ³ H m− ³
Norssø	1.3 ± 0.1
Mossø	1.4 ± 0.5
Flyndersø	1.3 ± 0.4
Hostrupsø	1.4 ± 0.0
Arreskovsø	1.8 ± 0.1
Arresø	2.0 ± 0.1
Søndersø	2.0 ± 0.2
Almindingen sø (May)	2.7 ± 0.4
Mean	1.74
Relative S.E.	10%

The error term is 1 S.E. of the mean of double determinations.

Fig. 4.3.2.2. Strontium-90 concentrations (± 1 S.E.) in 8 Danish streams and 8 Danish lakes, collected since 1971.

4.3.3. Radionuclides in Danish Drinking Water

The ⁹⁰Sr concentrations were two times higher than those in 1986. The ¹³⁷Cs levels in drinking water in 1987 were an order of magnitude less than those observed last year. The concentrations were now at the limit of detection ~ 0.05 Bq m⁻³.

The median ⁹⁰Sr level was 4-5 times higher in drinking water than in ground water and the arithmetic mean was 2.3 times higher. The tritium mean level in drinking water was lower than that in ground water.

Zone	e	Bq ⁹⁰ Sr m ⁻³	Bq ¹³⁷ Cs m ⁻³	kBq ³ H m− ³	kg Ca m ⁻³
l:	N. Jutland	0.91	0.063 A	1.9±0.3	0.039
H:	E. Jutland	0.34	0.056 B	1.8 ± 0.1	0.092
HI:	W. Jutland	1.72	0.069 B	1.1 ± 0.1	0.046
IV:	S. Jutland	0.086	0.050 B	0.9 ± 0.2	0.092
V :	Funen	0.139	0.069 B	B.D.L.	0.109
VI:	Zealand	0.079 A	0.047 B	B.D.L.	0.109
VII:	Lolland-Falster	0.21 B	0.063 B	B.D.L.	0.129
VIII:	Bornholm	0.83	0.069 B	B.D.L.	0.079
Mea	in	0.54	0.061*	0.7	0.087
Mec	lian of zones	0.28	0.063	0.5	0.092

Table 4.3.3. Strontium-90, cesium-137 and tritium in drinking water collected in June 1987

The error term is 1 S.E. of the mean of double determinations.

*Combined sample of all zones gave 0.047 Bq ¹³⁷Cs m⁻³ (A)

4.4. Radionuclides in Sea Water

As in previous years, sea water samples were collected by M/S Fyrholm from inner Danish waters (cf. Tables 4.4.1-4.4.2 and Figs. 4.4.1-4.4.6). Fur hermore, sea water samples were collected at Barsebäck in the Sound, and a Ringhals in the Cattegat (Table 4.4.3). Samples were obtained from the research vessel DANA, which in 1987 has collected samples from the Danish Straits as well as from the North and the Baltic Seas (Table 4.4.3 and Figs. 4.4.4-4.4.7).

In the samples collected around Zealand in May (Table 4.4.1), ¹³⁷Cs from Chernobyl amounted to 87% of the total ¹³⁷Cs activity in the surface water, and to 62% of the ¹³⁷Cs found in bottom water. From November 1986 to May 1987, the surface waters ¹³⁷Cs-Chernobyl content increased from 46 to 69 Bq m⁻³, while the bottom water decreased from 59 to 37 Bq ¹³⁷Cs m⁻³.

In November 1987 (Table 4.4.2), 87% of the ¹³⁷Cs in surface water and 71% in bottom water came from Chernobyl. The Chernobyl ¹³⁷Cs concentrations did not change significantly from May to November in surface water (69 and 68 Bq ¹³⁷Cs m⁻³, respectively, but in bottom water we saw an increase from May to November: 37 to 46 Bq m⁻³.

From June 1986¹⁾ to November 1987, the Chernobyl contribution of ¹³⁷Cs in the central North Sea decreased from 37 ± 6 Bq m⁻³ (± 1 S.E.; N = 7) to 14 ± 2 (± 1 S.E.; N = 10) (cf. Table 4.4.3). In October 1986¹⁾ the mean concentration in the German Bight of Chernobyl-derived ¹³⁷Cs was 35 ± 11 Bq m⁻³ (± 1 S.E.; N = 8). In the calculation we corrected for the ¹³⁴Cs coming from La Hague estimated from a sampling in April 1986 (~ 1.7 ± 0.4 Bq ¹³⁴Cs m⁻³) (± 1 S.E.; N = 10). In February 1987, the Jutland Current contained 21 ± 2 Bq ¹³⁷Cs m⁻³ from Chernobyl (± 1 S.E.; N = 6) and in May 1987 we found 12 ± 1 Bq m⁻³ (± 1 S.E.; N = 6).

The Chernobyl signal in the central North Sea has thus shown a rapid decrease. This may be due to in-flow of less contaminated water from the southern part of the North Sea and the English Channel which were not contaminated to any large extent by the Chernobyl accident²⁹).

The main contributor to ¹³⁷Cs in the Danish Straits has become water from the Baltic Sea where high concentrations were observed in 1986¹). Figures 4.4.8 and 4.4.9 show that already between November 1986 and May 1987 the water in the western Baltic Sea began to increase in ¹³⁷Cs; but not until 1988 do we observe an increase in the surface water of the southern Cattegat.

Location	Date in May	Pos N	ition E	Depth in m	90Sr Bq m-3	: 37Cs Bq m ⁻³	- 34Cs	³ H kBq m ^{.)}	Salinity ‰
Kullen	25	56' 15'	12*25	2	-	84	0.35	34:03	10.2
•				24	-	44	0 17	B.D.L.	34 6
Hesselo	25	56"10"	11•47	2	•	62	0 26	32:01	19.0
-				24	8.0	48	0.17	BDL	33.2
Kattegat SW	27	56*07'	11310	2	_	66	0.31	29+01	181
"	27	50 07	11 10	36	-	52	0.18	1.3±0.2	32.3
Asnæs rev	27	55 *39 ′	10*46	2	•	67 49	0.32	3.7±0.2	12.6 32.0
Halskov rev	27	55°23 '	11°03'	2	19.9	72	0.33	3.4±0.1	12.2
				25	-	55	0.20	B.D.L.	31.0
Langeland basit	27	54*52'	1 0°5 0'	2	20.2	72	0.36	3.4±0.5	11.2
				17	•	60	0.23	1.7±0.2	24.2
Famero balt	26	6.000	11904		18.0	76	0.22	27+02	10.2
	20	34 30	11.04	27	-	67	0.33	3.7 ± 0.3 1.5 ± 0.1	20.2
<u> </u>			<u> </u>						
Gedser odde	26	54*28'	11*59	2	•	80	0.39	4.3±0.8	8.5
				17	-	<u></u>	0.36	4.1±0.1	9.9
Møen	26	54°5 7'	1 2°4 1'	2	•	90	0.38	3.8±0.1	7.9
·				23	•	62	0.34	3.8±0.8	8.1
The Sound - South	26	55°25'	12 * 36'	2	•	97	0.36	6.7±0.1	7.8
				13	-	76	0.35	4.7±0.2	16.2
The Council Month A		6.59407	1.7844				0.07	45.01	
The Sound - North A	25	55-48	12-44	19	- 86	81 67	0.37	4.5±0.1 19+02	8.3
									
The Sound - North B	25	55°59'	12*42	2	-	91	0.35	38±03	8.4
				29	-	56	0.23	8.D.L.	33.8
Mean				Surface	19.7	78	0.34	3.9	11.0
S .D.					0.7	11	0.03	0.99	3.5
S.E.					0.4	3	0.01	0.28	1.0
Mean				Bottom	8.3	59	0.24	1.6	25.2
S.D.					0.4	10	0.07	1.75	9.5
S.E.					0.3	3	0.02	0.51	2.8

Table 4.4.1. Radionuclides in sea water collected around Zealand in May 1987

The error term is 1 S.E. of the mean of double determinations.

Location	Date	Pos N	iition E	Depth in m	⁹⁰ Sr Bq m- ³	¹³⁷ Cs Bq m ⁻³	134Cs	Salinity ‰
Ki llen	Dec 2	56"15"	12"25'	2 21	17.9 -	89 47	0.30 0.16	9.6 30.2
Hersele 	Nov 24	5 6° 10'	11•47'	2 24	15.1	62 44	0.26 0.13	20.9 33.5
Kattegat SW -	Nov 30	56°07'	11•10'	2 35	- 13.8	67 56	0.23 0.15	22.1 29.3
Asnæs rev	Nev 30	55*39'	10 °46 '	2 23	13.2	66 57	0.25 0.21	16.3 26.4
Halskov rev	Nov 30	55*23'	11 °0 3'	2 23	-	69 56	0.28 0.19	14.9 27.0
Langeland basit	Nov 30	54*52'	10"50"	2 21	•	72 69	0.2 9 0.25	12.7 19.3
Femern bælt	Dec 1	54*36'	11*04'	2 23	•	78 60	0.29 0.26	13.2 20.3
Gedser odde	Dec 1	54*28'	11°59'	2 18	16.9	83 76	0.30 0.28	10.3 13.2
Maen -	Dec 1	54° 57′	i2°41'	2 22	-	91 83	0.32 0.30	8.4 9.3
The Sound - South	Dec 1	55*25 ′	12*36'	2 12	- 18.5	86 92	0.31 0.31	8.3 8.5
The Sound - North A	Dec 2	55*48'	12*44'	2 18	, -	88 79	0.30 0.29	9.2 10.3
The Sound - North B	Dec 2	55°5 9 ′	12°42′	2 27	- 11.6	83 51	0.30 0.14	11.5 33.1
Mean				Surface	16.6	78	0.29	13.1
S.D.					1,4	10	0.03	4.7
S.E.					0.8	3	0.01	1.3
Mean				Bottom	14.3	64	0.22	21.7
S.D.					3.0	15	0.07	9.5
S.E.			_		1.7	4	0.02	2.7

Table 4.4.2. Radionuclides in sea water collected around Zealand in November-December 1987

Location/cruise	Date	Position	Depth	90Sr	137Cs	134Cs	ъ	Salinity
		N EorW	inm	Bq m ⁻³	Bq m ⁻³	137Cs	kBq m-3	%0
North Sea/Dana 1a	Feb 3	56°15' 7°40'E	0	14.7	6 9	0.12	B.D.L.	30.4
• " • 	Feb 3	55°47′ 7°15′E	0	15.4	62	0.13	B.D.L.	33.7
	Feb 4	55°02′ 8°02'E	0	16.1	42	0.31	1.6±0	31.1
• • •	Feb 4	55°17' 8°11'E	0	16.5	54	0.14	0.9±0.1	33.4
- ⁻ -	Feb 5	54°43′ 7°39′E	0	14.5	33	0.35	1.4±0.1	34.9
	Feb 5	54°56° /°26'E	0	14.5	32	0.20	1.2 ± 0.1	31.8
	Feb 9	55°56° 4°49'E	0	14.2	31	•		
	Feb 11	54°42′ 0°38′E	0	10.5	75	0.16	B.D.L.	34.9
• • •	Feb 17	58°12′ 3°32′E	0	3.2	16.5	0.29	B.D.L.	35.1
- " -	Feb 19	57°24′ 7°54′E	0	11.2	66	0.14	B.D.L.	34.7
Baitic Sea/Dana 2a	Mar 15	55°49′ 18°22′E	0	18.2	57	0.35	4.3±0.2	7.8
- * -	Mar 20	55°40' 15°58'E	0		113	0.39	4.4 ± 0.3	7.7
	Mar 21	55°31' 15°53'E	0		97	0.39	4.3±0.1	7.7
			•		0.	0.00		
North Sea/Dana 4	May 14	5 6°36 ′′ 7°53′E	0	9.8	40	0.12		33.1
- " -	May 4	56°59′ 7°08′E	0	13.1	68	0.15		32.6
• " •	May 18	55°23′ 7°27′E	0	14.2	30	0.12		31.9
. <i>"</i> .	May 18	55°43′ 7°39′E	0	14.6	31	0.13		32.1
	May 18	56°06′ 8°04′E	0	14.4	27	0.24		30.8
.".	May 19	56°11′ 8°01′E	0	13.8	31	0.15		32.3
Skagerak/Dana 4	May 20	57°07′ 8°24′E	0	13.7	50	0.11		33.2
.".	May 21	57°42′ 9°42′E	0	11.3	54	0.13		31.8
- " -	May 21	57°30′ 9°04′E	0	11.7	48	0.18		32.4
Cattegat/Dana 4	May 23	56°48′ 10°47′E	0	12.0	61	0.27		21.3
- " -	May 24	57°40′ 10°49′E	0	13.7	60	0.24		23.2
-"-	May 24	56°51′ 11°28′E	0	12.9	59	0.26		21.2
	·							
North Sea/Dana 9	Nov 22	54°13′ 2°29′E	0		58	0.13		34.5
- " -	Nov 22	54°15' 0°30'E	0		49	0.13		34.4
- " -	Nov 25	55°15′ 0°30′E	0	3.8	37	0.16		34.6
. " .	Nov 28	57°15′ 0°03′W	0		35	0.10		34.8
- " -	Nov 28	56°14' 0°30'E	0		28	0.11 A		34.9
- " -	Dec 2	57°15′ 1°30′E	0		29	0.14		34.7
- " -	Dec 3	56°18′ 2°28′E	0		35	0.13		34.8
- " -	Dec 4	58°14′ 0°25′W	0	3.7	30	0.12		34.7
<i>."</i> .	Dec 4	58°16′ 1°29′E	0		27	0.10		34.8
- " -	Dec 5	58°15′ 3°30′E	0		41	0.12		34.4
Klint	Apr 10	55°58′ 11°35′E	0		52	0.21	1.4 ± 0.1	26.9
- " -	May 21	55°58′ 11°35′E	0		65	0.28	2.6±0.1	18.9
.".	June 22	55°58′ 11°35′E	0		70	0.28	2.4 ± 0.2	16.7
. " -	July 15	55°58′ 11°35′E	0		63	0.29		17.9
.".	Aug 13	55°58' 11°35'E	0		63	0.28	5.9±0.3	17.5
- " -	Sep 15	55°58' 11°35'E	0		61	0.26	1.7±0.3	18.5
• " •	Oct 15	55°58′ 11°35′E	0		62	0.27		18.2
- " -	Nov 13	55°58′ 11°35′E	0		59	0.26		20.8
- " -	Dec 17	55°58′ 11°35′E	0		64	0.25		17.8

Table 4.4.3. Radionuclides in sea water collected in the Danish Straits, North Sea, and Baltic Sea in 1987

Table	4.4.3.	(continue	nd)
			_

Locationtralise	Date	Position	Depth	90Cr	13705	131Ce	ъ	Salinity
COLLEGATCIONSE		N EorW	inm	Ba m ⁻³	8g m-3	13 Cs	k8a m-3	%
Hessela	May 25	56*10' 11*43'E	Ũ		57	0.27	2.4±0.6	19.3
.*.	May 25	56°13' 12°05'E	0		66	0.27	2.5±0.1	18.8
- - -	May 25	56°13' 12°05'E	24	8.0	47	0.20	B.D.L.	34.0
." -	Nov 24	56°13′ 12°05°E	0		ស	0.24		21.4
.*.	Nov 24	56°13' 12°05'E	23	12.3	48	0.11		32.3
."-	Dec 14	56*12' 11*43'E	0		65	0.24		19.0
Ringhals	May 13	57"15" 12"03"E	0		57	0.27	2.6±0.2	20.3
· * -	May 13	57°15' 12°03'E	23		48	0.20	3.5±0.1	27.7
- *-	July 1	57"16" 12"06"E	0		61	0.25		17.8
· - -	Aug 1	57°16' 12°06'E	0		65	0.28		19.2
-*-	Sep 1	57°16' 12'06'E	0		60	0.28		18.0
.*.	Oct 1	57°16' 12°06'E	0		60	0.24	2.3±0.1	31.5
· - -	Nov 2	57°16' 12'06'E	0		ស	0.22		20.7
· · ·	Dec 1	57°16' 12°06'E	0		56	0.22		22.1
. * -	Dec 16	57°15' 12°03'E	Э		60	0.22		23.3
- * -	Dec 16	57°15' 12°03'E	21		47	0.13		31.2
Anhoit	May 14	56°43' 11°30'E	C	16.6	ស	0.25	2.0±0.1	20.0
	Dec 14	56°43' 11°30'E	0		60	0.27		19.5
Læsø	May 13	57°18' 10°56'E	0	14.0	59	0.23	2.1 ± 0.4	24.2
	May 13	57°19' 11°07'E	0		59	0.23	1.8±02	25.1
			_					
Barsebäck	May 26	55*45' 12*52'E	0		84	0.38	5.5±0.4	8.0
• • •	May 26	55°45' 12°52'E	22		52	0.24	B .D.L.	29.7
· ⁻ -	July 1	55°44' 12°56'E	0		81	0.34		9.5
	Aug 1	55°44′ 12°56′E	0		80	0.34		11.9
- * -	Sep 1	55°44′ 12°56′E	0		76	0.33		10.8
	Dec 2	55°45' 12°56'E	0		90	0.30		8.6
• ⁻ -	Dec 2	55"45" 12"56"E	18		50	0.19		29.5
Gamma 14	14	5544 · 4000015	•	20 7	~			20
Stevns-Møen	May 26	5511 12 36 E	0	20.7	94	0.38	4.2±0.3	7.8
	May 26	5511 1236 E	23		/5	0.37	4.3±0.1	8.3
	Deci	5511 12 30 E	0		91	0.31		8.2
	Deci	5511 12'36 E	23		80	0.32		8.5
Mean Codes	May 28	E 4401 1 001 41	•	21.2	00	0.27	26.02	
Geuser	Mary 20	54'42 12'14 E	10	21.2	70	0.37	3.0±0.3	8.1
	May 20	54'42 12'14 E	18		/0	0.33	4.2±0.1	10.6
	Dec 1	54 42 12 21 E	16		51	0.30		8.9
	Deci	54 42 12 21 E	10		CO	0.25		18.3
Lund	Sen 14	65°16′ 12°19'5	0		81	0.33		02
		5515 1210E	0		70	0.32		9.3 0.2
	Nov 11	5015 12 10C	0		73 06	0.33		3.3
	1907 II Dec 16	5515 12 10 C	0 A		00 70	0.34		0.J 0.0
		JU 10 12 10 E	v		10	0.31		3.0
Klintholm	Nov 11	54°57′ 12°28'F	n		89	0 32		8 .2
	Dec 17	54°57' 12°28'E	ñ		87	0.31		0.5 Q A
	20017	0-0/ 12 20 C	~					0.7

Table 4.4.3. (continued)

LocationCruise	Ûate	Position N E or W	Depth in m	³⁴⁰ Sr Bq m ⁻³	^{, 37} Čs Bq m ^{- 3}	i JaCs	²H kBq m-3	Salmity %e
Halsl.ov	Nov 13	55721' 11'07'E	0		77	0.30		12.2
 .	Dec 17	55"21" 11"07"E	0		73	0.26		17.7
Bolund	May 7	55°42" 12'05'E	0		ស	0.34	9.6±0.2	12.4
Bornholm	May 19	55705" 15709"E	0		92	0.38	3.7±0.8	7.7
. - .	Nov 17	54"59" 14"48"E	0		98	0.33		7.6
 .	Dec 13	55'05' 15'09'E	0		104	0.32		7.7

The error term is 1 S.E. of the mean of double determinations.

Fig. 4.4.2. Cesium-137 in surface and bottom water collected in inner Danish waters 1972-1987.

During most of 1987, the surface water concentrations in the southern Cattegat remained constant in Chernobyl ¹³⁷Cs. This was because the Baltic water was diluted with low-activity North Sea water. But in 1988 the "Baltic signal" had become so strong that it could overrule the dilution from the North Sea, and the surface water in southern Cattegat began to show an increase.

If we calculate the regressions between salinity and ¹³⁴Cs concentrations in sea water from the Danish Straits collected between 10 and 13° E we get the following equations:

May-June 1987: Bq ¹³⁴Cs m⁻³ = 36.0 - 0.855 salinity in ‰

Nov-Dec 1987: Bq 134Cs m-3 = 33.9 - 0.868 salinity in %e

May-June 1988: Bq ¹³⁴Cs m⁻³ = 35.6 - 0.947 salinity in %

Rise-R-563

Fig. 4.4.3. Sea water locations around Zealand.

The mean salinity in Danish sea water in 1987 was 18% (cf. Table. 4.1 and 4.4.2). Hence the calculated mean concentrations of ¹³⁴Cs in the Danish Straits become: 20.6 Bq m⁻³ in May-June 1987; 18.3 in Nov-Dec 1987 and 18.6 in May-June 1988. If all data were decay-corrected to May-June 1987 we get: 20.6, 21.5, and 26.0, respectively. This means that the decay-corrected radiocesium from Chernobyl in the Danish Straits increased from May-June 1987 to Nov-Dec 1987 by a factor of 1.04 and from Nov-Dec 1987 to May-June 1988 by a factor of 1.21.

The monthly samples collected at Klint (Table 4.4.3 and Fig. 4.4.9) represent surface water in the southern Cattegat (cf. also Fig. 4.4.8). From April to May the concentration of Chernobyl ¹³⁷Cs increased by a factor of nearly 2 and since then the concentrations of Cherbobyl ¹³⁷Cs has been rather constant at Klint. However, in 1988 the levels increase again due to the appearance of contaminated water from the Baltic Sea.

Location	Position	Date	Salinity	зН
	N E		in ‰	kBq m⁻³
Barsehäck 25*		lan 7	11.6	35+02
#		Anr 1	51	30+01
*		May 1	80	42+04
-		June 1	79	4.2 ± 0.4 4.7 ± 0.1
-			95	4.7 = 0.1
*		Aug 1	11.9	
-		Sen 1	10.8	
•		Oct 2	10.0	38 ± 0.2
-		Nov 3	9.6	0.0 - 0.2
•		Dec 2	87	
Rinohals 95**		Jan 2	21.8	35+00
<i>"</i>		Feh 2	20.6	32+00
-		Mar 2	15.7	33+02
-		Anr 2	164	0.0 - 0.2
*		May 1	17.6	54+04
-		June 1	14.9	28+01
-		July 1	185	2.0 2 0.1
-		Aug 1	19.4	
-		Sep 1	18.2	
-		Oct 1	21.4	2.7 ± 0.1
-		Nov 2	20.8	2.7 2 0.1
-		Dec 1	22.5	
Gilleleie	56°07′ 12°19′	Apr 24	17.3	3.0 ± 0.1
	56°07' 12°19'	May 20	17.2	3.1 ± 0.3
	56°07' 12°19'	June 22	16.8	2.4 ± 0.1
*	56°07' 12°19'	July 16	20.2	
-	56°07' 12°19'	Aug 14	19.8	
-	56°07' 12°19'	Sep 14	16.7	
~	56°07' 12°19'	Oct 16	24.4	
*	56°07′ 12°19′	Nov 12	20.8	
-	56°07' 12°19'	Dec 16	18.7	
Strøbvegede	55°25′ 12°15′	Apr 29	8.5	4.5 ± 0.1
	55°25′ 12°15′	May 20	9.1	3.4 ± 0.2
-	55°25′ 12°15′	June 17	8.1	3.8 ± 0.6
*	55°25' 12°15'	July 16	10.6	
-	55°25' 12°15'	Aug 12	9.8	
-	55°25' 12°15'	Sep 14	11.8	
n	55°25' 12°15'	Oct 14	9.6	
-	55°25' 12°15'	Nov 11	11.1	
60	55°25′ 12°15′	Dec 16	12.8	
Mullerup havn	55°30' 11°30'	Apr 30	15.3	2.5 ± .0.2
#	55°30' 11°10'	May 21	17.8	2.2 ± 0.6
*	55°30' 11°10'	June 22	18.7	2.2 ± 0.1
60	55°30' 11°10'	July 15	16.7	
~	55°30' 11°10'	Aug 13	17.3	
**	55°30′ 11°10′	Sep 15	13.4	2.7±0.4
**	55°30′ 11°10′	Oct 15	12.6	
"	55°30' 11°10'	Dec 17	16.6	

Table 4.4.4. Tritium in surface sea water in the Danish Straits in 1987

Location	Pos	ition	Date	Salinity	Ч°
	<u>N</u>	E		in ‰	kBq m ⁻³
Nysted	54° 4 0'	11°44'	May 20	10.4	3.7 ± 0.8
"	54° 4 0'	11°44'	June 23	10.6	
•	54°40'	11°44′	July 16	11.0	
	54°40'	11°44′	Aug 12	13.6	
•	54°40'	11°44′	Sep 14	10.5	
"	54°40′	11°44′	Oct 14	10.8	
•	54°40'	11°44'	Nov 11	9.9	
10	54°40′	11°44′	Dec 18	11.3	
Roskilde fjord	55°51'	12°02′	May 4	15.6	$2.6 \pm .0.4$
H	55°45′	12°04′	May 4	13.6	$5.6 \pm .0.5$
*Cf. Fig. 3.2.1.1.					
**Cf. Fig. 3.2.1.2.					

Table 4.4.4. (continued)

The error term is 1 S.E. of the mean of double determinations.

Fig. 4.4.5. Chernobyl cesium-137 in surface sea water collected in May 1987. (Unit: Bq m⁻³).

Fig. 4.4.6. Chernobyl cesium-137 in surface sea water collected in November-December 1987. (Unit: Bq m⁻³).

Fig. 4.4.7. Chernobyl cesium-137 in surface sea water collected in 1987. (Unit: Bq m^{-3}).

Fig. 4.4.8. Chernobyl cesium-137 in southern Cattegat and western Baltic Sea 1986-1988. (Unit: Bq m⁻³).

Fig. 4.4.9. Chernobyl cesium-137 in surface sea water from two coastal stations 1986-1988.

4.5. Strontium-90 and Radiocesium in Soil Samples

Soil was collected from uncultivated fields in September 1987 at the 10 State experimental farms (Fig. 4.2 and Tables 4.5.1 and 4.5.2). Furthermore, we analysed soil samples collected in 1983 (Table 4.5.3) from cultivated soils.

The last time a countrywide sampling of both cultivated and uncultivated soils took place was in 1975¹). From this sampling and from the deposition of global fallout since then, we can calculate the expected levels in uncultivated soils in 1987 and in cultivated soils in 1983. These calculated levels may then be compared with those actually observed. Table 4.5.4 shows the ratios between observed and calculated levels. Furthermore, we have compared the observed September 1987 levels of Chernobyl ¹³⁷Cs with those found in September 1986 (corrected for decay to 1987 and for Chernobyl fallout for the period September 1986 to August 1987).

It is evident that the observed ¹³⁷Cs levels in soil in general are lower than those calculated from previous measurements. This shows that ¹³⁷Cs disappears from the soil not only by radioactive decay, but also by other processes,

Table 4.5.1. Radiocesium in uncultivated soil collected at the 10 State experimental farms in Denmark and at two locations at Ris ϕ in August-September 1987. (Unit: Bq m⁻²). ($^{134}Cs/^{137}Cs$)

	0-5 cm	5-10 cm	10-20 cm	20-30 cm	30-50 cm	Σ	Ch	ernobyl ^{†37}	'Cs•
						0-50 cm	0-5 cm	5-10 cm	0-10 cm
Tylstrup	1440	940	410	64	94	29 50	556	86	640
	(0.140)	(0.033)							
Kalø	1840	600	176	140	62	2820	903	61	960
	(0.178)	(0.037)							
Borris	1240	450	1470	2 9 0	176	3630	739	66	800
	(0.216)	(0.053)							
Askov	3300	300	790	136	43 B	4590	2680	44	2700
	(0.294)	(0.053)							
St. Jyndevad	1270	460	1180	580	79 A	3570	908	55	960
	(0.259)	(0.043)							
Årslev	1940	560	630	320	31 B	3480	1627	185	1810
	(0.302)	(0 119)							
Tystofte	1180	590	850	290	41 A	2950	623		62 0
	(0.188)	-							
Ledreborg	960	290	700	430	60	2440	566	53	620
	(0.210)	(0.065)							
Abed	820	700	430	200	66 A	2220	484	124	610
	(0.213)	(0.064)							
Tornbygård	960	380	660	310	100	2410	519	-	520
	(0.213)	-							
Mean	1495	527	730	276	75	3106	960	67	1027
relative S.D.	49%	37%	52%	55%	5 6%	23%	72%	82%	68%
Skydebanen(Bisc)	1570	430	360	85	26 B	2500	617	16	630
Skydebanen(hisø)	(0.140)	430	300	65	20.0	2000	017	10	030
Rolund (Rica)	1270	(U.UIS) 860	620	100	112	2060	272	96	970
	(0.108)	(0.039)	020	100	112	3000	//3	30	670
	10.130)	(0.039)							· · · · · ·

*Calculated from 134Cs/137Cs assuming that this ratio was 0.55 in pure Chernobyl debris on April 26, 1986.

	Bq kg ^{⊶1}	Bq m⁻²
Tylstrup	4.7	197
Kalø	4.5	178
Borris	1.87	110
Askov	3.8	248
St. Jyndevad	1.67	76
Årslev	3.9	190
Tystofte	2.8	141
Ledreborg	2.5	147
Abed	2.5	99
Tornbygård	1.56	105
Mean	2.98	149
relative S.D.	39%	36%

Table 4.5.2. Strontium-90 in uncultivated soil from the 10 State experimental farms in Denmark in August-September 1987 (0-5 cm layer)

Table 4.5.3. Cesium-137 in cultivated soil from the 10 state experimental farms in Denmark in September 1983. (Unit: Bq ¹³⁷Cs m⁻²)

	0-20 cm	20-30 cm	30-40 cm	40-50 cm	Σ 0-50 cm
Tylstrup	1230	370	129	20	1750
Ødum	1150	590	74	30 A	1840
Borris*	1300	280	20 A	B.D.L.	1600
Askov	1600	620	47	28	2300
St. Jyndevad	1550	350	10 A	B.D.L.	1910
Blangstedgård	770	400	117	18 A	1310
Tystofte	930	610	58	B.D.L.	1600
Ledreborg	540	310	410	37	1300
Abed	820	590	B.D.L.	B.D.L.	1410
Tornbygård*	610	470	117	34 B	1230
Mean relative S D	1050	459	98 121%	17	1620 21%
	5070	2370	121 /0	JZ 70	2170

*These two stations were not the same in 1975 and in 1983 (Borris was earlier Studsgård and Tornbygård was Åkirkeby).

e.g. runoff, crop removal, and wind erosion. The loss of global fallout ¹³⁷Cs from uncultivated soils from 1975 to 1987 corresponded to a decay factor λ of 0.017 yr⁻¹ (e^{- λ ·12} = 0.82; λ = 0.017) the corresponding half-life is 42 years and the effective half-life of global fallout ¹³⁷Cs in Danish uncultivated soils thus becomes 17.5 years.

In the case of cultivated soils, the loss rate of 137Cs is greater. The decay factor is here 0.030 yr⁻¹. ($e^{-\lambda \cdot 8} = 0.79$); $\lambda = 0.030$) and the effective half-life of global fallout ¹³⁷Cs in Danish cultivated soils becomes 13 years.

The last column in Table 4.5.4 shows a surprisingly high reduction in the Chernobyl ¹³⁷Cs in soils from 1986 to 1987, corresponding to a decay factor of 0.26 yr⁻¹ or an effective half-life of 2.44 years only. In order to see whether this rapid decay continues (which is unlikely), we have planned a new soil sampling in 1989.

Location	Uncultivated soil <u>1987 observation^{a)}</u> 1975 calculation	Cultivated soil <u>1983 observation</u> 1975 calculation	Uncultivated soil <u>1987 observation^{b)}</u> 1986 calculation ^{b)}				
Tyistrup	0.74	0.55	0.96				
Kalø⁄Ødum	0.60 ^{c)}	0.73	0.58				
Borris	1.00 ^{d)}	0.51 ^{d)}	0.92				
Askov	0.52	0.85	0.70				
St. Jyndevad	1.24	0.74	0.90				
ÅrsievBlangstedgård	0.61 ^{e)}	0.96	0.89				
Tystofte	0.89	0.64	0.76				
Ledreborg	0.80	0.86	0.47				
Abed	0.70	0.95	0.70				
Tornbygård	0.69 ⁽¹⁾	0.60"	0.81				
Mean ±1 S.E. (N)	0.82 ± 0.10 (6)	0.79±0.05(8)	0.77±0.05(10)				
Risø, Bolund	1.32						
Risø, Skydebanen	0.86						
Mean ± 1 S.E. (N)	0.88±0.10(8)						
 ^{a)}Global fallout only, Chernobyl ¹³⁷Cs has been subtracted. ^{b)}Chernobyl ¹³⁷Cs calculated from ¹³⁴Cs. ^{c)}Kalø in 1987 but Ødum in 1975. ^{d)}Studsgård in 1975, Borris in 1983-1987. ^{e)}Blangstedgård in 1975-1983, Årslev in 1986-1987. ^{f)}Åkirkeby in 1975, Tornbygård 1983-1987. 							

Table 4.5.4. Observed 137Cs deposit compared with calculated levels (cf. the text)

4.6. Sediments

Sediments were collected from the permanent locations in Roskilde Fjord in May 1987. The mean contribution from Chernobyl was 208 ± 104 Bq 137 Cs m⁻² (± 1 S.D.; N = 7). The Chernobyl radiocesium was normally found in the upper 3 to 5 cm. Compared to the deposition of Chernobyl 137 Cs in 1986, the sediments in Roskilde Fjord contained 20-30%. This is higher than seen in 1986, when only about 10% of the Chernobyl radiocesium had reached the sediments in the Danish Straits¹).

Laver	134	4Cs	137	'Cs	Chernobyl	Chernobyl
in cm	cm Bq m ⁻² Bq kg ⁻¹		Bam-2 Bakg-		137Cs	¹³⁷ Cs
					Bq m⁻²	%
0-1	7.1 A	2.6 A	29	10.5	17.8	61
1-2	11.1	2.1	64	12.2	28	44
2-3	27	1.77	144	9.5	68	47
3-4	13.3 A	1.20 A	105	9.4	33	31
4-5	25 A	1.79 A	106	7.5	63	59
5-6	-	-	98	6.9	-	0
Σ0-6	84		546		210	

Table 4.6.1. Radiocesium in marine sediments collected in Roskilde Fjord on May 7, 1987 at location VI (cf. Fig. 4.6.1.)

Layer in cm	134Cs		137	°Cs	Chernobyl	Chernobyl
	Bq m-2	Bq kg⁻¹	Bq m ^{_2}	Ba kg⁻¹	¹³⁷ Cs Bq m ⁻²	¹³⁷ Cs %
0-1	9.2 A	6.0 A	64	42	23	36
1-2	19.0	5.2	82	22	48	59
2-3	8. 1 A	1.4 A	62	10.6	20	32
3-4	-	-	54	10.1	-	
4-5	-	-	42	7.0	-	
5-6	-	-	43	6.7		
Σ0-6	36		347		91	

Table 4.6.2. Radiocesium in marine sediments collected in Roskilde Fjord on May 7, 1987 at location V (cf. Fig. 4.6.1.)

Table 4.6.3. Radiocesium in marine sediments collected in Roskilde Fjord on May 7, 1987 at location IV (cf. Fig. 4.6.1.)

Layer	¹³⁴ Cs		137	′Cs	Chernobyl	Chernobyl
in cm	Bq m⁻²	Bq kg-1	Bq m⁻²	Bq kg−1	¹³⁷ Cs	137Cs
					Bq m ⁻²	%
0-1	25	28	89	100	63	71
1-2	51	29	164	93	128	78
2-3	48	21	188	85	120	64
3-4	10.5 A	6.5 A	101	62	26	26
4-5	-	-	64	51	-	-
5-6	-	-	88	54	-	-
Σ0-6	135		694		337	

Table 4.6.4. Radiocesium in marine sediments collected in Roskilde Fjord on May 7, 1987 at location III (cf. Fig. 4.6.1.)

Layer in cm	¹³⁴ Cs Bq m ⁻² Bq kg ⁻¹		137 Bq m ⁻²	′Cs Bq kg ⁻¹	Chernobyl ¹³⁷ Cs	Chernobyl ¹³⁷ Cs
					Bq m ⁻²	%
0-1	22	7.6	117	41	55	47
1- 2	19.1	5.3	110	31	48	44
2-3	9.3 A	4.2 A	45	21	23	51
3-4	-	-	47	14.0	-	-
4-5	-	-	16	10.6	-	-
5-6	-	-	24	9.7	•	-
Σ 0-6	50		359		126	

Layer	134	⁴ Cs	137	′Cs	Chernobyl	Chernobyl
in cm	Bq m⁻²	Bq kg⁻¹	Bq m⁻²	Bq kg⁻¹	¹³⁷ Cs Bq m ⁻²	¹³⁷ Cs %
0-1	15.2	8.3	79	45	38	48
1-2	14.8	8.5	88	51	37	42
2-3	13.8	6.6	115	55	34	30
3-4	-	-	46	25	-	-
4-5	-	-	53	30	-	-
5-6	-	-	60	40	-	-
Σ0-6	44		441		109	

Table 4.6.5. Radiocesium in marine sediments collected in Roskilde Fjord on May 7, 1987 at location X (cf. Fig. 4.6.1.)

Table 4.6.6. Radiocesium in marine sediments collected in Roskilde Fjord on May 7, 1987 at location IX (cf. Fig. 4.6.1.)

Layer	¹³⁴ Cs		137	'Cs	Chernobyl	Chernobyl
in cm	Bq m⁻²	Bq kg⁻¹	Bq m⁻²	Bq kg⁻¹	¹³⁷ Cs ² Bq m ⁻²	¹³⁷ Cs %
0-1	30	12.4	109	44	75	69
1-2	49	11.7	168	41	123	73
2-3	26	5.2	126	25	65	52
3-4	15.1	2.7	122	22	38	31
4-5	14.1 A	2.4 A	105	17.5	35	33
5-6	-	-	126	21	-	-
Σ0-6	134		756		336	

Table 4.6.7. Radiocesium in marine sediments collected in Roskilde Fjord on May 7, 1987 at location I (cf. Fig. 4.6.1.)

Layer in cm	134 Bq m ⁻²	⁴ Cs Bq kg⁻¹	137 Bq m-2	'Cs Bq kg−1	Chernobyl ¹³⁷ Cs Bq m ⁻²	Chernobyl ¹³⁷ Cs %
0-1 1-2 2-3 3-4 4-5 5-6	21 32 31 8.2 A 7.8 A	14.2 9.4 8.4 2.0 A 2.5 A	86 166 208 181 142 139	59 49 56 44 46 46	53 80 78 21 20	61 48 37 11 14
Σ0-6	100		922		252	
0-3 3-6 6-9 9-12 12-15	73 78 25 A -	10.5 5.3 2 A -	323 656 390 330 154	46 45 31 42 16.6	183 196 63 -	57 30 16
Σ0-15	176		1853		442	

The double sampling from location I (Risø, cf. Table 4.6.7) showed significant variations between the two sets of samples. The set with the 3-cm layers showed 50% more Chernobyl radiocesium than that with the 1-cm layers.

Fig. 4.6.1. Chernobyl Cs-137 in sediment samples (0-6 cm layer) collected in Roskilde Fjord. (Unit: Bq m⁻²).

5. Danish Food and Various Vegetation

by A. Aarkrog

5.1. Strontium-90 and Radiocesium in Dried Milk from the Entire Country

As compared with 1986, the countrywide mear: ⁹⁰Sr level in dried milk decreased by 8% in 1987, which brings the ⁹⁰Sr levels back to pre-Chernobyl concentrations.

Tables 5.1.2 shows the anova of the ⁹⁰Sr data. The variation between locations was significant.

Fig. 5.1.1. Dried milk sampling locations in Denmark.

Month	Hjørring	Randers	Videbæk	Åbenrå	Nyborg	Ringsted	Nakskov	Mean
Jan-April	62	71	73	73	41	36	45	57
May-June	63	71	81	91	52	61	44	66
July	59	62	75	90	36	42	46	59
Aug	59	61	69	(80)	39	41	41	56
Sept	52	70	69	69	41	42	44	55
Oct	70	59	64	65	42	50	44	56
Nov-Dec	58	72	69	81	58	53	44	62
Mean*	61	69	72	78	45	46	44	59

Table 5.1.1. Strontium-90 in dried milk in 1987. (Unit: Bq (kg Ca)-1)

*The data were weighted with the number of months when calculating the mean.

As 1 cubic meter of milk contains 1.2 kg Ca, the mean ⁹⁰Sr content in Danish milk produced in 1987 was 71 Bg m⁻³ (or 0.07 Bg ⁹⁰Sr i⁻¹).

Table 5.1.2. Analysis of variance of In Bq ⁹⁰Sr (kg Ca)-¹ in Danish dried milk in 1987 (from Table 5.1.1) (milk year May 1987 - April 1988)

Variation	SSD	f	s²	v²	Р
Between months*	0.138	6	0.023	1.94	-
Between locations	2.522	6	0.420	35.45	> 99.95%
Month × loc.	0.403	34	0.012	7.27	> 99%
Remainder	0.011	7	0.002		

Fig. 5.1.2. Predicted (curve) and observed ⁹⁰Sr/Ca levels in dried milk from Denmark (May 1962 - April 1987).

Month	Hjørring	Randers	Videbæk	Åbenrå	Nyborg	Ringsted	Nakskov	Mean
Jan	350	590	810	1020	230	250	92	480
Feb	360	720	710	750	540	370	109	510
March	380	570	890	820	410	400	9 8	510
April	330	600	(920)	600	270	181	152	440
May	360	780	960	730	(230)	184	104	470
June	320	500	760	740	(230)	179	78	400
July	196	470	660	94 0	183	199	83	390
Aug	350	460	660	(680)	180	174	77	370
Sep	220	390	810	410	122	73	82	300
Oct	220	320	430	340	116	45	38	215
Nov	107	230	330	156	84	71	26	144
Dec	184	270	250	176	67	58	29	148
Mean	280	490	680	610	220	182	81	360

Table 5.1.3. Cesium-137 in Danish dried milk in 1987. (Unit: Bq 137Cs (kg K)-1)

As 1 cubic meter of milk contains approx. 1.66 kg K, the mean 137 Cs content in Danish milk produced in 1987 was estimated at 600 Bg m⁻³ (or 0.60 Bg 137 Cs \vdash).

Table 5.1.4. Analysis of variance of ln Bq 137 Cs (kg K) $^{-1}$ in Danish dried milk in 1987 (from Table 5.1.3) (milk year May 1987 - April 1988)

Variation	SSD	f	s²	v²	Р
Between months Between locations Remainder	13.66 51.93 5.54	11 6 62	1.242 8.66 0.089	13.89 96.81	> 99.95% > 99.95%

Table 5.1.5. Radiocesium: 134Cs/137Cs in Danish dried milk in 1987

Month	Hjørring	Randers	Videbæk	Åbenrå	Nyborg	Ringsted	Nakskov	Mean ± 1 S.D.	Theoretical 134Cs/137Cs
100	0.20	0.41	0.40	0.41	0.40	0.42	0.40	0.42 + 0.02	0.44
Jan	0.35	0.41	0.40	0.43	0.40	0.42	0.43	0.42 ± 0.03	0.43
~CO	0.39	0.41	0.41	0.43	0.41	0.43	0.41	041 ± 0.01	0.43
March	0.40	0.40	0.38	0.42	0.42	0.41	0.38	0.40 ± 0.02	0.42
April	0.38	0.40		0.42	0.39	0.40	0.41	0.40 ± 0.01	0.41
May	0.37	0.38	0.39	0.41		0.39	0.35	0.38 ± 0.02	0.40
June	0.35	0.37	0.40	0.38		0.34	0.35	0.37 ± 0.02	0.39
July	0.35	0.36	0.36	0.37	0.36	0.35	0.35	0.36±0.01	0.38
Aug	0.33	0.33	0.35		0.32	0.37	0.37	0.35 ± 0.02	0.37
Sept	0.27	0.33	0.34	0.34	0.30	0.30	0.24	0.30 ± 0.04	0.36
Oct	0.31	0.33	0.33	0.32	0.38	0.37	0.29	0.33±0.03	0.35
Nov	0.29	0.31	0.31	0.30	0.26	0.26	0.38	0.30 ± 0.04	0.34
Dec	0.28	0.31	0.34	0 31	0.37	0.35	•	0.33 ± 0.03	0 33
Observe	ed 134Cs/13	7Cs	0.04 - 0						
Theoreti	cal 134Cs/1	37Cs	≕ U.94 ± U	7.04 (TS.D	.; N ≈ 12) 			

Compared with 1986, the 137 Cs concentrations in Danish dried milk decreased by a factor of 1.8 in 1987. It is more interesting to compare the milk years: May 1986 - April 1987 and May 1987 - April 1988, where we find that there was a decrease by a factor of 2.9 corresponding to a decay factor λ of 1.07 yr⁻¹ or an effective half-life of 137 Cs in Danish milk of 7.75 months. We expect that this decrease rate will become less in the coming years.

The ¹³⁴Cs/¹³⁷Cs indicates that 94% of the ¹³⁷Cs in Danish milk from 1987 came from the Chernobyl accident (Table 5.1.5).

Figures 5.1.2 and 5.1.3 show the ⁹⁰Sr and ¹³⁷Cs levels in dried milk compared with the predicted values (cf. Appendix C). The observed ⁹⁰Sr levels in 1987 were 1.11 times the predicted, while the observed ¹³⁷Cs levels were 0.66 times the predicted ones (means of Jutland and the Islands). Compared with 1986, the models had improved their predictions.

Fig. 5.1.3. Predicted (curve) and observed ¹³⁷Cs/K levels in dried milk from Denmark (May 1962 - April 1988).

5.2. Other Milk Products

5.2.1. Strontium-90 and Radiocesium in Consumers Milk

Milk was purchased in the 8 zones and Copenhagen (Figs. 5.4.1 and 5.4.2) in May-June and in November-December 1987. The results are shown in Table 5.2.1 and were similar to those in the dried milk samples (cf. Table 5.1.3).

		Jun	e			Decen	nber	
Country part	Bq ⁹⁰ Sr ⟨kg Ca)−1	Bq ¹³⁷ Cs (kg K)-1	Bq ¹³⁷ Cs -1	¹³⁴ Cs ¹³⁷ Cs	Bq ⁹⁰ Sr (kg Ca)−1	Bq ¹³⁷ Cs (kg K)- ¹	Bq ¹³⁷ Cs -1	134Cs 137Cs
N-Jutland	60	580	0.90	0.37		182	0.29	0.30
E-Jutland	65	490	0.75	0.36		270	0.41	0.30
W-Jutland	62	540	0.86	0.36		193	0.31	0.31
S-Jutland	75	610	0.95	0.38		182	0.29	0.30
Funen	69	660	1.06	0.38		204	0.32	0.30
Zealand	46	210	0.34	0.38		52	0.081	0.29
Lolland-Falster	50	170	0.28	0.35		72	0.108	0.28
Bornholm	63	45	0.07	0.40		30	0.048	0.25
Mean	61	410	0.65	0.37	60	148	0.23	0.29

Table 5.2.1. Strontium-90 and radiocesium in consumers milk collected in the 8 zones and Copenhagen in 1987 (cf. Figs. 5.4.1 and 5.4.2)

5.2.2. Strontium-90 and Radiocesium in Danish Cheese

The ⁹⁰Sr levels (Bq (kg Ca)⁻¹) in cheese in 1987 corresponded to those observed in milk in South and West Jutland in June 1986. The ¹³⁷Cs levels (Bq (kg K)⁻¹) were also similar to the milk levels observed in Jutland in the grazing season 1986.

Compared with cheese from 1986, the 1987 levels were nearly the same for 90 Sr, while the 137 Cs concentrations had decreased by a factor of 2.4. As in 1986, we must conclude that the 137 Cs/K in cheese was higher than that in milk.

Month	Bq ⁹⁰ Sr	Bq ⁹⁰	Bq ¹³⁷ Cs	Bq ¹³⁷ Cs	¹³⁴ Cs
	kg ⁻¹	(kg Ca)–1	kg ⁻¹	(kg K)–1	137Cs
Jan-March	0.90	112	1.03	1440	0.48
April-June	0.84	98	1.03	1360	0.39 A
July-Sept	1.05	100	1.27	1180	0.35
Mean	0.93	103	1.11	1330	-

Table 5.2.2. Strontium-90 and radiocesium in Danish cheese in 1987

5.3. Strontium-90 and Radiocesium in Grain from the Entire Country

As in previous years, grain samples were obtained from the State experimental farms (cf. Fig. 4.2). Strontium-90 was determined as previously (Risø Report No. 63¹), and ¹³⁷Cs and ¹³⁴Cs were measured on ashed samples by γ -spectrometry on a Ge(Li) detector.

Tables 5.3.1 and 5.3.2 show the measurements of 90 Sr in grain in 1987. Table 5.3.4 gives the analysis of variance of the Bq 90 Sr (kg Ca)⁻¹ figures and Table 5.3.3 that of the Bq 90 Sr kg⁻¹ grain figures.

The variation between species was not significant for Bq 90 Sr kg⁻¹ (Table 5.3.3).

Location	Rve	Barley		Whe	eat	Oats	Triticale
	Winter	Spring	Winter	Winter	Spring	Spring	
Tylstrup	0.33	0.46	1.67	0.90		1.13	-
Kalø*	0.80	0.42 ± 0.18	0.60	0.34 ± 0.01	0.91	0.63 ± 0.38	-
Askov	0.84	1.22	0.76	0.56	-	0.57	-
Borris	0.95	0.87	0.90	0.92	1.80	0.55	1.17
St. Jyndevad	0.30	0.20	0.76	0.68	•	0.81	-
Årslev	0.33	0.95	0.41	0.25		0.57	
Tystofte	0.29	0.47	0.27	0.32	0.63	0.43	-
Ledreborg	0.26	-	0.32	0.30	-	0.50	-
Abed	0.17	0.24	0.29	0.43	0.36	-	-
Tornbygård	0.16	0.19	0.31	0.17	0.32	0.34	-
Mean	0.44	0.56	0.63	0.49	0.80	0.61	•
*Mean of Kal	ø and Foul	um ±1 S.E.					

Table 5.3.1. Strontium-90 in Danish grain in 1987. (Unit: Bq kg⁻¹)

Table 5.3.2. Strontium-90 in Danish grain in 1987. (Unit: Bq kg Ca)-1)

Location	Rve	Barley		Whe	at	Oats	Triticale
	Winter	Spring	Winter	Winter	Spring	Spring	
Tylstrup	960	240	1500	790	-	570	
Kalø*	2500	770 ± 310	1190	870 ± 210	2100	780 ± 540	-
Askov	1440	660	920	1360	-	890	-
Borris	1630	1530	720	1450	2500	1030	1570
St. Jyndevad	670	590	1390	1500	-	1250	-
Årslev	94u	1700	830	860	-	810	
Tystofte	800	880	710	990	1180	540	-
Ledreborg	730		630	890		660	-
Abed	450	460	470	1230	72 0	-	
Tornbygård	480	420	510	490	800	390	-
Mean	1060	820	890	1040	1460	770	-
*Mean of Kale	and Foul	um ±1 S.E.					

Table 5.3.3. Analysis of variance of In Bq ⁹⁰Sr kg⁻¹ in grain in 1987 (from Table 5.3.1)

Variation	SSD	f	s²	v ²	Р
Between species Between locations Spec. × loc. Remainder	0.714 9.38 4.76 5.11	3 9 26 17	0.238 1.04 0.183 0.30	1.30 5.69 0.61	- > 99.95% -

Table 5.3.4. Analysis of variance of $\ln Bq {}^{90}Sr (kg Ca)^{-1}$ in grain in 1987 (from Table 5.3.2)

Variation	SSD	f	s²	v²	P
Between species Between locations Spec. × loc. Remainder	1.95 4.71 2.83 4.77	3 9 26 17	0.65 0.52 0.109 0.281	5.95 4.80 0.39	> 99.5% > 99.9% -

As in previous years, the variation with location was highly significant; the mean Bq 90Sr kg⁻¹ level for grain from Jutland was 2.2 ± 0.3 times that in eastern Denmark. The observed Bq 90Sr kg⁻¹ levels in grain from 1987 were 1.38 ± 0.52 (1 S.D., N = 8) times those predicted (cf. Appendix C).

Tables 5.3.5 and 5.3.6 show the measurements of ¹³⁷Cs and ¹³⁴Cs in grain in 1987. Compared with 1986, the ¹³⁷Cs levels in Danish grain had decreased significantly in 1987. However, the decrease was very unevenly distributed.

The median reduction from 1986 to 1987 was by a factor of 11 (47 paired observations). Rye showed a median factor of 73 (8 observations) and oats of 2.5 (9 observations). Barley and wheat were in between these extremes.

The ¹³⁷cs fallout in May-August 1987 was a factor of 65 less than in May-August 1986. Only the ryc levels followed this reduction from 1986 to 1987. But rye was also the only species which showed a significant response to the early Chernobyl fallout in May-June. Barley, wheat and oats were not so developed as rye when the bulk of the Chernobyl fallout arrived, and the response to the fallout was thus less than for rye in 1986.

The ANOVA's (Tables 5.3.7 and 5.3.8) showed significant variation between locations as well as between species.

Our prediction models (cf. Appendix C.2) which assume that the radiocesium found in grain is solely dependent upon the fallout coming in May-August, overestimated the radiocesium concentrations actually found by a factor of 4-12 except for oats from Jutland.

We do not know why also in 1987 the models overestimated the grain levels. We believe that it may be because the resuspended radiocesium does not adhere so efficiently to the crops or/and because the resuspended ¹³⁷Cs is less available for translocation than direct global fallout ¹³⁷Cs (cf. also 4.2.2 last paragraph). It is also difficult to explain the enhanced ¹³⁷Cs levels in the oats samples from Kalø and St. Jyndevad in 1987. We suppose that "hot" resuspended particles may be responsible.

Cesium-134 was detectable in only a few grain samples in 1987. The mean $^{134}Cs/^{137}Cs$ was 0.28 ± 0.04 (± 1 S.D.; N = 10).

Location	Rve _	Barley		Whea	t	Oats	Triticale
	Winter	Spring	Winter	Winter	Spring	Spring	
Tylstrup	0.182	0.26	0.093 A	0.105 A		0.135	-
	(0.29 A)	(0.22 A)	•	-	-	-	-
Kalø*	0.116	0.121 ± 0.022	-	0.075 ± 0.014	0.19	1.88 ± 1.72	-
	-	-	-	-	(0.25 B)	(0.29)	
Askov	0.42	0.125	0.082 A	0.22		0.39	-
	(0.31)	-	-	(0.38 A)	•	(0.29)	-
Borris	0.168	0.034 B	0.076 A	0.04 B	0.065 A	0.081 A	0.099
St. Jyndevad	0.28	0.096 A	0.05 B	0.130	-	1.47	-
	-	-	•	-		(0.25)	-
Årslev	0.26	0.40	0.134	0.078 A	-	0.151	-
	(0.26)	(0.26)	-	-		-	-
Tystofte	0.06 B	0.075 A	0.049 A	0.033 B	0. 079 A	0.110	-
Ledreborg	0.068 A	-	0.091	0.038 A	-	0.095	-
Abed	0.063 A	0.01 B	0.054 A	0.036 B	0.02 B	-	-
Tornbygård	0.097	0.04 B	0.07 B	0.032 A	0.63 B	0.182	-
Mean	0.17	0.13	0.078	0.07 9	0.077	0.50	-
*Mean of Kalo	and Foulun	n ±1 S.E.		,			

Table 5.3.5. Radiocesium in Danish grain in 1987. (Unit: Bq kg-1)

in brackets the ¹³⁴Cs/¹³⁷Cs are shown.

'-ocation	Rve	Barley		Wh	eat	Qats	Triticale
	Winter	Spring	Winter	Winter	Spring	Spring	
Tyistrup	37	59	28 A	2 9 A	-	32	-
Kalø*	28	34 ± 6	-	22 ±3	50	610±570	-
Askov	94	26	27 A	60	-	110	-
Borris	35	9 B	17 A	11 B	15 B	23 A	16
St. Jyridevad	54	22 A	20 B	30		340	•
Årslev	53	76	31	19 A		40	-
Tystofte	12 B	17	12 A	7 B	17 A	28	
Ledreborg	14 A	-	19	11 A		24	
Abed	14 A	2 B	13 A	10 B	5 B	-	
Tornbygård	18	11 B	12 B	11 A	7 B	41	-
Mean	36	28	20	21	19	139	-

Table 5.3.6. Cesium-137 in Danish grain in 1987. (Unit: Bq (kg K)-1)
Variation	SSD	f	s²	v ²	Р
Between species Between locations Spec. × loc. Bemainder	10.55 17.10 9.71 9 74	3 9 26 16	3.52 1.90 0.373 0.608	9.42 5.09 0.614	> 99.95% > 97.5% -

Table 5.3.7. Analysis of variance of $\ln Bq {}^{137}Cs kg^{-1}$ in grain in 1987 (from Table 5.3.5)

Table 5.3.8. Analysis of variance of $\ln Bq \ ^{137}Cs$ (kg K)-1 in grain in 1987 (from Table 5.3.6)

Variation	SSD	f	s²	v²	Р
Between species	10.12	3	3.37	10.18	> 99.95%
Between locations	19. 9 2	9	2.21	6.68	> 99.95%
Spec. × loc.	8.61	26	0.331	0.600	-
Remainder	8.83	16	0.552		

The theoretical mean ratio in mid-September, when most of the grain was harvested, was 0.36, hence 78% of the 137 Cs in the Danish grain in 1987 came from Chernobyl. If so, the contribution from global fallout has been 22% of the levels in Table 5.3.5 or 0.047 Bq 137 Cs kg⁻¹ as a mean of the 4 species. This is 60% of the mean found in 1985, which does not seem unreasonable.

In 1981 the fallout rate of ¹³⁷Cs was 15.4 Bq ¹³⁷Cs m⁻² (Risø-R-469)¹) and in 1987 it was 29 Bq ¹³⁷Cs m⁻² or two times more. But the grain levels were on the average 6 times higher in 1981 than in 1987. It is thus evident that the direct global fallout in 1981 contaminated the grain about 10 times more efficiently than the resuspended Chernobyl debris did in 1987.

5.4. Strontium-90 and Radiocesium in Bread from the Entire Country

In 1986, samples of white bread (75% extraction) and dark rye bread (100% extraction) were collected all over the country (cf. Figs. 5.4.1 and 5.4.2) in June and December, and 90 Sr, 137 Cs and 134 Cs were determined. Samples from Copenhagen were analysed separately. The 137 Cs determinations were carried out on the ash by Ge(Li) γ -spectroscopy.

Tables 5.4.1-5.4.4 show the results. It is assumed that 1 kg flour yields approximately 1.35 kg bread¹¹) and that wheat flour of 75% extraction contains 20% of the ⁹⁰Sr and 50% of the ¹³⁷Cs found in wheat grain¹), while rye flour is 100% extraction. Hence we can compare the 1987 June bread levels with the 1986 grain levels (cf. Table 5.4.5). The above assumptions for transfer of ¹³⁷Cs and ⁹⁰Sr from grain to bread seem justified for rye but not for wheat. This has in fact been envisaged in Risø-R-437 p. 86²¹) where it is predicted that the transfer from wheat to white bread will increase from 20 to 33% for ⁹⁰Sr. The discrepancy for ¹³⁷Cs on white bread/wheat may be due to the import of Chernobyl-contaminated wheat from Southern Europe, where the contamination of wheat was higher than in Denmark.

Location	Ry	e bread	White bread		
	Bq kg ⁻¹	Bq (kg Ca)-1	Bq kg ⁻¹	Bg (kg Ca)-1	
I North Jutland	0.24	260	0.193	390	
II Fast Jutland	0.30	310	0.159	77	
III West Jutland	0.22	840	0.144	38	
IV South Jutland	0.23	280	0.100	102	
V Funen	0.27	280	0.135	290	
VI Zealand	0.26	220	0.067	240	
VII Lolland-Falster	0.23	52	0.103	200	
VIII Bornholm	0.27	370	0.193	430	
Mean	0.25	330	0.137	220	
Copenhagen	0.24	750	0.170	149	
Population-			· · · · · · · · · · · · · · · · · · ·		
weighted mean	0.25	450	0.139	175	

Table 5.4.1. Strontium-90 in Danish bread collected in June 1987

Table 5.4.2. Strontium-90 in Danish bread collected in December 1987

Location	Ry	e bread	White bread		
	Bq kg-1	Bq (kg Ca)-1	Bq kg-1	Bq (kg Ca)-1	
Mean zones I-VIII	0.22	450	0.088	165	

Location		Rye bread	_	White bread			
	Bq kg-1	Bq (kg K)-1	¹³⁴ Cs 137Cs	Bq kg ^{_1}	Bq (kg K)-1	134 <u>Cs</u> 137 <u>Cs</u>	
I North Jutland	6.8	2600	0.40	0.61	410	0.40	
II East Jutland	8.1	2900	0.39	0.79	510	0.39	
III West Jutland	3.8	1800	0.40	0.66	500	0.40	
IV South Jutland	6.6	2000	0.39	0.50	400	0.35	
V Funen	11.0	36 00	0.40	0.81	680	0.40	
VI Zealand	4.8	1580	0.40	0.44	340	0.39	
VII Lolland-Falster	4.7	1650	0.40	0.24	168	0.35	
VIII Bornholm	2.8	830	0.38	0.27	220	0.36	
Mean	6.1	2100	0.40	0.54	400	0.38	
Copenhagen	4.6	1610	0.39	0.34	250	0.40	
Population-							
weighted mean	6.0	2100	0.40	0.55	410	0.39	

Table 5.4.3. Radiocesium in Danish bread collected in June 1987

Location		Rye bread		White bread		
	Bq kg-1	Bq (kg K) -1	134 <u>Cs</u> 137 <u>Cs</u>	Bq kg-1	Bq (kg K)-1	134Cs 137Cs
I North-Jutland	1.00	370	0.38	0.128	100	0.34
II East-Jutland	0.41	160	0.24	0.120	96	0.28 A
III West-Jutland	0.30	103	-	0.35	250	0.34
IV South-Jutland	0.25	94	0.25 A	0.138	98	0.28
V Funen	0.25	88	-	0.134	107	0.30 A
VI Zealand	0.098	43	-	0.23	172	0.30
VII Lolland-Faister	0.173	50	-	0.32	270	0.35
VIII Bornhoim	0.20	51	•	0.138	119	0.29 A
Mean	0.34	120	0.29	0.195	152	0.31

Table 5.4.4. Radiocesium in Danish bread collected in December 1987

Fig.	. 5.4.1	l. 🎜	"-towns	in d	e 8	zones	in L)enma	rk used j	for d	iet, me	cat, bread	l and
mill	t samp	pling ((these to	eons e	ere :	used i	n 190	51-197.	2 and in	1980	5-1987)).	
I: 1	Vorth	Turla	nd: 11:	East	That	land:	<i>III</i> :	West	Tutland:	· IV:	Sout	Tutlan	ł: V:

Funen; VI. Zealand; VII: Lolland-Falster; VIII: Bornholm.

Fig. 5.4.2. "B"-towns in the 8 zones in Denmark used for diet, meat, bread and milk samplings (these towns were used in 1961-1972 and in 1986-1987).

Nuclide	lide Species Bread activity in June 1987 calculated as grain in Bq kg ⁻¹ (cf. text)		Activity in grain from harvest 1986 ¹⁾ Bq kg ⁻¹	"Bread"/grain ratio
⁹⁰ Sr	Wheat	0.94	0.39	2.4
	Rye	0.34	0.43	0.8
¹³⁷ Cs	Wheat	1.49	0.63	2.4
	Rye	8.1	11.2	0.7

Table 5.4.5. A comparison between ⁹⁰Sr and ¹³⁷Cs levels in bread (June) and grain 1987

Fig. 5.4.3. Calcium in Danish bread 1962-1987. (Unit: g Ca kg⁻¹ bread).

From June to December the ¹³⁷Cs concentrations in rye bread decreased by a factor of 18 while white bread went down by a factor of 2.8. The ⁹⁰Sr levels were reduced by a factor of 1.1 and 1.6, respectively.

Figure 5.4.3 shows the Ca-levels in rye bread and white bread since 1962. In 1986 a significant decrease in the levels began. This is because the Government Notice from July 29, 1957, in which it was required that creta pracparata was added to Danish cereals, has been suspended since 1986³⁰).

5.5. Strontium-90 and Radiocesium in Potatoes from the Entire Country

The samples of potatoes were collected in September from ten of the State experimental farms (cf. Fig. 4.2) and analysed for 90 Sr, 137 Cs and 134 Cs (γ -spectroscopy of the ash).

Table 5.5.1 shows the 90 Sr and radiocesium contents in potatoes. The mean contents for the country were 0.044 Bq 90 Sr kg⁻¹, or 970 Bq 90 Sr (kg Ca)⁻¹, and 0.134 Bq 137 Cs kg⁻¹ or 35 Bq 137 Cs (kg K)⁻¹. The 90 Sr levels were 10% higher than those in 1986, and the 137 Cs concentrations were 0.7 times the 1986 values. About 80% of the 137 Cs in Danish potatoes came in 1987 from Chernobyl.

The mean ratio between observed and predicted ⁹⁰Sr concentrations in potatoes was 0.47 and for ¹³⁷Cs we found 1.26 (mean of Jutland and the Islands) (cf. Appendix C).

Tai	Ne	5.5.1	. Stront	ium-91) and	l radio	scesiun	n in 1	Danis	h potatoes	in i	1987

Location	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca) ^{₋1}	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	134 <u>Cs</u> 137 <u>Cs</u>
Tylstrup	0.046	1020	0.030 A	7.4	
Kalø	0.052	1300	0.072	15	0.32 A
Foulum	0.043	1030	0.097	28	0.25 A
Borris	0.042	870	0.176	52	0.21
Askov	0.046	1360	0.46	123	0.24
St. Jynde-					
vad	0.034	730	0.29	69	0.33
Årslev	0.068	1090	0.21	50	0.36
Tystofte	0.029	820	0 B	0 B	
Ledrebora	0.040	630	0.05 B	14 B	
Abed	0.037	590	0.039 A	10 A	
Bornholm	0.035	1130	0.052 A	13 A	
Mean	0.044	970	0.134	35	0.29

5.6. Strontium-90 and Radiocesium in Vegetables and Fruits from the Entire Country

In 1987, as in previous years, vegetables and fruit were collected in the autumn from the 8 zones. The programme was, however, expanded considerably compared to previous years. Tables 5.6.1-5.6.13 show the results.

Table 5.6.14 shows a calculation of the mean contents of ⁹⁰Sr and ¹³⁷Cs in Danish vegetables collected in 1987. The ⁹⁰Sr levels were similar to the 1986 concentrations.

The ¹³⁷Cs concentrations in 1987 were 0.44 times those in 1986.

The ⁹⁰Sr concentrations in fruits in 1987 were $1.76 \pm 1.50 (\pm 1 \text{ S.D.}; \text{ N} = 7)$ times those in 1986 and the ¹³⁷Cs levels in 1987 were 0.061 ± 0.034 times those in 1986. The mean ¹³⁴Cs/¹³⁷Cs of the 7 fruit species was 0.39 ± 0.02 (1 S.D.), and from July to October when the samples were collected the theoretical ratio in Chernobyl debris decayed from 0.38 to 0.35. Hence all radiocesium observed in Danish fruit in 1987 apparently came from Chernobyl.

Zone		Bg ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca)−1	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-1	¹³⁴ Cs 137Cs
I.	North Jutland	0.35	750	0.050	26	
И.	East Jutland	0.36	750	0.062	25	
III.	West Jutland	0.30	580	0.004 B	2 B	
IV.	South Jutland	0.31	670	0.22	69	0.35
V .	Funen	0.27	630	0.083	50	
VI.	Zealand	0.20	360	0.0124 B	6 B	
VII.	Lolland-Falster	0.173	320	0.023 A	11 A	
VIII.	Bornholm	0.156	260	0.018 B	7 B	
Mean		0.26	540	0.059	24	

Table 5.6.1. Strontium-90 and radiocesium in cabbage collected in September 1987

Zone		Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca)⁻¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-1	134Cs 137Cs
1.	North Jutland	0.195	730	0.103	65	
II .	East Jutland	0.36	1660	0.053 A	29	
III.	West Jutland	0.40	1430	0.085	30	0.35 A
IV.	South Jutland	0.45	1760	0.107	53	0.40
V.	Funen	0.54	1490	0.057 A	21 A	
VI.	Zealand	0.141	400	0.023 A	15 A	
VII.	Lolland-Faister	0.27	850	0.023 A	16 A	
VIII.	Bornholm	0.086	300	0.03 B	10 B	
Mean		0.31	1080	0.060	30	

Table 5.6.2. Strontium-90 and radiocesium in carrot collected in September 1987

 Table 5.6.3. Strontium-90 and radiocesium in beans collected in

 September-October 1987

Zone		Bq ⁹⁰ Sr kg⁻¹	Bq ⁹⁰ Sr (kg Ca)−1	Bq ¹³⁷ Cs kg⁻¹	Bq ¹³⁷ Cs (kg K)−1	134Cs 137Cs
I.	North Jutland	ר ר		0.01 B	5 B	
Ħ.	East Jutland	0.43	700	700 0.01 B	3 B	
111.	West Jutland	/ 0.45	0.121 0.105	56	56 0.21 A	
IV.	South Jutland)		0.105	28	0.22 B
V.	Funen	-)		0.30	172	0.28
VI.	Zealand	0.22	720	0.03 B	10	
VII.	Lolland-Falster	0.23	730	0.01 B	5 B	
VIII.	Bornholm	<u>ا</u>		0.02 B	78	
Mean		0.33	760	0.076	36	

Table 5.6.4. Strontium-90 and radiocesium in total peas collected in July 1987

Zone		Bq ⁹⁰ Sr kg⁻¹	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)− ¹	¹³⁴ Cs 137Cs
١.	North Jutland	0.30	440	0.016 B	8 B	
Н.	East Jutland	0.52	550	0.072	28	
III.	West Jutland	0.87	1070	0.24	116	0.24
IV.	South Jutland	0.35	380	0.034	15	
V .	Funen	0.47	640	0.027 A	14 A	
V !.	Zealand	0.49	730	0.056	29	
VII.	Lolland-Falster	0.31	380	0.064	29	
V III.	Bornholm	0.42	550	0.031 A	14 A	
Mean		0.47	590	0.068	32	

Zone	Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca)-¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	134Cs 137Cs
I. North Jutland II. East Jutland III. West Jutland IV. South Jutland	0.25	510	0.065 0.03 B 0.43 0.39	18 12 B 130 154	0.33 0.34
V. Funen VI. Zealand VII. Lolland-Falster VIII. Bornholm	0.24	420	0.082 0.081 0.016 B 0.045 A	29 22 6 10	
Mean	0.24	470	0.143	48	

Table 5.6.5. Strontium-90 and radiocesium in lettuce collected in July-August 1987

Table 5.6.6. Strontium-90 and radiocesium in onions collected in September-October 1987

Zone		Bq ⁹⁰ Sr kg ⁻¹	Bq 90Sr (kg Ca)-1	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-1
L. 11.	North Jutland East Jutland	o.189	940	0.004 B 0.024 A	2 B 12 A 20
и. IV.	South Jutland			0.062 0.02 B	29 11 B
V. VI. VII. VIII.	Funen Zealand Lolland-Falster Bornholm	0.23	680	0.03 B 0.01 B 0.005 B 0.02 B	18 B 7 B 2 B 7 B
Mean	 	0.21	810	0.022	11

Table 5.6.7. Strontium-90 and radiocesium in strawberries collected in July 1987

Zone		Bq ⁹⁰ Sr kg⁻¹	Bq ⁹⁰ Sr (kg Ca) ^{∴1}	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-1	¹³⁴ Cs 137Cs
 I.	North Jutland			0.22	151	0.28
II.	East Jutland			0.02 A	15 A	
HI.	West Jutland			0.31	205	0.33
IV.	South Jutland			0.117	72	0.30 A
V .	Funen			0.03 A	20 A	
VI.	Zealand			0.068	53	0.50
VII.	Lolland-Faister			0.014 B	8 B	
VIII.	Bornholm			0.043 A	25 A	
Mean		0.22	1090	0.1 0 3	69	0.35

Zone		Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca)−¹	Bq ¹³⁷ Cs kg-1	Bq ¹³⁷ Cs (kg K) ⁻¹	¹³⁴ Cs 137Cs
Ι.	North Jutland			0.38	179	0.43
II.	East Jutland			0.31	185	0.40
Ш.	West Jutland			1.39	750	0.38
IV.	South Jutland			0.34	172	0.39
V.	Funen			0.61	310	0.40
VI.	Zealand			0.015 A	10 A	-
VII.	Lolland-Falster			0.175	84	0.37
VIII.	Bornholm			0.095	50	0.44
Mean		0.23	810	0.41	220	0.40

Table 5.6.8. Strontium-90 and radiocesium in gooseberries collected in July-August 1987

Table 5.6.9. Strontium-90 and radiocesium in red currants collected in July 1987

Zone		Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca)− ¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)−1	134Cs 137Cs
I.	North Jutland			0.22	124	0.43
II.	East Jutland			0.21	108	0.30
HI.	West Jutland			0.92	300	0.35
IV.	South Jutland			0.90	425	0.39
V .	Funen			0.34	149	0.33
VI.	Zealand			0.20	83	0.41
VII.	Lolland-Faister			0.11	51	0.45
VIII.	Bornholm			0.085	29	-
Mean		0.26	690	0.37	159	0.38

Table 5.6.10. Strontium-90 and radiocesium in black currants collected in July-August 1987

Zone		Bq ⁹⁰ Sr kg ⁻¹	Bq ⁹⁰ Sr (kg Ca)⊢¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)⊢ ¹	¹³⁴ Cs 137Cs
t.	North Jutland			0.26	107	0.37
Н.	East Jutland			0.26	97	0.43
III.	West Jutland			1.74	730	0.35
IV.	South Jutland			1.31	440	0.40
V.	Funen			1.09	480	0.37
VI.	Zealand			0.62	240	0.39
VII.	Lolland-Faister			0.35	102	0.39
VIII.	Bornholm			1.48	450	0.45
Mean		0.36	610	0.89	330	0.39

Zone		Bq ⁹⁰ Sr kg-1	Bq ⁹⁰ Sr (kg Ca)−1	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-1	134Cs 137Cs
	North Jutland			0.135	68	0.32
II .	East Jutiand			0.046	23	0.57 A
111.	West Jutland			0.37	148	0.30
IV.	South Jutland			0.65	360	0.35
V .	Funen			0.135	61	0.44
VI.	Zealand			0. 077	40	0.57 A
VII.	Lolland-Falster			0.063	27	-
VIII.	Bornholm			0.034 B	16.5	-
Mear	1	0.169	600	0.189	93	0.43

Table 5.6.11. Strontium-90 and radiocesium in raspberries collected inJuly-August 1987

Table 5.6.12. Strontium-90 and radiocesium in cherries collected inJuly-August 1987

Zone		Bq ⁹⁰ Sr kg⁻¹	Bq ⁹⁰ Sr (kg Ca) ^{−1}	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-1	¹³⁴ Cs 137Cs
I.	North Jutland			0.67	350	0.39
H.	East Jutland			0.21	84	0.37
HI.	West Jutland			1.39	470	0.39
IV.	South Jutland			1.28	720	0.34
V .	Funen			0.29	193	0.36
VI.	Zealand			0.27	164	0.36
VII.	Lolland-Falster			0.090	38	0.46 A
VIII.	Bornholm			0.46	90	0.43 A
Mean	}	0.085	610	0.58	260	0.39

Table 5.6.13. Strontium-90 and radiocesium in apples collected inSeptember-October 1987

Zone		Bq ⁹⁰ Sr kg⁻1	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-1	¹³⁴ Cs ¹³⁷ Cs
 I.	North Jutland	0.032	640	0.154	149	0.45
II.	East Jutland	0.030	460	0.114	114	0.49
HI.	West Jutland	0.0184	320	0.37	380	0.37
IV.	South Jutland	0.0148	270	0.23	200	0.40
V .	Funen	0.033	850	0.15	151	0.45
VI.	Zealand	0.0168	300	0.34	330	0.34
VII.	Lolland-Falster	0.0133	179	0.28	170	0.30
VIII.	Bornholm	0.045	760	0.04 A	29	•
Mean		0.025	470	0.21	190	0.40

Daily intake in g	Bq ⁹⁰ Sr kg 1	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-1
50 leaf vegetables (cabbage)	0.26	540	0.059	24
30 root vegetables (carrot)	0.31	1080	0.060	30
40 peas and beans	0.40	675	0.072	34
120 g	0.32	720	0.064	29

Table 5.6.14. Calculated ⁹⁰Sr and ¹³⁷Cs mean levels in vegetables in 1987

The 1987 levels in Danish fruit were calculated from apples (80%) and strawberries (20%). The mean levels in Danish fruit were thus 0.064 Bq 90 Sr kg⁻¹ and 0.19 Bq 137 Cs kg⁻¹. The observed Bq 90 Sr kg⁻¹ levels in vegetables and fruit in 1987 were 1.20±0.55 (1 S.D.; N = 5) times those predicted (cf. Appendix C). In the case of 137 Cs, the observed values were 0.36±0.23 times the predicted ones.

5.7. Strontium-90 and Radiocesium in Total Diet from the Entire Country

In 1987 total-food samples representing an average Danish diet according to E. Hoff-Jørgensen (cf. Appendix B in Risø Report No. 63¹) 9 were collected from 48 towns, 6 from each of the eight zones (cf. Figs. 5.4.1 and 5.4.2) and from Copenhagen. The samplings took place in June and December.

Tables 5.7.1-5.7.6 show the results. The ⁹⁰Sr levels in Jutland was 16% higher than those in the Islands in 1987. The ¹³⁷Cs levels in Jutland were equal to those from the Islands.

The ⁹⁰Sr 1987 levels (Bq ⁹⁰Sr day⁻¹) (mean of June and December values) in the total diet were equal to the 1986 levels, but the Bq ⁹⁰Sr (kg Ca)⁻¹ levels were nearly 20% higher in 1987 because the Danish diet contained less Ca in

Zone		Bq (kg Ca)-1	Bq day-1 cap-1	g Ca day-1
I.	North Jutland	112	0.142	1.27
H.	East Jutland	141	0.195	1.38
III.	West Jutland	124	0.138	1.11
IV.	South Jutland	152	0.180	1.18
V.	Funen	117	0.124	1.06
VI.	Zealand	158	0.180	1.14
VII.	Lolland-Falster	108	0.134	1.24
VIII.	Bornholm	102	0.152	1.49
Mear		127	0.156	1.23
Соре	nhagen	104	0.140	1.35
Popu	lation-weighted			
mean	-	128	0.158	1.24

Table 5.7.1. Strontium-90 in Danish total diet collected in June 1987

Zone		Bq (kg Ca)-1	Bq day ^{_1} cap ^{_1}	g Ca daγ⁻¹
ـــــــــــــــــــــــــــــــــــــ	North Jutland	126	0.155	1.23
8.	East Jutland	164	0.179	1.09
III.	West Jutland	133	0.161	1.21
IV.	South Jutland	127	0.153	1.22
V.	Funen	106	0.130	1.04
Vł.	Zealand	141	0.153	1.09
VII.	Lolland-Falster	94	0.137	1.30
VIII.	Bornho!m	108	0.117	1.08
Mear	1	125	0.148	1.16
Соре	enhagen	94	0.190	2.01
Рори	lation-weighted			
mear	۰ • • • • • • • • • • • • • • • • • • •	126	0.165	1.34

Table 5.7.2. Strontium-90 in Danish total diet collected in September 1987

Table 5.7.3. Radiocesium in Danish total diet collected in June 1987

Zone		Town group	Bq ¹³⁷ Cs (kg K)-1	Bq ¹³⁷ Cs day ⁻¹ cap ⁻¹	g K day-1	134Cs 137Cs
I.	North Jutland	A	580	1.94	3.37	0.38
		В	610	2.33	3.83	0.37
H.	East Jutland	Α	490	1.70	3.46	0.36
		В	920	3.27	3.57	0.37
111.	West Jutland	Α	660	2.09	3.20	0.39
		В	670	2.12	3.17	0.37
IV.	South Jutland	Α	640	2.31	3.60	0.38
		В	700	2.30	3.28	0.37
V.	Funen	А	720	2.51	3.48	0.39
		В	700	2.20	3.14	0.39
VI.	Zealand	Α	720	2.41	3.34	0.38
		В	560	1.94	3.48	0.38
VII.	Lolland-Falster	Α	640	1.87	2.91	0.38
		В	550	1.88	3.40	0.38
VIII.	Bornholm	А	630	2.46	3.89	0.36
		В	660	2.25	3.40	0.38
Mean			650	2.22	3.41	0.38 ± 0.01
Coper	hagen		640	2.17	3.40	0.38
Popula	ation-weighted mean		660	2.23	3.40	0.38

The error term is 1 S.D. of the mean.

Zone		Town	Bg ¹³⁷ Cs (kg K)−1	Bq ¹³⁷ Cs day-1	g K day-1	134Cs
		group		cap-1	.	137Cs
I.	North Jutland	А	300	1.05	3.54	0.31
		8	270	0.95	3.54	0.30
¥.	East Jutland	А	260	0.88	3.34	0.38
		В	290	1.02	3.54	0.33
HI.	West Jutland	Α	270	1.06	4.00	0.30
		В	260	0.89	3.43	0.28
IV.	South Jutland	Α	320	1.17	3.72	0.32
		В	260	0.92	3.57	0.31
V .	Funen	Α	310	1.07	3.46	0.34
		В	320	1.18	3.72	0.31
VI.	Zealand	Α	177	0.58	3.31	0.32
		В	182	0.58	3.20	0.32
VII.	Lolland-Falster	Α	220	0.73	3.28	0.33
		В	230	0.83	3.63	0.31
VIII.	Bornholm		220	0.75	3.40	0.31
Mean	1		260	0.90	3.51	0.32 ± 0.02
Соре	nhagen		200	0.69	3.40	0.29
Рори	lation-weighted mean)	240	0.84	3.47	0.31

Table 5.7.4. Radiocesium in Danish total diet collected in December 1987

The error term is 1 S.D. of the mean.

1987 than previously (cf. Fig. 5.7.2). This was due to the absence of creata praeparata in the bread (cf. 5.4), while the ¹³⁷Cs levels in 1987 were 0.78 times those in 1986.

From the total-diet sampling it is possible to estimate the mean levels of ⁹⁰Sr and ¹³⁷Cs in the Danish diet in 1987. For the period January-March 1987, the ⁹⁰Sr level in the total diet is assumed to have been equal to that measured in December 1986 (Risø Report No. 549¹). For the period April-September we assume the level to have corresponded to that measured in June 1987. In the months October-December we used the December 1987 figures. Hence the mean content in the total diet in 1987 was 121 Bq ⁹⁰Sr (kg Ca)⁻¹, or 0.16 Bq ⁹⁰Sr (day)⁻¹.

Similarly, the ¹³⁷Cs content in the Danish diet in 1987 was estimated to be 1.93 Bq ¹³⁷Cs (day)⁻¹ or 550 Bq ¹³⁷Cs (kg K)⁻¹ or 37% higher than in 1986. The daily mean intake of ¹³⁴Cs was 0.78 Bq cap⁻¹ corresponding to a total intake of 285 Bq ¹³⁴Cs in 1987 or 24% higher than in 1986. The observed ¹³⁷Cs fallout level in total diet was 0.25 times that predicted (cf. Appendix C.2).

Figure 5.7.1 shows the zone mean Bq ⁹⁰Sr (kg Ca)⁻¹ levels (not populationweighted) in total diet compared with the predicted values (cf. Appendix C), the observed value was 0.64 times that predicted.

Fig. 5.7.1. Predicted and observed ⁹⁰Sr levels in the Danish total diet. The dotted curve represents the predicted values for "Diet C" (cf. Tables 5.7.1 and 5.7.2) and the circles are the corresponding observed values. The unbroken curve represents the predicted values for "Diet P" (cf. Table 5.9.3), and the triangles the corresponding observed values.

5.8. Radionuclides in Meat, Fish, Eggs and Various Vegetable Foodstuffs

5.8.1. Strontium-90 and Radiocesium in Meat

Pork and beef samples were collected countrywide (cf. Figs. 5.4.1 and 5.4.2) in June and December. Tables 5.8.1.1-5.8.1.3 show the results.

In order to calculate the mean level of ⁹⁰Sr and radiocesium in Danish meat in 1987, we use the means of the June and December samplings.

Hence the mean ¹³⁷Cs content in Danish beef in 1987 becomes 5.6 Bq kg⁻¹ and in pork we get 0.99 Bq ¹³⁷Cs kg⁻¹. It was surprising to see the high ¹³⁷Cs levels in beef in June 1987, because similar high concentrations were not observed in milk (cf. 5.1 and 5.2). We believe that meat has been imported from more contaminated parts of Europe. Compared to 1986 the ¹³⁷Cs level in beef increased by a factor of 2.7 and that in pork by a factor of 1.4. The difference between beef and pork levels reflects the differences in the contamination of grass (cow fodder) and grain (pig fodder). The Chernobyl contributions of ¹³⁷Cs were 95% for beef and 85% for pork. The ¹³⁴Cs mean concentrations were 2.1 Bq kg⁻¹ beef and 0.32 Bq kg⁻¹ pork. Beef contained 0.0152 Bq ⁹⁰Sr and pork 0.007 Bq ⁹⁰Sr kg⁻¹ in 1987.

Table 5.8.1.1. Strontium-90 in countrywide-collected beef and pork in 1987

Species	Bq kg−1	Bq (kg Ca)-1
Beef	0.0174	156
Pork	0.009 B	70 B
Beef	0.0129	115
Pork	0.0047 A	58 A
	Species Beef Pork Beef Pork	Species Bq kg ⁻¹ Beef 0.0174 Pork 0.009 B Beef 0.0129 Pork 0.0047 A

Table 5.8.1.2.	Radiocesium	in beef	and pork	collected	countrywide	in Denmark i	n
June 1987							

Zone		Bq ¹³⁷ Cs kg ⁻¹	Beef Bq ¹³⁷ Cs (kg K) ⁻¹	134Cs 137Cs	Bq ¹³⁷ Cs kg⁻1	Pork Rg137Cg (kg K)-1	134 <u>Cs</u> 137Cs
I.	North Jutland	3.1	1170	0.35	0.47	144	0.32
II.	East Jutland	16.9	6000	0.40	2.2	710	0.35
III.	West Jutland	4.6	1650	0.38	1.26	400	0.31
IV.	South Jutland	7.0	2300	0.38	2.1	66 0	0.35
V.	Funen	5.4	1730	0.39	1.32	430	0.36
VI.	Zealand	7.6	2900	0.40	0.74	240	0.36
VII.	Lolland-Falster	12.6	3900	0.38	0.73	300	0.36
VIII.	Bornholm	18.6	6500	0.41	1.16	360	0.38
Mear	1	9.5	3300	0.39	1.25	410	0.35
Соре	nhagen	11.5	3300	0.40	1.68	490	0.35
Popu mear	lation-weighted	9.3	3100	0.39	1.38	430	0.34

~		- 1970	Beef	1240	Pork			
Zone		8q 13/Cs kg-1	Bq137Cs (kg K)-1	134Cs 137Cs	Bq 137Cs kg-1	8q137Cs (kg K)-1	134Cs	
l.	North Jutland	3.2	1040	0.29	0.87	280	0.26	
Ħ.	East Jutland	1. 68	670	0.30	0.53	170	0.25	
HI.	West Jutland	1.90	670	0.31	0.67	220	0.24	
IV .	South Jutland	4.0	1370	0.31	0.60	193	0.26	
V.	Funen	1.30	440	0.32	0.60	200	0.28	
VI.	Zealand	1.93	630	0.32	0.39	131	0.29	
VII.	Lolland-Falster	1.29	440	0.29	1.04	360	0.30	
Vill.	Bornholm	0.126	39	0.25	0.083	30	0.25	
Mear	ו	1.93	660	0.30	0.60	198	0.27	

 Table 5.8.1.3. Radiocesium in beef and pork collected countrywide in Denmark in December 1987

The mean ratio between observed and predicted (cf. Appendix C) ¹³⁷Cs levels in beef was 2.04 and for ⁹⁰Sr the mean ratio was 0.43. In pork, the ratios were 0.05 and 0.26 respectively.

5.8.2. Radionuclides in Fish and Mussels

Fish samples were collected in the North Sea and in inner Danish waters. Tables 5.8.2.1-5.8.2.2 show the results. The mean levels were 0.014 Bq ⁹⁰Sr kg⁻¹ and 4.7 Bq ¹³⁷Cs kg⁻¹, i.e. unchanged from 1986.

The mean ¹³⁷Cs content in fish from Cattegat was 2.5 times that in fish from the North Sea; the contribution from Chernobyl was 42% in the North Sea fish while it was 64% in the fish from Cattegat. Hence the ¹³⁷Cs Chernobyl concentrations in Cattegat fish became $6.7 \times 0.64 = 4.3$ Bq kg⁻¹ and in North Sea fish 2.7 $\times 0.42 = 1.13$ Bq kg⁻¹. This implies that the mean content of non-Chernobyl ¹³⁷Cs in Danish fish from 1987 became 2.0 Bq kg⁻¹, which is 25% higher than the estimate for 1986.

The non-Chernobyl ¹³⁷Cs in fish from Danish waters has two main sources: discharges from nuclear reprocessing plants (Sellafield in U.K. and La Hague in France) and global fallout. For 1986, "a estimated that 1 Bq ¹³⁷Cs kg⁻¹ fish came from reprocessing; a similar level is anticipated for 1987.

Month	Species	Fle Bq ⁹⁰ Sr kg⁻t	sh Bq ⁹⁰ Sr (kg Ca) ^{₋1}	Bone Bq ⁹⁰ Sr (kg Ca) 1
March	Col	0.035	41	27
March	Plaice	0.0178	21	17.4
March	Herring	0.0042 A	8.6	4.5
September	Cod	0.0080	9.8	16.4
September	Plaice	0.0063	12.3	13.9
September	Herring	0.0094	28	3.8
September	Pike (total fish)	0.46	1050	
Mean (Pike	excluded)	0.0135	20	13.8

Table " 8.2.1. Strontium-90 in fish collected in Danish waters in 1987 (samples scree obtained from Hundested (Cattegat) and Ringkøbing (North Sea))

Location	Month	Species	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)∽1	134Cs 137Cs
Hundested	March	Cod	12.6	3900	0.36
(Cattegat)	March	Plaice	5.3	1860	0.27
	March	Herring	4.8	1370	0.22
	Sept	Cod	13.3	3400	0.28
	Sept	Plaice	1.52	580	0.18
	Sept	Herring	2.6	840	0.19
Mean			6.7	1990	
Ringkøbing	March	Cod	4.7	1320	0.19
(North Sea)	March	Plaice	1.10	680	0.27
	March	Herring	4.4	1480	0.24
- " -	Sept	Cod	3. 3	1100	0.12
- * -	Sept	Plaice	1.18	480	0.21
	Sept	Herring	1.61	550	0.15
Mean			2.7	940	
Total mean			4.7	1460	

Table 5.8.2.2. Radiocesium in fish from Danish waters in 1987

			• •	~	•		****
Table 5.8.2.3	. Kadioc	ESTIMA T	п таппе	fish from	Darious I	locations in .	1987

Location	Date	Species	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K) ⁻¹	134Cs 137Cs
Roskilde Fjord	Apr 26	Herring	6.1	1570	0.27
Cattegat	May 22	Garpike	6.5	2200	0.20
Ringkøbing Fjord	Sep 24	Pike	35	10700	0.36
Oscarshamn					
Baltic Sea, Sweden	Jan	Eel	4.6	1560	0.28
- " -	April	Ēe l	7.5	2800	0.32
- * -	May	Eel	7.2	2800	0.34
- * -	June	Eel	6.5	2400	0.33
- " -	July	Eel	8.1	2600	0.33
- * -	Aug	Eel	6.6	2200	0.32
	Sept	Eel	8.4 ± 0.9	2800	0.33 ± 0.01
- " -	Oct	Eel	9.9	3400	0.30
- " -	Nov	Eel	11.4	3700	0.32
-"-	Dec	Eel	11.6	4300	0.31

۳

Location	Strøby Egede	Limhamn	
Position	55°25'N 12°15'E	55°35'N 12°55'E	
Date	16 July	3 November	
% dry matter	10.3	8.3	
40K*	8.76	7.93	
¹³⁴ Cs	< 8.0	< 9.6	
¹³⁷ Cs	10.0	9.9	

Table 5.8.2.4. Radiocesium in Mytilus edulis, soft part, collected in 1987. (Unit: Bq kg⁻¹ dry weight)

Table 5.8.2.5. Radiocesium in fresh water fish caught in the middle of May 1987 in Arresø and Esrumsø in Zealand

Lake	Species	Bq ¹³⁷ Cs kg ⁻¹	Bq ¹³⁷ Cs (kg K)-1	134Cs 137Cs
Arresø	Eel	21	7700	0.26
- " -	Pike	64	22000	0.37
- " -	Roach	36	10200	0.30
- " -	Perch	75	-	0.36
"	Bleak	51	-	0.37
Esrumsø	Eel	32	14400	0.35
- <i>" -</i>	Pike	66	20000	0.30
- " -	Roach	45	9400	0.36
- " -	Perch	166	63000	0.35
_ " _	Pike	78	19300	0.32

In Fig. 5.8.2 we have shown the radiocesium levels in eels caught at Oscarshamn, Sweden in the Baltic Sea since April 1986. Since the Chernobyl accident the total 137 Cs has increased by a factor of 7.7 (December 1987). The significant increases occurred from December 1986 to April 1987 and from August 1987 to November 1987. In June 1986 the Chernobyl 137 Cs was 40% of the total 137 Cs in eels; in December 1987 it had increased to 94% (cf. also Table 5.8.2.3). Table 5.8.2.4 shows the radiocesium content in blue mussels. The mean level was about 1 Bq 137 Cs kg⁻¹ fresh weight.

In Table 5.8.2.5, analyses on fresh water fish caught in two Danish lakes in North Zealand are reported. The high concentrations are remarkable. The levels are an order of magnitude higher than those seen in marine fish. It is also remarkable that only $84 \pm 9\%$ (± 1 S.D.; N = 10) of the ¹³⁷Cs in fresh water fish came from Chernobyl. In other words, there is a fallout background on 9 ± 6 (± 1 S.D.; N = 10) Bq ¹³⁷Cs kg⁻¹ fish in Esromsø and Arresø.

Although fresh water fish are among the highest contaminated food products in Denmark, this has no significant impact on the human intake of radiocesium because the consumption of fresh water fish in Denmark is insignificant.

Fig. 5.8.2. Cesium-137 in eels from the Baltic Sea (Oscarshamn, Sweden) 1986-1987. (Unit: Bq ¹³⁷Cs kg⁻¹).

5.8.3. Strontium-90 and Radiocesium in Eggs

Eggs were collected countrywide in June 1987. The ⁹⁰Sr and ¹³⁷Cs concentrations were a little higher than in 1986.

The observed ⁹⁰Sr levels in eggs were (cf. Appendix C) 1.67 times those predicted. In 1986 the effect was reversed, which shows that our prediction model for ¹³⁷Cs in eggs has significantly underestimated the importance of the deposition of ¹³⁷Cs in the year when the eggs are produced and, on the other hand, overestimated the importance of the deposition in the previous year.

Table 5.8.3. Strontium-90 and radiocesium in Danish eggs collected countrywide in June 1987

	Bq ⁹⁰ Sr	Bq ⁹⁰ Sr	Bq ¹³⁷ Cs	Bq ¹³⁷ Cs	¹³⁴ Cs
	kg ⁻¹	(kg Ca)⁻¹	kg ⁻¹	(kg K)− ¹	137Cs
Denmark	0.020	36	0.185	143	0.36

5.8.4. Strontium-90 and Radiocesium in the Variety of Vegetable Food

The spring vegetables and fruits are imported from other European countries to some extent. Table 5.8.4 shows the analysis on these samples. It appears that most of the samples have been very low in radiocesium. Relatively high concentrations were observed in apples and pears from Italy and in peaches from Greece. Samples of wine were also measured; they all contained less than 1 Bq ¹³⁷Cs l⁻¹, but the "Chernobyl signal" was present in 2 samples of five.

Country of origin	Month	Species	Bq ¹³⁷ Cs kg⁻¹	Bq ¹³⁷ Cs (kg K)−1	134 <u>Cs</u> 137Cs
Cyprus	Mav	Potatoes	0.04 B	8.5 B	-
France	May	Cauliflower	0.01 B	2 B	-
_ " _	Mav	Onion	0.01 B	8 B	-
- " -	May	Apples	0.01 B	8 B	-
Netherlands	May	Cucumber	0.29	186	0.39
- " -	May	China cabbage	0.23	133	0.42
- " -	May	Squash	0.082 A	26 A	-
- " -	May	Tomatoes	0.31	127	0.41
- ″-	May	Green pepper	0.063 A	37 A	-
Italy	May	Carrots	0.02 B	6.5 B	-
- " -	May	Spring onions	0.26	230	0.43
- " -	May	Potatoes	0.31	75	0.42
- " -	May	Apples	12.1	10400	0.42
- " -	May	Pears	39	28000	0.41
- " -	May	Peas	0.036 A	16 A	-
- " -	May	Strawberries	0.03 B	20 B	-
- " -	May	Peaches	0.128	84	0.55
- " -	July	Wine			
- " -	July	Wine	0.82	-	0.39
- " -	July	Wine	0.24 A	-	-
Greece	May	Watermelon	0.087	74	0.49
-"-	Aug	Peaches	9.0	4000	0.36
Belgium	May	Strawberries	0.01 B	3.5 B	-
Hungary	May	Asparagus	0.02 B	9 B	-
F.R.G.	May	Plums	0.73	420	0.43
Yugoslavia	Sept	Wine	0.89	-	0.47 A
- " -	Sept	Wine	0.79	-	-

Table 5.8.4. Radiocesium in various imported fruits and vegetables (and wine) purchased in 1987 in a Danish supermarket

5.9. Estimate of the Mean Contents of ⁹⁰Sr and Radiocesium in the Human Diet in Denmark in 1987

5.9.1. The Annual Quantities

The annual quantities are calculated by multiplying the daily quantities by 365 (as Stated by E. Hoff-Jørgensen, cf. Risø Report No. 63, Table B¹).

5.9.2. Milk and Cream

The ⁹⁰Sr and ¹³⁷Cs contents per kg milk were calculated from the annual mean values for dried milk (cf. Tables 5.1.1 and 5.1.3). 1 kg fresh milk ~ 1 1 milk, containing approximately 1.2 g Ca and 1.66 g K. Hence the mean contents in milk were 0.071 Bq ⁹⁰Sr kg⁻¹ and 0.60 Bq ¹³⁷Cs kg⁻¹.

5.9.3. Cheese

One kg of cheese contains approximately 8.5 g Ca and 1.2 g K. The ⁹⁰Sr and ¹³⁷Cs contents in cheese were calculated from these figures and from the ⁹⁰Sr/Ca and ¹³⁷Cs/K ratios in dried milk (cf. Tables 5.1.1 and 5.1.3). One kg of cheese appeared to contain 0.50 Bq ⁹⁰Sr and 0.43 Bç ¹³⁷Cs. These levels are lower than those reported from direct measurements of cheese (Table 5.3), but these cheese samples do not represent the countrywide mean.

5.9.4. Grain Products

Tables 5.9.1 and 5.9.2 show the estimates of ⁹⁰Sr and ¹³⁷Cs, respectively, in grain products consumed in 1987. From these tables, the activity levels in grain products were estimated at 0.228 Bq ⁹⁰Sr kg⁻¹ and 3.20 Bq ¹³⁷Cs kg⁻¹.

Table 5.9.1. Estimate of the ⁹⁰Sr content in grain products consumed pro capite in 1987

Type	Fraction from harvest 1986			Fraction from harvest 1987			Total	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	kg flour	Bq kg-1	Bq	kg flour	Bq kg-1	Bq	Bq	
Rye flour 100% extraction	21.9	0.43	9.42	7.3	0.44	3.21	12.63	
Wheat flour 75% extraction	32.9	0.08	2.63	10.9	<u> </u>	1.41	4.04	
Grits	5.5	0.23	1.27	1.8	0.20	ი 36	1.63	
Total	60.3	0.22	13.32	20.0	0.25	4.98	18.30	

Table 5.9.2. Estimate of the ¹³⁷Cs content in grain products consumed pro capite in 1987

Type	Fraction from harvest 1986			Fraction from harvest 1987			Total	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	kg flour	Bq kg ⁻¹	Bq	kg flour	Bq kg-1	Bq	Bq	
Rye flour 100% extraction	21.9	11.1	 243.09	7.3	0.17	1.24	244.33	
Wheat flour 75% extraction	32.9	0.29	9.54	10.9	0.04	0.44	9.98	
Grits	5.5	0.37	2.04	1.8	0.25	0.45	2.49	
Total	60.3	4.22	254.67	20.0	0.11	2.13	256.77	

5.9.5. Potatoes

The figures in Table 5.5.1 were used, i.e. 0.044 Bq 90 Sr kg⁻¹ and 0.134 Bq 137 Cs kg⁻¹.

5.9.6. Vegetables

Table 5.6.15 shows the calculation of ⁹⁰Sr and ¹³⁷Cs in Danish vegetables consumed in 1987. The mean contents were 0.32 Bq ⁹⁰Sr kg⁻¹ and 0.064 Bq ¹³⁷Cs kg⁻¹.

5.9.7. Fruit

The levels in imported fruit in 1987 are assumed to be equal to the mean levels found in oranges and bananas collected in Copenhagen in 1986, i.e. 0.067 Bq 90 Sr kg⁻¹ and 0.068 Bq 137 Cs kg⁻¹. The mean levels in Danish fruit (cf. 5.6) in 1987 were 0.064 Bq 90 Sr kg⁻¹ and 0.19 Bq 137 Cs kg⁻¹. The daily mean consumption of fruit consisted of 100 g of Danish and 40 g of foreign origin. Hence the mean contents in fruit were 0.065 Bq 90 Sr kg⁻¹ and 0.16 Bq 137 Cs kg⁻¹.

5.9.8. Meat

The annual mean values of ⁹⁰Sr and ¹³⁷Cs in meat were calculated from 5.8.1: 0.010 Bq ⁹⁰Sr kg⁻¹ and 2.53 Bq ¹³⁷Cs kg⁻¹. (In a Danish diet, meat comprises 2/3 pork and 1/3 beef.)

5.9.9. Fish

The 90 Sr and 137 Cs contents are estimated from 5.8.2 at 0.014 Bq 90 Sr kg⁻¹ and 4.7 Bq 137 Cs kg⁻¹.

5.9.10. Eggs

The contents of activity in eggs were estimated from 5.8.3. The levels were 0.020 Bq ⁹⁰Sr kg⁻¹ and 0.185 Bq ¹³⁷Cs kg⁻¹.

5.9.11. Coffee and Tea

One-third of the total consumption consists of tea and two-thirds of coffee. We use the mean contents from 1986 (5.8.4): 0.41 Bq ⁹⁰Sr kg⁻¹ and 1.29 Bq ¹³⁷Cs kg⁻¹ 1).

5.9.12. Drinking Water

The ⁹⁰Sr mean level found in drinking water collected in June 1987 (4.3.3) was used as the mean level for drinking water, i.e. 0.54·10⁻³ Bq ⁹⁰Sr kg⁻¹. The ¹³⁷Cs content in drinking water was measured to be 0.06·10⁻³ Bq kg⁻¹.

5.9.13. Discussion

Tables 5.9.3 and 5.9.4 show the estimates of 90 Sr and 137 Cs in the Danish diet in 1986. The figures should be compared with the levels calculated from the total-diet samples (cf. 5.7). The 90 Sr estimates obtained by the two methods (cf. also Fig. 5.7.1) were 124 Bq (kg Ca)⁻¹ and 121 Bq (kg Ca)⁻¹, respectively, or 0.16 and 0.16 Bq 90 Sr (day)⁻¹, and the 137 Cs estimates were 1.62 Bq 137 Cs (day)⁻¹ and 1.93 Bq 137 Cs (day)⁻¹.

Type of food	Annual quantity in kg	Bq ⁹⁰ Sr per kg	Total Bq ⁹⁰ Sr	Percentage of total Bq ⁹⁰ Sr in food
Milk and cream	164.0	0.071	11.64	19.9
Cheese	9.1	0.50	4.55	7.8
Grain products	80.3	0.228	18.30	31.3
Potatoes	73.0	0.044	3.21	5.5
Vegetables	43.8	0.32	14.02	24.0
Fruit	51.1	0.065	3.32	5.7
Meat	54.7	0.010	0.55	0.9
Eggs	10.9	0.020	0.22	0.4
Fish	10.9	0.014	0.15	0.2
Coffee and tea	5.5	0.41	2.26	3.9
Drinking water	548	0.0005	0.27	0.4
Total			58.49	

Table 5.9.3. Estimate of the mean content of ⁹⁰Sr in the human diet in 1987

The mean Ca intake was estimated at 0.47 kg y⁻¹ (approx. 0.1 kg creata praeparata). Hence the 90 Sr/Ca ratio in total diet was 124 Bq 90 Sr (kg Ca)⁻¹ (3.4 S.U.) in 1987.

Type of food	Annual quantity in kg	Bq ¹³⁷ Cs per kg	Total Bq ¹³⁷ Cs	Percentage of total Bq ¹³⁷ Cs in food
Milk and cream	164.0	0.60	98.40	17.2
Cheese	9.1	0.43	3.91	0.7
Grain products	80.3	3.20	25 6.7 7	44.9
Potatoes	73.0	0.134	9.78	1.7
Vegetables	43.8	0.064	2.80	0.5
Fruit	51.1	0.16	8.18	1.4
Meat	54.7	2.53	138.39	24.2
Eggs	10.9	0.185	2.02	0.4
Fish	10.9	4.7	51.23	9.0
Coffee and tea	5.5	1.29	0.03	0.0
Drinking water	548	0.00006	0.03	0.0
Total		_	571.54	

Table 5.9.4. Estimate of the mean content of 137Cs in the human diet in 1987

As the approximate intake of potassium was 1.365 kg y⁻¹ the ¹³⁷Cs/K ratios were 424 Bq ¹³⁷Cs (kg K)⁻¹ or 11.5 M.U. in 1987.

The ratio of the observed to the predicted (cf. Appendix C) diet levels was 0.75 for 90 Sr and 0.15 for 137 Cs.

The relative contribution of ⁹⁰Sr from milk products was 28% in 1987. The contribution from potatoes, other vegetables, and fruit was 35%, and that from cereals was 31%. The relative contribution of ¹³⁷Cs in the total diet changed from 1986 to 1987 as follows: milk products (37 to 17%), grain pro-

ducts increased from 18 to 43%, and meat from 13 to 24%. Fruit decreased from 14 to 1% and has thus been the diet group which was relatively most influenced by the Chernobyl debris. Fish contributed 9% to the total ¹³⁷Cs intake in 1987.

5.10. Grass and Fodder Samples

5.10.1. Grass Collected Around Risø

Table 5.10.1.1 shows the ⁹⁰Sr content in grass ash from Zealand in 1987. The mean ⁹⁰Sr activity was 17.8 Bq ⁹⁰Sr (kg ash)⁻¹, or 400 Bq ⁹⁰Sr (kg Ca)⁻¹, i.e. the 1987 level was approximately ³/₄ of the 1986 level. Figure 5.10.1 shows the ⁹⁰Sr concentration in grass since 1957. The ratio of the observed to the predicted (cf. Appendix C.1) ⁹⁰Sr levels in grass in 1987 was 0.49.

Figure 5.10.2 shows the variation of the ¹³⁷Cs in Risø grass since Chernobyl. In May we see a steep decrease mainly due to growth dilution. From June 1986 to March 1987, the levels were rather constant around 10 Bq ¹³⁷Cs kg⁻¹ fresh weight; since May 1987 the levels have decreased to about 0.5-1 Bq ¹³⁷Cs kg⁻¹ (cf. also Table 5.10.1.2).

Periods	Bq ⁹⁰ Sr (kg ash) ⁻¹	Bq ⁹⁰ Sr (kg Ca)⁻¹
Jan-March	14.6	480
April-June	16.2	320
July-Sept	21	400
Oct-Dec	19.6	390
Mean	17.8	400

Table 5.10.1.1. Strontium-90 in grass from Zealand, 1987

Month	Bq ¹³⁷ Cs fresh we	q ¹³⁷ Cs kg ⁻¹ Eq ¹³⁷ Cs m resh weight		s m ^{−2}	134Cs 137Cs	
Jan Feb March April May June July Aug Sept Oct Nov Dec	1.0 A 10.4 ± 2.6 9.9 7.2 1.2 0.72 ± 0.10 0.84 ± 0.12 0.62 ± 0.22 0.69 ± 0.22 0.99 A 0.54 ± 0.10 0.53 ± 0.11	(n = 1) (n = 3) (n = 1) (n = 1) (n = 4) (n = 4) (n = 2) (n = 3) (n = 1)	$\begin{array}{c} 0.29 \text{ A} \\ 4.7 \pm 2.5 \\ 1.54 \\ 2.2 \\ 0.94 \\ 0.47 \pm 0.07 \\ 0.48 \pm 0.06 \\ 0.28 \pm 0.05 \\ 0.29 \pm 0.10 \\ 0.39 \text{ A} \\ 0.25 \pm 0.03 \\ 0.20 \pm 0.05 \end{array}$	(n = 1) (n = 3) (n = 1) (n = 1) (n = 4) (n = 4) (n = 2) (n = 3) (n = 1)	0.46±0.03 0.33 0.52 0.52 0.32 0.32	(n = 2) (n = 1) (n = 1)

Table 5.10.1.2. Radiocesium in grass collected at Risø weekly in 1987

The error term is ± 1 S.E. of the mean.

Fig. 5.10.1. Quarterly ⁹⁰Sr levels in grass, 1957-1987.

Fig. 5.10.2. Cesium-137 in grass samples collected at Risø, Denmark in the period April 1986 - December 1987.

5.10.2. Radionuclides in Grass Collected at the State Experimental Farms

Grass samples were collected countrywide in July and September 1987 at the 10 State experimental farms (Tables 5.10.2 - 5.10.3). The grass samples from the State experimental farms (Table 5.10.2) show that about 95% of 137 Cs came from Chernobyl. The large variations between the two samplings for the same locations suggest that some samples may have contained hot particles deposited on the grass by resuspension.

The contribution from root uptake is presumed to be of minor importance.

Figure 5.10.3 shows the median ¹³⁷Cs levels in Danish grass collected countrywide since the Chernobyl accident.

		ງເ	ıly			Septe	mber	
Location	Bq 1	³⁷ Cs	134Cs	gК	Bq ¹²	³⁷ Cs	¹³⁴ Cs	g K
	kg ^{_1}	m-2	¹³⁷ Cs	kg−1	kg-¹	m-2	137Cs	kg 1
Tylstrup	1.62	2.1	0.45	5.8	0.83	0.43		6.7
Kalø	0.48 A	0.24 A		4.5	1.25	0.66		5.4
Borris	5.4	3.0	0.34	4.4	0.28 A	0.18 A		5.8
Askov	4.7	5.3	0.35	4.0	2.81	1.70	0.33	5.4
St. Jyndevad	1.61	1.41	0.32	4.5	0.58	0.38	0.32 A	7.0
Årslev	0.50	0.45	0.40 A	6.0	0.78	0.78	0.38	4.6
Tystofte	0.18 A	0.23 A		4.8	0.71	0.39	0.30	5.5
Ledreborg	0.28 A	0.21 A		6.3	0.34	0.34		5.4
Abert	0.26 A	0.20 A		7.2	0.174 A	0.105 A		8.1
Tornbygård	0.19 B	0.15B		4.4	1.47	1.10	0.34	4.2
Mean	1.52	1.33	0.37	5.2	0.92	0.61	0.33	5.8
S.D.	1.94	1.71	0.05	1.06	0.78	0.48	0.03	1.16
N	10	10	5	10	10	10	5	10

Table 5.10.2. Radiocesium in grass collected at the State experimental farms in 1987 (fresh weight samples)

Table 5.10.3. Strontium-90 in grass collected at the State experimental farms in September 1987. (Fresh weight samples)

Location	Bq ⁹⁰ Sr kg⁻¹	Bq ⁹⁰ Sr m ⁻²	Bq ⁹⁰ Sr (kg Ca)-1
Tylstrup	0.94	0.49	600
Kalø	0.56	0.29	420
Borris	0.79	0.51	770
Askov	3.76	2.28	2600
St. Jyndevad	2.01	1.31	2400
Årslev	0.77	0.77	610
Tystofte	2.54	1.40	1670
Ledreborg	0.71	0.71	64 0
Abed	0.71	0.43	410
Tornbygård	4.29	3.21	1210
Mean	1.71	1.14	1130
S.D.	1.39	0.95	820

If we compare the grass ¹³⁷Cs levels in September 1987 with those in 1986 we observe a decrease by a factor of two (Fig. 5.10.3). In the same period the deposition decreased by a factor of six. This may indicate that the grass received a significant part of its ¹³⁷Cs through root uptake. It may, however, also be due to a higher resuspension to the grass than to the higher (1 m above ground level) situated rain collectors.

Table 5.10.3 shows the ⁹⁰Sr grass levels at the 10 State experimental farms. Compared with last year's results the concentrations in 1987 were 2.0 ± 0.6 (± 1 S.E.; N = 10) (Bq kg⁻¹) or 1.49 ± 0.27 (Bq (kg Ca)⁻¹) times higher.

Fig. 5.10.3. Cesium-137 median values in grass from the 10 Danish State experimental farms 1986-1988.

5.10.3. Straw, Beets, and Beet Leaves in 1986 and 1987

Tables 5.10.3.1-5.10.3.3 show a general decrease in the ¹³⁷Cs levels from 1986 to 1987. The decrease varied from a factor of 4 in straw to a factor of 1.5 in beets.

Compared with grain (mean of all means in Table 5.3.5) the straw ¹³⁷Cs mean level was 2 times higher in 1986 and 7 times higher in 1987. The ⁹⁰Sr concentrations were 11 times higher in straw than in grain in 1986 as well as in 1987. Earlier we have assumed, based on experimental evidence, that straw contained two times higher ¹³⁷Cs and 10 times higher ⁹⁰Sr concentrations than grain. The slower decrease of the ¹³⁷Cs concentrations in straw compared with grain may suggest that resuspended soil particles have been responsible

for a significant part of the contamination of straw in 1987. This contamination has not been fully available for translocation to the grain, and the grains have thus contained relatively lower levels than expected from the measured deposition (cf. also the discussion in 5.3).

We may compare the radioactivity levels (Bq kg⁻¹) in beets with those in potatoes in 1986: ¹³⁷Cs beets/¹³⁷Cs potatoes = 0.99 ± 0.57 (± 1 S.D.; N = 8) and in 1987: 0.73 ± 0.52 (± 1 S.D.; N = 9). In the case of ⁹⁰Sr, the ratios of beets to potatoes became: 11 and 13, respectively.

In a similar way beet leaves may be compared with cabbage. For ¹³⁷Cs, the ratios became 2.5 in 1986 and 2.9 in 15⁷⁷. For ⁹⁰Sr the ratios were 2.5 and 2.1, respectively. We conclude that beets may be compared with potatoes and beet leaves with cabbage as regards ¹³⁷Cs and ⁹⁰Sr contamination.

		19	 B6		1987					
	Bq 90Sr kg-1	Bq 90Sr (kg Ca)-1	Bq ¹³⁷ Cs kg-1	134Cs 137Cs		Bq ⁹⁶ Sr kg⁻¹	Bq 90Sr (kg Ca)-1	Bq ¹³⁷ Cs kg ⁻¹	134Cs 137Cs	
Tylstrup Kalø Borris Askov St. Jyndevad			4.7 2.4 3.1 0.86 27	0.45 0.53 0.51 0.51 0.50	}	4.5	1040	0.25 0.73 0.29 4.8 1.93	0.32 0.36 A 0.33	
Årslev Tystofte Ledreborg Abed Tornbygård			1.62 3.0 1.76 8.6 3.7	0.55 0.48 0.47 0.54 0.56	}	8.1	1010	1.93 0.34 0.72 0.53 1.13	0.38 0.27 A	
Mean	4.8	1060	5.7	0.51		6.3	1025	1.26	0.33	
Median			3.0					0.72		

 Table 5.10.3.1. Radiocesium and Strontium-90 in straw collected at the state experimental farms in September 1985 and September 1987

 Table 5.10.3.2. Radiocesium and strontium-90 in beets collected at the State experimental farms in September 1986 and September 1987

		19	 86		1987					
	8q ⁹⁰ Sr kg-1	8q ⁹⁰ Sr (kg Ca)-1	Bq ¹³⁷ Cs kg ⁻¹	134Cs 137Cs	Bq ⁹⁰ Sr kg-1	Bq ⁹⁰ Sr (kg Ca)-⊺	βq ¹³⁷ Cs kg⁻1	134Cs 137Cs		
Tylstrup Kalø Borris Askov St. Jyndevad			0.03 B 0.04 B 0.50 0.24	0.42	0.69	4000	0.050 A 0.062 A 0.069 A 0.157 0.105	0.34 0.31		
Årslev Tystofte Ledreborg Abed Tornbygård			0.14 A 0.065 B 0.05 B 0.02 B		0.46	1500	0.142 0.080 0.02 B 0.059 A 0.02 B	0.26 A		
Mean	0.42	1950	0.14	0.42	0.58	2750	0.076	0.30		
Median			0.06				0.06			

		19	86			198	37	
	Bq ⁹⁰ Sr kg-1	Bq ⁹⁰ Sr (kg Ca)-ì	Bq ¹³⁷ Cs kg ⁻¹	134 <u>Cs</u> 137 <u>Cs</u>	Bq ⁹⁰ Sr kg−¹	Bq ⁹⁰ Sr (kg Ca)-1	Bq ¹³⁷ Cs kg ⁻¹	134Cs 137Cs
Tylstrup			0.23				0.033 B	
Kale			0.38	0.51			0.136	0.32 A
Borris			0.189	0. 4 9 A	0.76	820	0.23	0.27
Askov			2.3	0.49			0.52	0.35
St. Jyndevad			0.93		J		0.184	0.24
Årslev			0.35	0.46]		0.44	0.26
Tystofte			0.31				0.05 B	
Ledreborg			0.24 B		0.34	340	0.03 B	
Abed			0.16				0.040 A	
Tombygård			0.10 A		J		0.05 B	
Mean	0.55	400	0.52	0.49	0.55	580	0.17	0.23
Median			0.28				0.09	

Table 5.10.3.3. Radiocesium and strontium-90 in bret leaves collected at the State experimental farms in September 1986 and September 1987

5.11. Sea Plants

5.11.1. Sea Plants Collected in Roskilde Fjord

Figure 5.11.1 shows the Bq ⁹⁰Sr (kg Ca)⁻¹ levels in sea plants since 1959 and Table 5.11.1 the results for 1987. The mean level in Fucus vesiculosus was 230 Bq ⁹⁰Sr (kg Ca)⁻¹ (5.3 Bq kg⁻¹ dry weight). We got no samples of Zostera marina in 1987. The mean ratio of observed to predicted ⁹⁰Sr levels in fucus was 0.54 (cf. App:ndix C.1).

Fucus contained 24 Bq ¹³⁷Cs kg⁻¹ dry weight, i.e. 10% more than in 1986.

Table 5.11.1. Strontium-90 and radiocesium in Fucus vesiculosus from Roshilde Fjord in 1987

Location (cf. Fig. 4.6.1)	Date	% dry matter	Bq ⁹⁰ Sr (kg Ca) ⁻¹	Bq ⁹⁰ Sr kg ⁻¹ dry weight	Bq ¹³⁷ Cs (kg K)-1	Bq ¹³⁷ Cs kg ⁻¹ dry weight	134Cs 137Cs
At Rise	31 Mar	23.8	300	6.5	1230	27	0.32
At Risø	11 Aug	20.2	260	5.5	860	18.2	0.27
At Risø	2 Oct	23.1	-	-	820	21	0.26
IX	4 May	13.5	194	4.7	780	29	0.31
X	4 May	14.8	150	4.6	740	27	0.30

Fig. 5.11.1. Strontium-90 in sea plants from Roskilde Fjord, 1959-1987.

5.11.2. Sea Plants Collected at Klint (55°58'N, 11°35'E)

The two Fucus species most often found in Denmark, Fucus vesiculosus and Fucus serratus, had been collected monthly to test the difference between the two species and to get data of the important seasonal variation. All samples have been analysed for γ -emitting radionuclides (Table 5.11.2).

Contrary to last year's observations, Fucus serratus did not contain significantly higher ⁶⁰Co concentrations than Fucus vesiculosus.

Species	Date	60Co	¹³⁷ Cs	¹⁰⁶ Ru ¹³⁷ Cs	110mAg 137Cs	¹²⁵ Sb ¹³⁷ Cs	134Cs 137Cs
Fu.ve.	April 10	4.0	14.9		0.23		0.27
Fu.se.	April 10	4.1	14.0	1.31	0.41	0.14	0.21
Fu.ve.	May 21	2.9	9.7		0.24		0.25
Fu.se.	May 21	3.0	13.3				0.27
Fu.ve.	June 22	2.5	12.6				0.25
Fu.se.	June 22	2.4	16.9				0.27
Fu.ve.	July 15	2.7	18.1		0.06 B		0.25
Fu.se.	July 15	3.4	16.8				0.24
Fu.ve.	Aug 13	2.3	14.6				0.25
Fu.se.	Aug 13	1.50	15.3				0.22
Fu.ve.	Sept 15	1.53	10.2				0.25
Fu.se.	Sept 15	1.87	13.2				0.25
Fu.ve.	Oct 15	1.74	11.2				0.25
Fu.se.	Oct 15	1.50	9.4				0.22
Fu.ve.	Nov 13	1.45	9.0				0.22
Fu.se.	Nov 13	1.54	8.8				0.21
Fu.ve.	Dec 17	2.1	12.4				0.24
Fu.se.	Dec 17	2.4	12.1				0.25

Table 5.11.2. Radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus servatus (Fu.se.) collected at Klint (55°58'N, 11°35'E) in 1987. (Unit: Bq kg⁻¹ dry matter)

Fig. 5.11.2. Cesium-137 and cesium-134 (lower curve) in Fucus vesiculosus and Fucus serratus from April 1986 to November 1987 collected at Klint, Zealand (55°58'N, 11°35'E).

There was no significant difference between the ¹³⁷Cs levels in the two fucoids.

From July to December, the levels decreased again by a factor of 1.4. This is not in agreement with the constant levels in water in this period (cf. Fig. 4.4.9).

The observed ratio: Bq ¹³⁷Cs kg⁻¹ Fucus dry weight/Bq ¹³⁷Cs l⁻¹ sea water was 260 from June to December 1987, which concurs with observations in earlier years in southern Cattegat¹⁸).

5.11.3. Sea Plants Collected in Danish Waters

Apart from the Klint and Roskilde Fjord collections, 7 other locations were examined in 1987 (cf. Table 5.11.3 and Fig. 5.11.3).

The Anovas (Tables 5.11.4 and 5.11.5) show no significant interaction between locations and month for ¹³⁴Cs, but probably for ⁶⁰Co. The local pattern for ¹³⁴Cs was compatible with the source being Baltic sea water. The highest concentrations were seen at Strøby Egede in southeast Zealand and the lowest at Klint in northwest Zealand. In case of ⁶⁰Co the local pattern was consistent with Barsebäck and perhaps to some extent Ringhals as sources. The highest levels were seen at Gilleleje in northeast Zealand and the lowest at Mullerup in southwest Zealand (in Lolland-Falster in Nysted, no ⁶⁰Co was observed).

Location	Position	Date	Ba ⁶⁰ Co	Bg ¹³⁷ Cs	110mAg	106fiu	134Cs	%	Species
	N E		kg ⁻¹ d.w.	kg ⁻¹ d.w.	137Cs	137Cs	137Cs	dry matter	
	F 4940' 11944'	A '' 00		10.0		<u></u>	0.20		
Nysted	54°40 11°44 "	April 29		18.0			0.30	12.2	Fulve.
		ividy 20		24			0.20	13.3	Fulle.
• •		June 23		3/			0.29	17.9	Fulve.
		July 16		34			0.31	19.8	Fulve.
		Aug 12		19.0			0.29	20.8	Fulve.
		Sept 14		30			0.31	17.2	Fulve.
		UCU14		34			0.20	10.0	FU.Ve.
		NOV II		24			0.28	17.0	Fulve.
 Ctrahu		Dec 18		30			0.20	17.7	Fulve.
Econolog	55925' 12915'	Anril 20		28			0 33	16.5	Europ
r r	55 25 12 15	May 20		10 5			0.33	10.5	Fulla
		luno 17	2.1	19.5			0.30	14.1	Fulve.
-			Z . I	42			0.52	10.2	Eu ve
			15	42 21			0.34	20.9	Fulve.
-		Sont 14	1.5	31			0.34	10.1	Fulve.
				 26			0.25	19.1	Fulve.
		Nov 11		30			0.20	10.1	Fulve.
			20	24			0.23	10.2	Fulve.
Gilielaia	5 6907' 12910'	April 24	2.0	14.9	0.22		0.30	10.0	Fulve.
Gileleje	500/ 1219 "	April 24	9.2 27	14.0	0.22	0.07	0.30	21 0	Fulles
		ividy 20	3.7	10.6	0.25	0.97	0.25	21.J	Eurose.
			2.U A 6	10.0			0.20	17.5	Fulles Fulles
			4.0	15.5			0.24	15.0	Europ
		Aug 14	1.0	0.2			0.29	20.2	FU.Se.
		Sept 14	0.9	17.7			0.23	21 5	FU.SC.
		Nov 12	3.3	18.5		0 59	0.27	21.0	Fulse.
	 E69107 119407	NUV 12	2.0	0.4	0.22	0.50	0.31	20.7	Fulse.
nesseiø	00 12 11°43 "	iviay 20	3.2	13,1	0.23		0.28	22.1	Fulve.
		May 25	3.2	10.3			0.20	21.8	FU.Se.
 Anhola	 56943' 11931'	Dec 14	2.8	14.7	0.12	056	0.25	34.3	Fulse.
Annoit	2043 1131	Nay 13	2.0	16.0	0.13	0.90	0.25	21.0	Fulve.
	 EE930/ 11010/	Dec 14	1.4 A	10.8	0.12		0.24	17.9	FJ.ve.
Mullerup	55'30 11-10		0.1	20%	0.13		0.33	13.5	FU.Ve.
 -	 #	May 21	1.3	16.2			0.33	12.7	Fu.ve.
· ·	· ·	June ZZ		31			0.33	14.5	FU.Ve.
	- ⁻ -	July 15	1.5	17.8%			0.31	25.3	Fulve.
		Aug 13	0.8 A	12.3			0.30	21.3	Fu.ve.
· ·		Sept 15		19.7			0.27	20.5	ru.ve.
		0015		19.5			0.32	22.0	tu.se.
	·~-	Oct 15		20.4			0.28	19.4	Fu.ve.
• ~ •	• <i>"</i> •	Dec 17		19.3			0.26	21.2	Fulve.
Læsø	57°18′ 10°56′	May 13	2.4	14.6			0.24	25.4	Fu.se.
·"-	57°19′11°08′	May 13	2.5	13.7			0.22	13.6	Fulve,
Sverske	55005' 15000'	May 10		26	0.21		0.25	21 A	Cu
110VII	00 00 10.09	ividy 19			U.41		0.30		
a)125Sb/137(Cs = 0.35								
b)125Sb/137(Cs = 0.25								

Table 5.11.3. Radionuclides in Fucus vesiculosus (Fu.ve.) and Fucus serratus (Fu.se.) collected in Danish waters in 1987

Fig. 5.11.3. Cesium-137 and ¹³⁴Cs/¹³⁷Cs (lower figure) in Fucus vesiculosus and Fucus serratus collected in May-November 1987 along the Danish coasts. (Unit: Bq hg⁻¹ dry weight)

Table 5.11.4. Analysis of variance of In Bq ¹³⁴Cs kg⁻¹ d.w. fucoids (Tables 5.11.2 and 5.11.3) in 1987 (Nysted, Strøby Egede, Mullerup, Klint, Gilleleje)

Variation	SSD	f	s²	v²	Ρ
Between months	2.38	8	0.30	5.35	> 99.95%
Between locations	11.98	4	3.00	53.97	> 99.95%
Month × loc.	1.67	30	0.056	1.94	-
Remainder	0.286	10	0.029		

Table 5.11.5. Analysis of variance of In Bq ⁶⁰Co kg⁻¹ d.w. fucoids (Tables 5.11.2 and 5.11.3) in 1987 (Strøby Egede, Mullerup, Klint, Gilleleje)

Variation	SSD	f	s²	v ²	Р
Between months	3.18	8	0.40	4.61	> 99 %
Between locations	4.00	3	1.^?	15.45	> 99.95%
Month × Icc.	1.12	13	0.086	4.80	> 97.5 %
Remainder	0.162	9	0.018		

5.12. Moss and Lichens

In the total lichen layer at Oustrup Heather (Table 5.12.2) the Chernobyl ¹³⁷Cs decreased from 1150 Bq m⁻² in June 1986 to 837 Bq m⁻² (0.57·1470) in August 1987 corresponding to an effective half-life of 2.6 years. The global fallout ¹³⁷Cs decreased in the same period from 1150 Bq m⁻² to 633 (1470-837) Bq m⁻², i.e. corresponding to an effective half-life of 1.35 years. if we considered the top layer only, the Chernobyl ¹³⁷Cs decreased from 1010 Bq m⁻² to 710 Bq m⁻² (~ effective half-life: 2.3 years) and global fallout changed from 240 to 120 (~ half-life: 1.17 years). In the bottom layer, the global fallout ¹³⁷Cs changed from 900 Bq m⁻² to 560 Bq m⁻² (~ half-life: 1.7 years). Hence the old global fallout ¹³⁷Cs disappeared more rapidly than the Chernobyl ¹³⁷Cs, which may be due to resuspension of Chernobyl ¹³⁷Cs, which has added extra ¹³⁷Cs to lichen from 1986 to 1987.

If we take a look at the Skagen samples, we observe an increase in Chernobyl ¹³⁷Cs from June 28, 1986 to September 17, 1987 (Table 5.12.1) from 380 Bq m⁻¹ to 440 Bq m⁻². The deposit from June 1986 to September 1987 in North Jutland (Tylstrup) was ~ 85 Bq ⁻². If we subtract this deposition from the observed mean in 1987 we get 355 Bq m⁻². The half-life corresponding to a decrease from 380 to 355 in 15 months is 12.7 years. This is in agreement with the observations of Mattsson in Lapland²⁶). If we look at the global ¹³⁷Cs fallout in the Skagen samples, it becomes 24 Bq m⁻² in 1986 and 26 Bq m⁻² in 1987, i.e. no significant decrease. We are thus forced to conclude that the two sets of samples from Oustrup Heather probably have not been collected at the same location in 1987 as in 1986. Consequently, the calculated half-lives are not correct. It would also have been difficult to explain the very rapid decrease of global fallout ¹³⁷Cs in lichen because such a decrease would have been incompatible with the actual deposition of global fallout in Denmark.

Sample	Location	Date	905r Ba m-?	137Cs Bq m ⁻²	239.2400 ₀ BQ m ⁻²	95 <u>7</u> / 137Cs	106Ru 137Cs	¹¹⁰ #Ag	125 <u>5b</u> 137C5	134Cs 137Cs	144Ce 137Cs	241Am 239.240Pu	242Cm 239,240Pu	kgd.w m^2
Moss	Bomholm:	May 19	9.5	430	5.6	3-10-3 B	0.16	. 9·10-3	0.023	0 175		0.34 A	0.010	0.54
Lichen	Bornholm	Sep 24	2.2	152	20	-	0.18			0.22		0 45	-	2.02
Lichen	Skagen 1	Sep 17	0.41	440	12.5		0.122	-	0.024	0 34		0.16		2 32
Lichen	Skagen 2	Sep 17	9.7	460	6.5		0.18		-	0.34		1.2		3 65
Lichen	Skagen 3	Jep 17	13.5	490	21	-	0.117	•	•	0.34		0.22	-	3.03
Lichen	Nymindegab	Oct 9	8.2	3700	6.7		0.149	3.3-10-0	0.029	0.36	0.020	0.27 8	0.47	1.38
Lichen	Asterbo	Oct 19	1.54	560		•	0.126	3 5-10-3 A	0.0165	0.35		•		0.21

Table 5.12.1. Radionuclides in lichen and moss collected in Denmark in 1987

		137	s	134Cs	5	134Cs	%
Sample		Bq kg ⁻¹	Bq m⁻²	Bq kg-1	Bq m ⁻²	137Cs	Chernoby
		d.w.		d.w.			137Cs
Top layer	No. 1	640	790	197	250	0.31	
Top layer	No. 2	680	750	220	240	0.32	
Top layer	No. 3	770	790	250	260	0.33	
Top layer	No. 4	700	810	220	260	0.32	
Top layer	No. 5	670	1030	200	310	0.30	
Bottom laye	er No. 1	2 9	450	-	•	0	
Bottom lay	er No. 2	66	830	2.9	36	0.04	
Bottom laye	er No. 3	54	115	2.1 A	4.6 A	0.04	
Bottom laye	er No. 4	82	830	5.9	60	0.07	
Bottom laye	er No. 5	54	940	2.4	41	0.04	
x Top ±1 S	i.D.	690 ± 49	830±112	220±21	260±27	0.32±0.01	86
x Bottom ±	:1 S.D.	67 ± 19	630 ± 340	2.7±2.1	28±25	0.04 ± 0.02	11
Top + Bott	om						
±1 S.D	•	-	1470±410	-	290 ± 42	0.21 ± 0.05	57

Table 5.12.2. Radiocesium in lichen (Cladina Portentosa) collected at Oustrup Heather August 26, 1987, by Ulrik Søchting, Institute of Sporeplants, University of Copenhagen

The highest deposit was observed in the sample from Nymindegab collected on October 9, 1987 (Table 5.12.1). This sample also showed measurable amounts of 242 Cm: 3.2 Bq m⁻², decay corrected to April 26, 1986; this would have been 30 Bq m⁻². The observed 242 Cm/ 239,240 Pu in Chernobyl debris on April 26, 1986 was 10.6²⁰). Hence the calculated 239,240 Pu deposit from Chernobyl at Nymindegab becomes 30/10.6 = 2.8 Bq m⁻² or 42% of the plutonium in the lichen sample, whereas nearly 100% of the 137 Cs came from Chernobyl.

The ⁹⁰Sr in the sample may also have been entirely from Chernobyl because the ⁹⁰Sr/¹³⁷Cs was 0.002, which was 10 times less than in Chernobyl debris. It is well known²⁶⁾ that the effective half-life of ⁹⁰Sr in lichen is nearly an order of magnitude less than that of ¹³⁷Cs. It is thus not surprising if the ⁹⁰Sr levels had decreased more rapidly than the ¹³⁷Cs levels.

The lichen (and moss) samples (Table 5.12.1) also make it possible to estimate the original Chernobyl fallout of ^{110m}Ag and ¹²⁵Sb relative to that of ¹³⁷Cs. The fallout of ^{110m}Ag becomes 1% of the ¹³⁷Cs fallout and that of ¹²⁵Sb is 3%.

6. Strontium-90 and Radiocesium in Humans in 1987

6.1. Strontium-90 in Human Bone

(by A. Aarkrog)

The collecting of human vertebrae from the institutes of forensic medicine in Copenhagen and Århus was continued in 1987. As in the total-diet survey (cf.

Table 6.1.1. Strontium-90 in vertebrae from newborn children(< 1 month old) in 1987</td>

Zone	Age in days	Month of death	Sex	Bq (kg Ca)⁻1
	30	1	M	60
Vł	0	2	М	13 B

Table 6.1.2. Strontium-90 in bone from infants (≤ 4 years) in 1987

Zone	Age in months	Month of death	Sex	Bq (kg Ca)−1
1	2	3	М	29
I	3	1	Μ	38
1	7	2	M	35
1	2	2	F	18 A
11	1	1	Μ	8 B
11	4	8	Μ	16 B
H	4	8	Μ	11 B
11	22	3	М	20
11	2	3	F	6 A
B	3	3	F	55
17	9	3	F	11.3
11	10	3	F	28
VI	2	3	Μ	58 A
VI	5	2	M	51
VI	5	3	М	17 B
VI	2	4	F	33 B
VI	4	8	F	15.6
VI	2	3	M	26

Table 6.1.3. Strontium-90 in bone from children and teenagers (\leq 19 years) in 1987

Zone	Age in years	Month of death	Sex	Bq (kg Ca)-1
	18	8	M	15.4
VI	17	8	М	13.9

Table 6.1.4. Strontium-90 in vertebrae from adults (≤ 29 years) in 1987

Zone	Age in years	Month of death	Sex	Bq (kg Ca)-1
ll	27	9	M	15.9
Vi	28	8	M	17.7
Zone	Age in	Month of	Sex	Bq (kg Ca)−1
------	--------	----------	-----	-------------------
	years	death		
1	38	9	F	19.4
I	63	8	F	17.1
1	30	8	Μ	19.9
1	55	8	Μ	24
H	48	9	F	31 A
11	70	8	F	15.2
5	30	8	Μ	14 B
H	47	8	Μ	18.9
II.	62	9	Μ	16.7
II	64	9	M	17.6
11	71	8	Μ	15.5
VI	36	8	F	15.2
VI	48	8	F	16.8
VI	52	8	F	19.4
VI	58	4	F	30 A
VI	59	4	F	19.2
VI	60	4	F	37
VI	64	8	F	11.2 A
VI	70	3	F	1 9.1
VI	78	3	F	1 9 .8
VI	32	3	M	8.4
VI	32	8	M	26 A
VI	33	8	M	35
VI	35	3	M	33 B
VI	36	8	M	45
V	37	3	M	28
VI	39	8	Μ	18.6
VI	43	8	M	24
VI	58	8	M	20
VI	73	8	M	19.8
VI	80	8	M	27

Table 6.1.5. Strontium-90 in vertebrae from adults (> 29 years) in 1987

Table 6.1.6. Strontium-90 in human vertebrae collected in Denmark in 1987. (Unit: $Bq (kg Ca)^{-1}$)

Age group	Number of samples	Min.	Max.	Median	Mean
New-born (Infants					
(≤ 4 years) Children	18	6	58	23	26
(≤ 19 years) Adults	2	13.9	15.4	14.6	14.6
(≤ 29 years) Adults	2	15.9	17.7	16.8	16.8
(> 29 years)	31	8.4	45	1 9.4	22

5.7), the country was divided into eight zones. The samples were divided into five age groups: newborn (2-19 years), adults ($\leq 29 \text{ years}$), and adults (> 29 years).

Tables 6.1.1-6.1.5 show the results for the five groups. The ⁹⁰Sr concentrations in human bone collected in 1987 were nearly unchanged from those observed in 1979-1987.

The observed mean concentration in adults (\geq 30 years) was 0.58 times that predicted (cf. Appendix C).

Fig. 6.1.1. Strontium-90 levels (sample number weighted mean) in bone from newborn (< 1 month) 1961-1987.

Fig. 6.1.2. Strontium-90 levels (sample number weighted mean) in bone from infants $(> 1 \text{ month } \ge 4 \text{ years})$ 1962-1987.

Fig. 6.1.3. Strontium-90 levels (sample number weighted mean) in bone from children (> 4 years \leq 19 years) 1961-1987.

Fig. 6.1.4. Strontium-90 levels (sample number weighted mean) in bone from adults (> 19 years \leq 29 years) 1961-1987.

Fig. 6.1.5. Strontium-90 levels (sample number weighted mean) in bone from adults (> 29 years) 1961-1987.

Risø-R-563

Fig. 6.1.6. Strontium-90 in human bone from Danish cohorts 1960-1966. Abscissa: age in years. Ordinate: bone level in Bq 90Sr (kg Ca)⁻¹.

6.2. Radiocesium in the human body

by J. Sogaard-Hansen and B. Lauridsen

Whole-body measurements were initiated at Risø in July 1963 (cf. 2.3 in Risø Report No. 85¹). A control group from the Health Physics Department was selected and was measured three times a year.

However, due to the decreasing ¹³⁷Cs content in the body, the contribution from interfering radionuclides to the γ -spectra has made the determination of ¹³⁷Cs unreliable, and since 1978 we have not published whole-body measurements.

After the Chernobyl accident, the whole-body measurements were resumed. The control group was essentially the old one but a few newcomers were added so that the group consisted of about 20 persons, among them a few children.

In Figure 6.2.2 the monthly mean values of $^{134}Cs + ^{137}Cs$ body content are shown for men, women, and children. The figure, furthermore, shows the calculated levels based upon the intake of radiocesium with food. In Figure 6.2.2, we omitted those person in the control group who had been on official travel to countries with relatively high contamination levels. It appears that the calculated levels are in good agreement with those observed. The mean concentration in the period January 1987 - December 1987 was 2210 Bq ^{134}Cs + ^{137}Cs (kg K)⁻¹ (relative S.D.: 7%).

No.	Date	Sex	Age	Bq Cs (kg K)-1	g K (kg)-1
2	20/1-87	F	43	2877	1.75
2	17/2-87	F	43	3053	1.63
2	19⁄3-87	F	43	2796	1.90
2	10⁄4-87	F	43	3003	1.59
2	22/5-87	F	43	3013	1.93
2	22/6-87	F	44	3066	2.08
2	13/7-87	F	44	2613	2.08
2	17/8-87	F	44	2675	1.83
2	14⁄9-87	F	44	2936	1.77
2	9/10-87	F	44	2876	1.84
2	25/11-87	F	44	2696	1.78
3	22/1-87	F	54	1664	1.77
3	18⁄2-87	F	54	1867	1.79
3	23/3-87	F	54	1943	1.95
3	9⁄4-87	F	54	1859	1.69
3	18/5-87	F	54	2014	2 09
3	22/6-87	F	54	1909	2.00
3	13/7-87	, F	54	2337	1 94
3	24/8-87	F	54	2127	217
3	14/9-87	Ē	54	1989	216
3 3	8/10-87	F	54	1936	2.10
3	25/11-87	F	54	1999	1.76
4	23⁄1-87	м	54	2236	1.46
4	17/2-87	M	54	2236	1.63
4	27/3-87	M	54	2234	1.56
4	13/4-87	M	54	2660	1.53
4	21/5-87	M	54	2558	1.62
Ā	23/6-87	M	54	2720	2.08
Å	17/7-87	M	54	2787	1.80
Δ	20/8-87	M	54	2904	1.00
4	21/9-87	M	54	2934	1.70
Δ	15/10-97	M	54	2674	1.57
4	20/11-87	M	55	2878	1.66
6	21/1-87	м	55	1485	1,56
6	16⁄2-87	M	55	1812	1.53
6	17/3-87	M	55	2316	1 27
6	14/4-87	M	55	2957	1.54
6	19/5-87	M	55	3615	1.63
6	18⁄6-87	M	55	4218	1.71
7	27/1-87	F	47	1534	1.49
7	19⁄2-87	F	47	1465	1.59
7	17/3-87	F	47	1790	1.18
7	10⁄4-87	, F	47	1716	1 42
7	25/5-87	F	47	2030	1.36
7	18/6-87	F	47	1735	1 54
7	13/7-87	F	47	2057	1.59
7	20/8-97	F	48	2484	1 53
, 7	8/9-87	, F	48	2194	1.44
•		-			

Table 6.2. Radiocesium (¹³⁴⁺¹³⁷Cs) in humans from Risø and environment measured in 1987

Table 6.2. (continued)

No.	Date	Sex	Age	Bq Cs (kg K)-1	g K (kg)-1
7	13/10-87	F	48	2219	1.50
7	26/11-87	F	48	2123	1.63
9	22/1-87	F	58	2094	1 45
9	19/2-87	F	58	2238	1.38
9	19/3-87	F	58	1971	1.62
9	22/4-87	F	58	2229	1.39
9	21/5-87	F	58	2562	1.67
9	18/6-87	F	59	2685	1.59
9	17/7-87	F	59	2861	1.58
9	12/8-87	F	59	2879	1.80
9	8⁄9- 87	F	59	2427	1.89
9	910-87	F	59	2294	1.83
9	2 4/1 1-87	F	59	2009	1.82
11	201-87	F	50	3025	1.32
11	18⁄2-87	F	50	3040	1.35
11	18/3-87	F	50	2962	1.29
11	205-87	F	50	2913	1.40
11	1//6-87	F	50	2830	1.50
11	128-87		50	2689	1.51
11	11/9-8/	+ r	50	2617	1.41
11	9/10-8/	۲ ۲	50	26/8	1.44
n	20/11-8/	F	50	2400	1.41
14	21/1-87	M	44	953	2.03
14	23/2-87	M	44	1292	1.80
14	23/3-8/	M	44	1225	1.69
14	134-8/	M	44	10/8	1.98
14	200-8/	M	44	1450	1.99
14	100-07	IVI NA	44	1325	2.55
14	137-07	IVI NA	44	1471	2.27
14	00 97		44	2000	2.10
14	12/10/97	M	44	2009	1.24
14	24/11-97	M	45 45	1852	2 20
14	2411-07	 F	45	1052	2.20
15	21/1-8/	r r	40	1401	1.58
15	102-07	r c	40 AE	1041	1.42
10	10/3-0/	r c	40	2125	1.20
15	256.97	г С	40 AL	5123 1/204	1.30
15	106.97	י ב	40	2620	1.05
15	15/7_97	F	-0 AR	2023	1.50
15	12/2.97	F	40	2924	1.57
15	14/9-87	, F	46	2868	1.58
15	9/10-87	F	46	2740	1 4 R
15	20/11-87	F	46	2780	1.40
17	23/1-87	М	27	1820	2.03
17	18⁄2-87	М	27	2202	1.98
17	17/3-87	М	28	2259	1.59
17	21/4-87	М	28	1944	1.92

Table 6.2. (continued)

No.	Date	Sex	\ge	Bq Cs (kg K)-1	g K (kg)-1
17	25/5-87	M	28	1900	2.36
17	1 96-8 7	M	28	1863	2.30
17	24/7-87	Μ	28	1437	2.31
17	21/8-87	Μ	28	1774	2.40
17	15 9-8 7	Μ	28	2591	2.45
17	26/11-87	M	28	1912	2.27
18	27/1-87	F	50	2071	1.51
18	23/3-8 7	F	51	1627	1.47
18	224-87	F	51	1803	1.33
18	205-87	F	51	2064	1.40
18	246-8 7	F	51	1617	1.88
18	1 96-8 7	F	51	1871	1.99
19	27/1-87	F	48	1514	1.44
19	19/3-87	F	48	1647	1.41
19	144-87	F	48	1733	1.47
19	22/5-8 7	F	48	2060	1.62
19	1 96- 87	F	48	1696	1.66
19	24/7-8 7	F	48	1714	1.58
19	1 98- 87	F	48	1582	1.68
19	1 89- 87	F	48	1649	1.74
19	1310-87	F	48	16 71	1.43
1 9	24/11-87	F	48	1674	1.61
20	231-87	M	44	1656	1.62
20	24/3-87	M	44	1834	1.94
20	1 34- 87	M	44	1763	1.64
20	26/5- 87	M	44	2221	1.59
20	166-87	M	44	1307	2.42
20	196-87	M	44	2366	1.83
20	99-87	M	44	2299	1.74
20	810-87	M	44	2056	1.88
22	26/1-87	F	5	1007	2.21
22	24/3-87	F	5	1560	2.14
22	154-87	F	5	1626	2.48
22	21/5-87	F	5	1929	2.42
22	22/6-87	F	6	1619	2.66
22	22/7-87	F	6	2513	2.42
22	208-87	F	6	2369	2.25
22	22/9-87	F	6	1912	2.55
22	14/10-87	F	6	2192	2.27
24	21/1-87	F	12	1630	1.54
24	23/2-87	F	12	2136	1.52
24	16⁄3-87	F	12	2171	1.33
24	27/4-87	F	12	2441	1.43
24	185-87	F	12	2436	1.79
24	19/8-87	F	12	3401	2.04
24	1 59 -87	F	12	3274	1.64
24	27/10-87	F	12	2765	1. 68

No.	Date	Sex	Age	Bq Cs (kg K)-1	g K (kg)-1
25	211-87	м	10	1640	1.57
25	23/2-87	Μ	10	2026	1.49
25	1 6⁄3-8 7	M	10	1999	1.25
25	27/4-87	M	10	2172	1.35
25	1 85-8 7	M	10	2117	1.49
25	1 96-87	Μ	11	3342	1.85
25	10 9- 87	M	11	2987	1.83
25	14/10-87	M	11	2980	1.71
27	1 96- 87	Μ	45	2052	1.80
27	89 -87	M	45	2180	1.66
27	25/10-87	Μ	46	2207	1.65
27	20/ 11-87	M	46	2549	1.66
Mean	January	1987	_	1890±160	
	Februar	y 1987		2090 ± 190	
	March 1	1987		2035±130	
	April 19	67		2155±185	
	May 19	87		2360±165	
	June 19	87		2275±230	
	July 19	37		2260 ± 205	
	August	1987		2290±145	
	Septern	ber 1987		2385±115	
	Octobe	r 19 8 7		2305±115	
	Novern	ber 1987		2265±125	
	Decem	ber 1987			
*Monthly mean values (adults only) $^{134+137}$ Cs Bq (kg K)-1 ± 1 S.E.					

Table 6.2. (continued)

An approximate estimate of the 137Cs content may be obtained by multiplying the Bq Cs (kg K)-1 with 0.8

Fig. 6.2.2. Radiocesium in Danish men, women and children from Zealand in 1986-1987. The ¹³⁷Cs content is approx. 0.8 times the total radiocesium (¹³⁴Cs + ¹³⁷Cs). The curves represent the calculated levels based upon diet measurements (cf. Fig. 6.2.1).

6.3. Radionuclides in Human Milk

by A. Aarkrog

The mean diet ¹³⁷Cs and ⁹⁰Sr levels in Copenhagen in the first half of 1987 was estimated from the diet samplings in December 1986 (Risø-R-549)¹) and in June 1987 (cf. 5.7). The means of these two samplings were 1.87 Bq ¹³⁷Cs day⁻¹ and 0.13 Bq ⁹⁰Sr day⁻¹. The means of the crucentrations in human milk were 0.43 ± 0.02 Bq ¹³⁷Cs l⁻¹ (± 1 S.E.; N = 5) and 0.0034 ± 0.0017 Bq ⁹⁰Sr l⁻¹ (± 1 S.E.; N = 2). If we assume that the milk donors diet was represented by the diet sampling in Copenhagen, we estimate that 23% of the daily diet intake of ¹³⁷Cs were excreted in 1 1 human milk and 2.6% of the ⁹⁶Sr. These figures are in agreement with earlier observations on global fallout²¹). The 1³⁴Cs/1³⁷Cs shows that all radiocesium in the human milk samples were from Chernobyl.

Month	Bq ¹³⁷ Cs ⊢¹	Bq ¹³⁷ Cs (kg K)−1	134Cs 137Cs	Bq ‱Sr I-1	Bq ⁹⁰ Sr (kg Ca) ⁻¹
February March April	0.37 0.39 0.48	750 740 800	0.44 0.41 0.43	0.0017 B	5.6 B
May June-July	0.44 0.48	930 1010	0.37 0.34	0.005 B	18 B

Table 6.3. Radiocesium and ⁹⁰Sr in human milk collected in Copenhagen in 1987. Donor born in May 1959, child born in December 1986

6.4. Radiocesium in Urine Samples

Table 6.4. shows the radiocesium content in urine from a control group at Risø. The Chernobyl radiocesium appeared in the sample from October 1986 and has since then shown an increasing trend. Figure 6.4 shows that the radiocesium in diet has been decreasing since December 1986, but whole-body measurements show increasing levels as the urine samples Fig. 6.4 suggests that Bq ¹³⁷Cs (kg K)⁻¹ in urine samples are proportional to the body levels. The mean ratio between human and urine was 3.6 ± 0.76 (± 1 S.D.; N = 8).

Fig. 6.4. Radiocesium (Bq ^{137}Cs (kg K) $^{-1}$) in diet, urine, and humans from Zealand in 1986-1987. (The human data were calculated from whole-body measurements of ($^{134}Cs + ^{137}Cs$) by multiplication with 0.7 in 1986 and 0.8 in 1987).

Date	40K g I−1	Bq ¹³⁷ Cs (kg K) ⁻¹	134Cs 137Cs
January 1986	1.37	94	-
April 1986	1.10	48	-
October 1986	1.26	320	0.42
December 1986	1.44	360	0.52
January 1987	1.59	360	0.47
March 1987	1.08	380	0.47
May 1987	1.09	380	0.46
July 1987	1.33	550	0.35
September 1987	1.78	580	0.35
November 1987	2.56	660	0.36

 Table 6.4. Radiocesium in urine samples from a control group at Risø. January 1986

 - November 1987

7. Tritium in the Environment

by Heinz Hansen

7.1. Introduction

Tritium is produced naturally in the atmosphere by the interaction of cosmic-ray protons and neutrons with nitrogen, oxygen or argon. Surface waters contain about 0.4 kBq m⁻³ from this source²⁵). Tritium is also produced and injected into the stratosphere as the result of thermonuclear explosions. At present, this latter source has enhanced the natural inventory by about a factor of ten²⁵). Finally, tritium is produced as a by-product of the peaceful uses of atomic energy: it is released both during reactor operation and fuel reprocessing.

7.2. Assay of Tritium in Low-Level Amounts

The present assays of tritium levels in water are based on a relative enrichment of ${}^{3}\text{H}_{2}\text{O}$ by electrolysis and subsequent liquid scintillation counting as previously described (Risø Reports Nos. 386 etc.¹).

We have found that the tritium background in the air in our laboratory makes it impossible to produce reliable results if the concentrations are below 2 kBq m⁻³. (Personal Communication G. Östlund, 1984). Hence we have discarded such results. We have furthermore applied a background correction by subtraction of 1.2 kBq ³H m⁻³ from our measured values (cf. Appendix E in Risø-R-527¹).

7.3. Summary of Results

The tritium results are shown in detail in the chapters where the samples belong.

Tables 4.2.3.1 and 4.2.3.2 give the results for precipitation. The annual mean concentrations in rain in 1987 were: 5.3 kBq m⁻³ at Risø, 1.9 at Tyl-

strup, 1.2 at Jyndevad, and 1.6 at Bornholm. The concentrations at Risø were approx. 1.7 times those observed in 1986, and so were the tritium levels at the 3 experimental farms. The enhanced tritium levels at Risø were due to discharges of the DR 3 reactor at the site. We have no explanation for the higher tritium concentrations in precipitation in 1987, but laboratory contamination may not be excluded. The median concentration of tritium in Danish ground water (cf. Table 4.3.1) was 1.8 kBq ³H m⁻³ or approximately 3 times the 1986 level.

The tritium concentrations in Danish streams and lakes were 1.8 and 1.7 kBq m⁻³, respectively (Table 4.3.2), i.e. nearly the same as in 1986. Danish drinking water contained 0.7 kBq ³H m⁻³ in 1987 (Table 4.3.3).

8. Measurements of Background Radiation in 1987

by L. Bøtter-Jensen and S.P. Nielsen

8.1. Instrumentation

Measurements of the background radiation were made with thermoluminescence dosimeters (TLD's), and a NaI(Tl) detector.

8.2. State Experimental Farms

The State experimental farms are situated as shown in Fig. 4.2. The results of the TLD measurements are shown in Table 8.2.1. The results of the NaI(Tl) detector measurements are shown in Table 8.2.2. At the Askov location we still see an external gamma-ray component from the Chernobyl contamination.

The γ -background measured with the NaI(Tl) detector in four groups of sampling stations is shown in Fig. 8.2.1 from 1962 to 1987.

Location	Sept 1986 - Sept 1987 µR h ⁻¹
Tylstrup	-
Borris	7.5
Ødum	7.6
Askov	7.7
St. Jyndevad	6.8
Blangstedgård	-
Tystofte	8.6
Abed	8.2
Mean	7.7

Table 8.2.1. TLD-measurements of the background radiation (integrated over 12 months and normalized to $\mu R h^{-1}$) at the State experimental farms in 1986/87

Location	April	September	Mean		
Tylstrup	3.3	3.4	3.4		
Borris	3.1	3.3	3.2		
Kalø	3.9	4.6	4.2		
Askov	4.5	4.2	4.4		
St. Jyndevad	2.1	2.5	2.3		
Årslev	5.0	5.0	5.0		
Ledreborg	4.9	4.8	4.8		
Tystofte	5.0	4.9	5.0		
Abed	4.9	5.0	5.0		
Tornbygård	5.9	(6.0)	6.0		
Mean	4.3	4.4	4.3		
Figures in brackets were calculated from VAR3 ¹²⁾ .					

Table 8.2.2. Terrestrial exposure rates at the State experimental farms measured with the NaI(Tl) detector in 1987 ($\mu R h^{-1}$)

Fig. 8.2.1. Terrestrial exposure rates at the State experimental farms in 1962-1976

- and 1978-1987 measured with the NaI(Tl) detector ($\mu R h^{-1}$).
- Åkirkeby/Tornbygård
- _____ Abed, Blangstedgård/Årslev, Tystofte
- ----- Virumgård/Ledreborg, Ødum/Kalø, Tylstrup
- ---- Jyndevad, Askov, Studsgård/Borris

8.3. Risø Environment

The five zones around Risø are located as shown in Fig. 8.3.1. The results of the TLD measurements are shown in Table 8.3.1, and the results of the NaI(Tl) detector measurements are shown in Table 8.3.2.

Risø zone	Lccation	April-Sept 1987
		<u>μR h-'</u>
I	1	8.8
I	2	10.1
I	3	20.7
1	4	9.3
1	5	11.5
Mean		12.1
11	1	7.9
11	2	8.8
R	3	7.8
	4	7.5
Mean		8.0
111	1	9.1
111	2	8.6
111	3	8.6
Mean		8.8
IV	1	7.9
IV	2	8.5
IV	3	8.1
IV	4	7.4
IV	5	6.7
IV	6	8.2
IV	7	9.5
Mean		8,0
V	1	8.6
V	2	9.1
V	3	9.0
V	4	8.1
V	5	8.3
V	6	8.0
V	7	9.2
V	8	9.6
V	9	9.1
V	10	8.3
Mean		8.7

Table 8.3.1. TLD-measurements of the background radiation (7-month integration period and normalized to $\mu R h^{-1}$) in five zones (I-V) around Risø in 1986/87

.

Risø zone	Location	February	April	July	October
1	1	39	77	58	64
1	2	42	68	7.2	77
i	3	31.2	57.1	79	72
l	4	3.9	5.4	5.8	6.2
1	5	6.2	10.5	11.0	:1.3
Mean		9.9	17.5	22	21
n	A	4.3	4.7	4.5	4.7
11	В	4.3	5.3	5.2	5.4
11	С	4.0	4.6	4.3	4.4
li 	D	3.0	4.5	4.3	4.5
Mean		3.9	4.8	4.6	4.8
111	Α		5.5		6.0
HI	В		5.0		5.7
111	С		4.2		4.8
Mean			4.9		5.5
IV	Α		4.2		6.7
IV	В		4.8		5.7
IV	С		4.6		5.3
IV	D		4.4		4.7
IV	E		4.0		4.0
I V	F		4.1		4.1
<u>IV</u>	G		4.8		5.0
Mean			4.4		5.1
v	Α		4.7		5.8
V	В		5.4		7.5
V	С		5.3		5.5
V	D		5.2		5.2
V	Ε		5.6		5.6
V	F		4.3		4.6
V	G		4.7		4.8
V	Н		4.6		4.7
V	1		5.1		5.6
V	<u> </u>	·····	4.0		5.0
Mean			4.9		5.4

Table 8.3.2. Terrestrial exposure rates at the sciss zones in 1987 measured with the NaI(TI) detector ($\mu R h^{-1}$)

Fig. 8.3.1. The environment of Risø. Locations for measurements of the background radiation.

8.4. Gylling Næs Environment

The Gylling Næs environment (a potential nuclear power plant site) is routinely monitored with TLDs, and the results from the site are given in Table 8.4.1. The locations are shown in Fig. 8.4.1.

Table 8.4.1. TLD-measurements of the background radiation (integrated over 12 months and normalized to $\mu R h^{-1}$) around the Gylling Næs site in 1986/87

Location	Sept 1986 - Sept 1987 µR h ⁻¹
1	8.1
2	-
3	9.3
Mean	8.7

Fig. 8.4.1. The environment of Gylling Ness. Locations for measurements of the background radiation.

8.5. Great Belt and Langeland Belt Areas

Locations on both shores of the Grea. Belt and the Langeland Belt (an international shipping route) are likewise routinely monitored with TLDs; the results and locations are shown in Table 8.5.1 and Fig. 8.5.1, respectively.

Table 8.5.1. TLD-measurements of the background radiation (integrated over 12 months and normalized to $\mu R h^{-1}$) along the coasts of the Great Belt and Langeland Belt in 1986/87

Location	Sept 1986 - Sept 1987 µR h ⁻¹
Røsnæs	8.5
Reersø	9.2
Svendstrup	8.5
Vesternæs	9.9
Frederiksdal	9.3
Kelds Nor	10.6
Tranekær	10.0
Hov	9.0
Fyns Hoved	8.9
Knuds Hoved	•
Mean	9.3

Fig. 8.5.1. The coasts of the Great Belt. Locations for measurements of the background radiation.

8.6. The Baltic Island of Bornholm

Locations on the island of Bornholm have been monitored with TLDs in the period April 1986 - May 1987. The results and locations are shown in Table 8.6.1 and Fig. 8.6.1, respectively.

	April 1986 - May 1987 µR h ⁻¹
1	-
2	9.6
3	8.3
4	17.4
Mean	11.8

Table 8.6.1. TLD-measurements of the background radiation (integrated over 14 months and normalized to $\mu R h^{-1}$) on the island of Bornholm in 195 /87

Fig. 8.6.1. Locations for measurements on Bornholm.

9. Conclusion

9.1. Environmental Monitoring at Risø, Barsebäck, and Ringhals

No radioactive contamination of the environment originating from the operation of Risø National Laboratory was ascertained outside its boundaries in 1987.

Benthic brown algae, mussels, and fish collected at the Swedish nuclear plants at Barsebäck and Ringhals were analysed for radioactive pollution. Transfer factors from releases of various radionuclides to Fucus were calculated. The radioactive contamination of the marine environment due to the operation of the Swedish nuclear power plants resulted in doses of less than 1% of the background radiation to any individual eating 20 kg mussel and 100 kg fish per year.

9.2. Fallout in the Abiotic Environment

The mean content of 90 Sr in air collected in 1987 was 0.37 μ Bq m⁻³, i.e. 70 times less than the 1986 level. The mean concentration of 137 Cs in air was 6 μ Bq m⁻³ in 1987, i.e. 220 times less than in 1986. The average fallout at the State experimental farms in 1987 was 1.44 Bq 90 Sr m⁻² or 26 times less than the 1986 figure, and the mean concentration of 90 Sr in rain water was 2.1 Bq 90 Sr m⁻³. The deposition of 137 Cs was 29 Bq m⁻² or 37 times less than in 1986.

By the end of 1987 the accumulated fallout was approximately 1533 Bq 90 Sr m⁻² (41 mCi 90 Sr km⁻²). The corresponding 137 Cs was estimated at 3700 Bq m⁻².

The median level of ⁹⁰Sr in Danish ground water was 0.06 Bq m⁻³.

Inner Danish surface waters (salinity ~ 12 %) contained 18 Bq 90 Sr m⁻³ and 78 Bq 137 Cs m⁻³. The 90 Sr concentration in 1987 was 82% and the 137 Cs level 80% of the corresponding values in 1986.

9.3. Fallout Nuclides in the Human Diet

The mean level of ⁹⁶Sr in Danish milk was 59 Bq (kg Ca)⁻¹, and the mean content of ¹³⁷Cs was approximately 600 Bq m⁻³.

The 1987 ⁹⁰Sr level was 0.92 times the level found in milk produced in 1986, and the ¹³⁷Cs was 0.57 times. The ⁹⁰Sr mean content in grain from the 1987 harvest was 0.57 Bq kg⁻¹. The ¹³⁷Cs mean content in grain was 0.21 Bq kg⁻¹. The ⁹⁰Sr level in grain from the 1987 harvest was 1.21 times the level found in the 1986 harvest, and ¹³⁷Cs was 0.06 times the 1986 level.

The mean contents of ⁹⁰Sr and ¹³⁷Cs in Danish vegetables collected in 1987 were 0.32 Bq ⁹⁰Sr kg⁻¹ and 0.064 Bq ¹³⁷Cs kg⁻¹, respectively, and in fruit 0.064 Bq ⁹⁰Sr kg⁻¹ and 0.19 ¹³⁷Cs kg⁻¹. Potatoes contained 0.044 Bq ⁹⁰Sr kg⁻¹ and 0.134 Bq ¹³⁷Cs kg⁻¹.

The mean levels of ⁹⁰Sr and ¹³⁷Cs in the Danish total diet in 1987 were 123 Bq ⁹⁰Sr (kg Ca)⁻¹ and 490 Bq ¹³⁷Cs (kg K)⁻¹, respectively. The levels of ⁹⁰Sr and ¹³⁷Cs in the Danish total diet in 1987 were, respectively, 1.26 and 1.32. times those observed in 1986. The increase in the Bq ⁹⁰Sr (kg Ca)⁻¹ was due to lower calcium levels in the Danish diet, because Danish flour no longer is enriched artificially by calcium (creta praeparata).

Grain products contributed 31% and vallk products 28% to the total ⁹⁰Sr intake; 44% of the ¹³⁷Cs in the diet originated from grain products, 24% from meat, and 17% from milk products. Fish contributed with 9% to the ¹³⁷Cs diet intake.

The predicted levels of ¹³⁷Cs in Danish food products based on global fallout models were in general higher than those actually observed in 1987, but as expected the difference was less pronounced than that observed in 1986, when the distribution in time of the fallout deviated more from global fallout than in 1987.

9.4. Strontium-90 and Cesium-137 in Humans

The ⁹⁰Sr mean content in human bone (vertebrae) collected in 1987 was about 23 Bq (kg Ca)⁻¹.

Whole-body measurements of ¹³⁷Cs were resumed after the Chernobyl accident. The measured mean level in 1987 was 1770 Bq ¹³⁷Cs (kg K)⁻¹.

9.5. Tritium in Environmental Samples

The tritium mean concentration in ground, stream, lake, and drinking water was approximately 1.5 kBq m⁻³ in 1987. The mean content of precipitation was 1.6 kBq m⁻³.

9.6. Background Radiation

The average total background exposure rate measured with TLDs a^{*} the State experimental farms was 7.7 μ R h⁻¹. The annual mean of the terrestrial exposure rates at the State experimental farms measured with the Nal(Tl) detector was 4.3 μ R h⁻¹. The annual means in 1987 are not different from the levels prior to the Chernobyl accident.

Acknowledgements

The authors wish to thank the staff of Health Physics Department for their conscientious performance of their work of this report.

We are specially indebted to the staffs of the ten State experimental farms at Tylstrup, Kalø, Borris, Askov, St. Jyndevad, Årslev, Tystofte, Ledreborg, Abed, and Tornbygård, who have continued to supply us with a number of the most important samples dealt with in this report.

R/V DANA belonging to the Ministry of Fisheries have collected surface water samples from the North Sea, the Danish Straits, and the Baltic Sea in 1987.

Part of this work was supported by the CEC Radiation Protection Programme.

Appendix A

A Reinvestigation of Radiocesium in Soil Samples from S-Jutland with Emphasis on the Possible Effect of the Pretreatment of the Samples Before Measurement

In September 1986 we collected soil samples from five locations in South Jutland. These locations have been identified as having relatively high depositions of Chernobyl debris¹).

It appeared from this study that the samples collected 0-5 cm contained contained 35% higher Chernobyl radiocesium deposit than those collected 0-10 cm. The 0-5 cm set was measured untreated, whereas the 0-10 cm set had received our normal treatment for soil samples, i.e. the soil had been dried, crushed and sieved. By this pretreatment some of the activity had apparently been lost (stones, roots etc.), and it was therefore decided to repeat the sampling and the analysis in 1988.

Table Al shows the results. It appears that the untreated samples on the average contained 5% higher levels than the treated. This shows that e.g. stones and roots removed by the sieving process contain some radiocesium, although not so much as indicated by the 1986 sampling.

In Table A2 we have summarized the results. The distribution of Chernobyl debris differs significantly from that of global fallout. In the 0-5 cm layer we find 69% of the Chernobyl ¹³⁷Cs but only 17% of the global fallout (compared with that in the 0-20 cm layer). But in the 10-20 cm layer we find 9% of the Chernobyl and 53% of the global fallout.

Table A3 shows that the Chernobyl ¹³⁷Cs generally decreased from 1986 to 1988, but the decrease was very uneven. We conclude that the deposition from Chernobyl may have shown great local variations perhaps due to hot spots in some samples.

The mean 1988/1986 ratios in Table A3 were probably different from 1 in case of the 0-5 cm set but not for the 0-10 cm set.

Location	Depth	Untr	eated	Tre	ated
	in cm	¹³⁷ Cs	134Cs	137Cs	134Cs
Hokkerup I	0-5	3800	910	3800	900
Hokkerup II	0-5	2600	570	2700	410
Hokkerup	0-10	4000	770	3600	690
Hokkerup	10-20	1470	B.D.L.	1430	29
Sender Vilstrup I	0-5	1510	270	1450	290
Sønder Vilstrup II	0-5	1540	350	1500	320
Sender Vilstrup	0-10	2100	360	2000	330
Sonder Vilstrup	10-20	740	B.D.L.	670	B.D.L
Gabei I	0-5	2200	420	1890	400
Gabel II	0-5	1970	400	1950	370
Gabel	0-10	4900	850	4600	800
Gabel	10-20	1380	65 A	1300	56
Rangstrup I	0-5	1090	210	1000	159
Rangstrup II	0-5	780	138 A	730	71
Rangstrup	0-10	1760	200	1840	220
Rangstrup	10-20	1850	190	1870	200
St ding I	0-5	2200	510	2100	440
Styling II	0-5	2000	450	1900	390
Styding	0-10	2900	580	2600	470
Styding	10-20	960	B.D.L .	900	B.D.L

Table AI. Radiocesium in soil samples collected in South Jutland 18 October 1988. (Unit: Bq m⁻²)

I and II are duplicates.

Table A2. Chernobyl and global failout ^{137}Cs in soil from five locations in South Jutland (cf. Table A1). (Bq $^{137}Cs m^{-2}$) ± 1 S.D.

Soil layer	Chemobyl	Giobal failout
0-5 cm	1600± 810	34 0± 80
0-10 cm	2100±1030	920 ± 320
10-20 cm	220± 330	1040 ± 250

The Chernobyl ¹³⁷Cs was calculated from the ¹³⁴Cs data by multiplication with 4, assuming that the ¹³⁴Cs/¹³⁷Cs in fresh Chernobyl debris was 0.55^{11} . The global fallout ¹³⁷Cs was calculated by subtracting the Chernobyl ¹³⁷Cs from the measured ¹³⁷Cs.

Location	0-5 cm (untreated)	0-10 cm (treated)
Hokkerup	0.99	0.99
Sdr. Vilstrup	0.74	0.83
Gabel	0.32	0.84
Rangstrup	0.15	0.25
Styding	0_62	1.21
Mean ±1 S.E.	0.56±0.15	0.82 ± 0.16

Table A3. Comparison of 1988 with 1986¹) Chernobyl deposition at the five locations in South Jutland. (Bq ¹³⁷Cs m⁻² in 1988/Bq ¹³⁷Cs m⁻² in 1986)

Appendix B

Statistical Information on Population Density, Area of the Zones, and Milk, Grain, Vegetable, and Fruit Production in the Zones

Zone		Area in km²	Population in thousands	Annual milk production in mega-kg	Annual wheat production in mega-kg	Annual rye production in mega-kg	Annual potato production in mcga-kg	Grass and green fodder production
		15)	28) 1965	13) 1985	13) 1985	13) 1985	13) 1985	in mega-kg 13) 1985
l:	North Jutiand	6,171	482	893				
R :	East Jutland	7,561	909	1,427				
钔:	West Jutiand	12,104	711	1,326	980	425	980	17,649
N:	South Jutland	3,929	250	663				
V :	Funen	3,486	455	357				
V I:	Zeeland	7,435	2,115*	306				
VH:	Lolland-Falster	1,795	141	76	952	140	120	2,536
VIII :	Bornholm	588	47	51				
Total		43.069	5,110	5.099	1,972	565	1,100	20,185

Appendix B. Statistical information

*1,170,000 people were living in Greater Copenhagen and 945,000 in the remaining part of Zealand.

Appendix C

A Comparison Between Observed and Predicted Levels in the Human Food Chain in Denmark in 1987

For the calculation of the ¹³⁷Cs levels before 1986 we have assumed the ¹³⁷Cs/⁹⁰Sr ratio equal to 1.6 because that was the ratio used in reference 21.

Sample	Location	Unit	Number observations in mean	Obs ±1\$	erved S.E.	Predicted	Obs /pred.	Model in reference (21)
Dried milk	Jutland	Bq ⁹⁰ Sr (kg Ca)-1	4	68	±4	114	0.60	C.3.2.1 No. 1
- - -	Islands	_ * _	3	45	±1	28	1.61	C.3.2.1 No. 3
Rye	Jutland	Bq ⁹⁰Sr kg -1	5	0.64	±0.14	0.49	1.31	C.2.2.1 No. 1
-	Islands	- - -	5	0.24	±0.03	0.12	2.00	C.2.2.1 No. 3
Barley	Jutiand	- *-	10	0.79	±0.13	0.63	1.25	C.2.2.1 No. 4
-	Islands	- - -	9	0.38	±0.08	0.25	1.52	C.2.2.1 No. 6
Wheat	Jutland	. • •	7	0.87	±0.17	0.46	1.89	C.2.2.1 No. 8
-	Islands		8	0.35	±0.05	0.20	1.75	C.2.2.1 No. 10
Oats	Jutland	.".	5	0.74	±0.11	1.30	0.57	C.2.2.1 No. 12
-	Islands	- " -	4	0.45	±0.05	0.61	0.75	C.2.2.1 No. 13
Potatoes	Jutland	- * -	6	0.04	4±0.002	0.097	0.45	C.2.5.1 No. 8
-	Islands	. " .	5	0.042	2 ± 0.007	0.088	0.48	C.2.5.1 No. 10
Cabbage	Jutland	- " -	4	0.33	± 0.01	0.32	1.03	C.2.5.1 No. 1
-	Islands	- " -	4	0.20	±0.03	0.25	0.80	C.2.5.1 No. 3
Carrot	Jutland	. . .	4	0.35	±0.06	0.55	0.64	C.2.5.1 No. 5
-	Islands	- " -	4	0.26	±0.10	0.16	1.63	C.2.5.1 No. 6
Apples	Denmark	. * .	4	0.02	5±0.004	0.013	1.92	C.2.5.1 No. 13
Pork	-	. * .		0.00	7	0.027	0.26	C.3.4.1 No. 3
Beef	-	-*-		0.01	5	0.035	0.43	C.3.4.1 No. 1
Eggs	-			0.02	0	0.012	1.67	C.3.6.1 No. 6
Total diet C	-	Bq ⁹⁰Sr (kg Ca) -1		121		190	0.64	C.4.2.1 No. 1
Total diet P	-	. " -		124		165	0.75	C.4.2.1 No. 7
Human bone								
> 29 yr	-	.".	31	22	±1.5	38	0.58	C.4.3.1 No. 13
Whole year								
grass	Islands	.".	4	400	± 30	820	0.49	C.2.4.1 No. 1
Fucus								
vesiculosus	-	- * -	4	226	± 30	420	0.54	C.2.7.1 No. 3
Ground								
water**	Denmark	Bq 90Sr m-3	10	0.23	±0.13	0.26	0.88	C.1.4.1 No. 1
Stream water	-		8	9.7	±1.3	6.4	1.52	C.1.4.1 No. 3
Lake water	-	-"-	8	21	±3	4.0	5.25	C.1.4.1 No. 6

Table C.I. Comparison between observed and predicted ⁹⁰Sr levels in environmental **samples collected in 1987**

**Mean of all ground water samples except Feldbak (cf. 4.3.1).

Sample	Location	Unit	Number observations in mean	Obse ±15	erved S.E.	Predicted	Obs/pred.	Model in reference (21)
Dried milk	Jutland	Bq ¹³⁷ Cs (kg K)-1	48	400	± 33	365	1.10	C.3.2.2 No. 1
	Islands	- " -	36	97	±10	450	0.22	C.3.2.2 No. 3
Rye	Jutland	Bq ¹³⁷ Cs kg ⁻¹		0.23		1.08	0.21	C.2.2.4 No. 1
~	Islands	. " -		0.11		0.88	0.13	C.2.2.4 No. 3
Barley	Jutland	.".		0.11		0.80	0.14	C.2.2.4 No. 4
~	islands	- " -		0.10		0.60	0.17	C.2.2.4 No. 5
Wheat	Jutland	- * -		0.10		0.80	0.13	C.2.2.4 No. 6
-	Islands	·"·		0.04	3	0.52	0.08	C.2.2.4 No. 7
Oats	Jutland	- " -		0. 9 7		0.66	1.47	C.2.2.4 No. 8
*	Islands	- * -		0.13		0.56	0.23	C.2.2.4 No. 9
Potatoes	Jutland	- " -	6	0.19	± 0.07	0.112	1.70	C.2.5.3 No. 5
~	Islands	- * -	5	0.07	± 0.04	0.086	0.81	C.2.5.3 No. 7
Cabbage	Denmark	<i>.</i> * .	8	0. 59	±0.008	0.097	0.61	C.2.5.3 No. 1
Carrot		- " -	8	0.06	0±0.012	0.193	0.31	C.2.5.3 No. 3
Apples	-	<i>-</i> " -	8	0.21	±0.04	1.43	0.15	C.2.5.3 No. 11
Pork		- " -		0.99		20	0.05	C.3.4.2 No. 3
Beef	*	- " -		2		0.98	2.04	C.3.4.2 No. 1
Eggs	-	- " -		0.18	5	1.98	0.09	C.3.6.2 No. 6
Total diet C	-	8q 137Cs (kg K)-1		550		2200	0.25	C.4.2.2 No. 1
Total diet P	-	- " -		432		2800	0.15	C.4.2.2 No. 6

Table C.2. Comparison between observed and predicted ¹³⁷Cs levels in environmental samples collected in 1987

Appendix C.3. Deposition in 1987 in Bq m^{-2}

	Jutland	Islanus	Denmark
⁹⁰ Sr Jan-Dec	1.41	1.47	1.44
¹³⁷ Cs Jan-Dec	32	26	29
⁹⁰ Sr July-Aug	0.25	0.26	0.25
90Sr May-Aug	0.66	0.52	0.59
¹³⁷ Cs Jan-Dec	5.5	5.3	5.4
¹³⁷ Cs May-Aug	12.5	11.4	12.0

Appendix D

Falloui Rates and Accumulated Fallout (mCi ⁹⁰Sr km⁻²) in Denmark 1950-1987

d_i

Annual fallout rate in mCi ⁹⁰Sr km⁻² yr⁻¹ or Bq ⁹⁰Sr m⁻² yr⁻¹. Accumulated fallout by the end of the year (i) assuming effective half-lives of ⁹⁰Sr of 28.8 y. Unit: mCi ⁹⁰Sr km⁻² or Bq ⁹⁰Sr m⁻².

di(May-Aug) and di(July-Aug):

The fallout rates in the periods: May-Aug and July-Aug, respectively. Unit: mCi 90 Sr km⁻² period⁻¹ or Bq 90 Sr m⁻² period⁻¹. The fallout rate (d_i) was based on precipitation data collected for all Denmark in the period 1962-1984 (cf. Table 4.2.1)). Before 1962 the levels in the tables were estimated from the HASL data for New York (HASL Appendix 291, 1975)²⁹⁾ considering that the mean ratio between 90 Sr fallout in Denmark and New York was 0.7 in the period 1962-1974.

The $d_{i(Msy-Aug)}$ and $d_{i(July-Aug)}$ values were also obtained from 4.2¹) for the period 1962-1984. For the years 1959-1961 the values were calculated from data obtained from ⁹⁰Sr analysis of air (1959) and precipitation samples (1962 and 1961) collected at Risø. Before 1959, the values were estimated from the corresponding d_i values assuming that the ratios $d_{i(May-Aug)}/d_i$ and $d_{i(July-Aug)}/d_i$ were constant in time and equal to the means found for the period 1962-1974, which were 0.54 (1 S.D.: 0.09) and 0.24 (1 S.D.: 0.06), respectively.

Table D.1 shows the mCi ⁹⁰Sr km⁻² figures and Table D.2 gives the Bq m⁻² values.

	Den	mark	Jut	land	Isla	ands
Year	di	Ai _(28.82)	di	Ai _(28.82)	di	Ai _(28.82)
1950	0.021	0.020	0.022	0.021	0.020	0.020
1951	0.101	0.118	0.114	0.132	0.088	0.105
1952	0.198	0.309	0.224	0.347	0.172	0.270
1953	0.500	0.789	0.566	0.891	0.434	0.687
1954	1.901	2.623	2.152	2.967	1.650	2.279
1955	2.501	4.997	2.831	5.655	2.171	4.340
1956	3.101	7.898	3.510	8.939	2.692	6.858
1957	3.101	10.728	3.510	12.142	2.692	9.313
1958	4.302	14.658	4.869	16.591	3.734	12.725
1959	6.102	20.247	6.908	22.918	5.297	17.576
1960	1.140	20.859	1.291	23.610	0.990	18.107
1961	1.481	21.787	1.676	24.661	1.285	18.913
1962	7.428	28.493	7.976	31.830	6.880	25.155
1963	16.695	44.071	18.453	49.041	14.937	39.101
1964	10.412	53.136	11.685	59.225	9.139	47.048
1965	3.954	55.679	4.204	61.861	3.704	49.497
1966	2.145	56.395	2.166	62.445	2.124	50.345
1967	1.047	56.023	1.176	62.048	0.918	49.997
1968	1.403	56.006	1.568	62.045	1.237	49.968
1969	1.035	55.632	1.241	61.721	0.829	49.542
1970	1.647	55.863	1.993	62.140	1.301	49.586
1971	1.506	55.951	1.726	62.288	1.286	49.615
1972	0.435	54.993	0.457	61.194	0.413	48.792
1973	0.192	53.821	0.215	59.891	0.168	47.750
1974	0.710	53.183	0.779	59.171	0.643	47.197
1975	0.414	52.272	0.452	58.150	0.376	46.397
1976	0.103	51.082	0.116	56.826	0.090	45.33 9
1977	0.384	50.204	0.405	55.827	0.362	44.581
1978	0.463	49.426	0.538	54.985	0.388	43.867
1979	0.166	48.379	0.174	53.810	0.156	42.947
1980	0.095	47.244	0.114	52.556	0.078	41.932
1981	0.451	46.358	0.309	51 <i>.</i> 559	0.269	41.159
1982	0.046	45.257	0.048	50.332	0.043	40.184
1983	0.036	44.174	0.036	49.123	0.037	39.227
1984	0.029	43.110	0.033	47.941	0.026	38.283
1985	0.022	42.067	0.020	46.776	0.023	37.360
1986	1.041	42.042	1.081	46.674	1.000	37.412
1987	0.039	42.022	0.038	46.649	0.040	37.396

Appendix D.1. Fallout rates and accumulated fallout (mCi ⁹⁰Sr km⁻²) in Denmark 1950-1987

Den	mark	Jut	land	Isla	nds
di _(May-Aug)	di _(July-Aug)	di _(May-Aug)	di _(July-Aug)	di _(May-Aug)	di _(July-Aug)
0.01	0.01	0.01	0.01	0.01	0.01
0.05	0.02	0.06	0.03	0.05	0.02
0.11	0.05	0.12	0.05	0.09	0.04
0.27	0.12	0.31	0.14	0.23	0.10
1.03	0.46	1.16	0.52	0.89	0.40
1.35	0.60	1.53	0.68	1.17	0.52
1.67	0.74	1.90	0.84	1,45	0.65
1.67	0.74	1.90	0.84	1.45	0.65
2.32	1.03	2.63	1.17	2.01	0.90
2.50	0.68	2.76	0.75	2.24	0.61
0.47	0.31	0.52	0.34	0.42	0.28
0.66	0.47	0.73	0.52	0.590	0.42
4.223	1.857	4.566	2.052	3.880	1.662
9.965	5.629	10.753	5.932	9.177	5.327
6.235	2.568	7.170	2.910	5.299	2.226
2.029	0.850	2.094	0.852	1.964	0.848
1.049	0.418	0.984	0.496	1.114	0.340
0.367	0.141	0.380	0.134	0.354	0.148
0.848	0.426	0.910	0.460	0.786	0.392
0.614	0.276	0.723	0.319	0.505	0.233
0.908	0.547	1.076	0.632	0.740	0.462
0.992	0.405	1.154	0.516	0.830	0.294
0.253	0.084	0.262	0.084	0.244	0.084
0.075	0.033	0.093	0.039	0.057	0.027
0.421	0.190	0.463	0.219	0.378	0.162
0.159	0.075	0.179	0.091	0.157	0.060
0.032	0.010	0.032	0.011	0.032	0.009
0.178	0.107	0.164	0.085	0.190	0.129
0.232	0.096	0.275	0.098	0.188	0.093
0.086	0.030	0.087	0.031	0.084	0.029
0.051	0.022	0.064	0.025	0.038	0.0180
0.175	0.060	0.176	0.058	0.174	0.061
0.022	0.0071	0.024	0.0085	0.020	0.0058
0.013	0.0048	0.015	0,0055	0.0114	0.0043
0.013	0.0075	0.016	0.0090	0.0106	0.0059
0.0086	0.0054	0.0075	0.0046	0.0088	0.0062
0.74	0.052	0.78	0.055	0.70	0.048
0.0159	0.0068	0.0178	0.0068	0.0141	0.0070

Riso-R-	
563	

						,
	Der	imark	Jut	land	Isla	inds
Year	đ	Ai _(28.82)	<u>a</u> .	Ai _(28.82)	<u>a</u> .	Ai _(28.82)
1950	0.777	0.759	0.814	0.795	0.740	0.722
1951	3.737	4.389	4.218	4.894	3.256	3.884
1952	7.326	11.436	8.288	12.868	6.364	10.004
1953	18.500	29.225	20.942	33.007	16.058	25.443
1954	70.337	97.196	79.624	109.954	61.050	84.438
1955	92.537	185.224	104.747	209.599	80.327	160.849
1956	114.737	292.833	129.870	331.402	99.604	254.264
1957	114.737	397.884	129.870	450.310	99.604	345.458
1958	159.174	543.820	180.153	615.481	138.158	472.124
1959	225.774	751.306	255.596	850.377	195.989	652.236
1960	42.180	774.629	47.767	876.800	36.630	672.495
1961	54.797	809.716	62.012	916.502	47.545	702.929
1962	274.836	1058.779	295.112	1182.821	254.560	934.736
1963	617.715	1636.653	682.761	1821.249	552.669	1452.058
1964	385.244	1973.849	432.345	2200.039	338.143	1747.659
1965	146.298	2069.764	155.548	2299.609	137.048	1839.918
1966	79.365	2098.057	80.142	2323.199	78.588	1872.915
1967	38.739	2086.017	43.512	2310.468	33.966	1861.566
1968	51.911	2087.122	58.016	2312.200	45.769	1862.009
1969	38.295	2074.905	45.917	2302.078	30.673	1847.704
1970	60.939	2085.092	73.741	2319.360	48.137	1850.789
1971	55.722	2089.939	63.862	2326.587	47.582	1853.258
1972	16.095	2055.987	16.909	2287.806	15.281	1824.135
1973	7.104	2014.063	7.955	2241.204	6.216	1786.854
1974	26.270	1991.847	28.823	2216.082	23.791	1767.617
1975	15.318	1959.467	16.724	2179.746	13.912	1739.193
1976	3.811	1916.622	4.292	2132.136	3.330	1701.114
1977	14.208	1884.946	14.985	2096.097	13.394	1673.764
1978	17.131	1856.876	19.906	2065.718	14.356	1648.004
1979	6.142	1818.745	6.438	2022.914	5.772	1614.475
1980	3.504	1778.945	4.229	1979.966	2.869	1577.924
1981	10.662	1747.079	11.447	1944.499	9.967	1549.659
1982	1.691	1707.212	1.782	1900.127	i.601	1514.297
1983	1.344	1667.954	1.329	1856.433	1.359	1479.475
1984	1.094	1629.385	1.209	1813.506	0.980	1445.264
1985	0.806	1591.452	0.744	1771.286	0.868	1411.618
1986	38.5	1591.218	40	1766.622	37	1415.882
1987	1.44	1554.810	1.41	1726.017	1.47	1383 670

Appendix D.2. Fallow rates and accumulated fallow (Bq ⁹⁰Sr m⁻²) in Denmark 1950-1987

	Deni	mark	Jut	land	Isla	inds
Year	di _(May-Aug)	di _(July-Aug)	di _(May-Aug)	di _(July-Aug)	di _(May-Aug)	di _(July-Aug)
1950	0.370	0.370	0.370	0.370	0.370	0.370
1951	1.850	0.740	2.220	1.110	1.850	0.740
1952	4.070	1.850	4.440	1.850	3.330	1.480
1953	9.990	4.440	11.470	5.180	8.510	3.700
1954	38.110	17.020	42.920	19.240	32.930	14.800
1955	49.950	22.200	56.610	25.160	43.290	19. 240
1956	61.790	27.380	70.300	31.080	53.650	24.050
1957	61.790	27.380	70.300	31.080	53.650	24.050
1958	85.840	38.110	97.310	43.290	74.740	33.300
1959	92.500	25.160	102.120	27.750	82.880	22.570
1960	17.390	11.470	19.240	12.580	15.540	10.3 60
1961	24.420	17.390	27.010	19.240	21.830	15.540
1962	156.251	68.709	168.942	75.924	143.560	61.4 9 4
1963	368.705	208.273	397.861	219.484	339.549	197.099
1964	230.695	95.016	265.290	107.670	196.063	82.362
1965	75.073	31.450	77.478	31.524	72.668	31.376
1966	38.813	15.466	36.408	18.352	41.218	12.580
1967	13.579	5.217	14.060	4.958	13.098	5.476
1968	31.376	15.762	33.670	17.020	29.082	14.504
1969	22.718	10.212	26.751	11.803	18. 6 85	8.621
1970	33.596	20.239	39.812	23.384	27.380	17.094
1971	36.704	14.985	42.698	19.092	30.710	10.878
1972	9.361	3.108	9.694	3.108	9.028	3.108
1973	2.775	1.221	3.441	1.443	2.109	0.999
1974	15.577	7.030	17.131	8.103	13.986	5.9 9 4
1975	5.883	2.775	6 .623	3.367	5.809	2.220
1976	1.184	0.370	1.184	0.407	1.184	0.333
1977	6.586	3.959	6.068	3.145	7.030	4.773
1978	8.584	3.552	10.175	3.626	6.956	3.441
1979	3.182	1.110	3.219	1.147	3.108	1.073
1980	1.903	0.816	2.386	0.936	1.420	0.664
1981	6.464	2.205	6.494	2.144	6.433	2.265
1982	0.816	0.263	0.876	0.314	0.755	0.215
1983	0.483	0.178	0.544	0.202	0.423	0.160
1984	0.488	0.277	0.581	0.336	0.395	0.216
1985	0.318	0.200	0.276	0.169	0.326	0.230
1986	27.4	1.91	28.8	2.05	26.0	1.7 6
1987	0.59	0.25	0.66	0.25	0.52	0.26

References

- 1) Risø Reports Nos. 1, 3, 9, 14, 23, 41, 63, 85, 107, 130, 154, 180, 201, 220, 245, 265, 291, 305, 323, 345, 361, 386, 403, 421, 447, 469, 487, 509, 527, 540 and 549 (1957-88).
- R.G. Osmond, M.J. Owers, C. Healy, and A.P. Mead, The Determination of Radioactivity due to Caesium, Strontium, Barium and Cerium in Waters and Filters. AERE-R 2899 (1959).
- F.J- Bryant, A. Morgan, and G.S. Spicer, The Determination of Radiostrontium in Biological Materials. AERE-R 3030 (1959).
- 4) John H. Harley, Manual of Standard Procedures. HASL-300 (1972).
- 5) A. Hald, private communication (1958).
- 6) J. Lippert, Low Level Counting. Risø Report No. 44 (1963).
- 7) P. Quittner, Nucl. Instr. and Methods 76, 115-124 (1969).
- 8) J. Lippert, Some Applications for Semiconductor Detectors in Health Physics. Proc. of the First International Congress of Radiation Protection, 271-277 (Pergamon Press, 1968).
- 9) Meteorologisk Institut, Ugeberetning om nedbør m.m. 1987.
- S. Boelskifte, The application of Fucus vesiculosus as a bioindicator of 60Co concentrations in the Danish Straits. Journal of Environmental Radioactivity 2, 215-227 (1985).
- Folmer Dam and Agnes Elgström, Vore fødemidler (Svegårds Forlag, Sorø, 1968). (In Danish)
- 12) J. Vestergaard, Analysis of Variance with Unequal Numbers in Group. GIER System Library No. 211 (A/S Regnecentralen, Copenhagen, 1964).
- 13) Landbrugsstatistik 1985. Danmarks Statistik (Copenhaggen, 1986).
- 14) Björn Bjurman, Ingemar Vintersved, Lars-Erik De Geer, Anne Liv Rudjord, Finn Ugletveit, Hannele Aaltonen, Kari Sinkko, Aino Rantavaara, Sven Poul Nielsen, Asker Aarkrog and Walter Kolb, The Detection of Radioactive Material due to Leakage Following an Underground Nuclear Explosion. To be published.
- 15) Statistisk årbog 1972 (Statistical Yearbook) (Copenhagen, 1972).
- 16) J. Lippert, Statdata, Risø-M-1780, June 1975.
- 17) A. Aarkrog, H. Dahlgaard and S. Boelskifte, Transfer of Radiocesium and ⁹⁰Sr from Sellafield to the Danish Straits. Study of radioactive materials in the Baltic Sea. IAEA-TECDOC-362 (1986).
- A. Aarkrog (editor), Bioindicator Studies in Nordic Waters. Risø-M-2517. Nordic Liaison Committee for Atomic Energy (June, 1985).
- 19) S. Boelskifte, Dispersion and Current Measurements. Risø-M-2566 (Ph.D. thesis) April 1986.
- 20) A. Aarkrog, The Radioecological Impact of the Chernobyl Debris Compared with that from Nuclear Weapons Fallout. J. Environ. Radioactivity 6, 151-162 (1988).
- 21) A. Aarkrog, Environmental Studies on Radioecological Sensitivity and Variability with Special Emphasis on the Fallout Nuclides ⁹⁰Sr and ¹³⁷Cs. Risø-R-437 (June 1979).
- 22) USSR State Committee on the Utilization of Atomic Energy. The accident at the Chernobyl nuclear power plant and its consequences. Information compiled for the IAEA Experts Meeting 25-29 August 1986, Vienna (1986).
- 24) S.P. Nielsen, In situ measurements of environmental gamma radiation using a mobile Ge(Li) spectrometer system. Risø Report No. 367 (1977).

- 25) UNSCEAR. United Nations Scientific Committee on the Effects of Atomic Radiation. Ionizing Radiation: Sources and biological effects. (New York) 773 pp. (1982).
- 26) S. Mattsson, Radionuclides in lichen, reindeer and man. University of Lund, various pagination (1972).
- 27) A. Aarkrog, Translocation of radionuclides in cereal crops in Ecological Aspects of Radionuclide Research, p. 81-90. Blackwell Scientific Publications (1983).
- 28) Statistisk årbog 1987 (Statistical Yearbook) (Copenhagen 1988).
- 29) Deutsches Hydrographisches Institut. The Effects on the North Sea and the Baltic Sea of the Nuclear Accident at Chernobyl, Nr. 2149/34 (Hamburg 1987).
- 30) Personal communication from Finn Clemmesen, Statens Levnedsmiddelstyrelse 1988.
- 31) S.P. Nielsen and L. Bøtter-Jensen, Intercomparison of Instruments for Measurements of Background Radiation, Risø-M-2239 (1981).
- 32) Henning Dahlgaard, Bioindicators for monitoring radioactive pollution of the marine environment. Rise-R-443 (1981).
- 33) R. Saxén et al., Radioactivity of Wet and Dry Deposition and Soil in Finland after the Chernobyl Accident in 1986. STUK-A57 (1987).
- 36) Sydkraft: Barsebäckverket-Månadsrapport; Vattenfall: Ringhalsverket. Månadsrapport ..., and Vattenfall: Forsmarkverket - Miljörapport. (Monthly reports to the Swedish authorities on discharges from Barsebäck, Ringhals and Forsmark, respectively) (in Swedish).
- 37) R.S. Cambray, Annual Discharges of Certain Long-lived Radionuclides to the Sea and to the Atmosphere from the Sellafield Works, Cumbria 1957-1981. AERE-M 3269 (1982).
- 38) WHO: Chernobyl: Health Hazards from Radiocesium Environmental Health Series No. 24. World Health Organization Copenhagen (1987).

Bibliographic Data Sheet Risø-R-563

Tide and authors Environmental Radioactivity in Denmark in 1987 A. Aarkrog, L. Bøtter-Jensen, Chen Qing Jiang, H. Dahlgaard, Heinz Hansen, Elis Holm, Bente Lauridsen, S.P. Nielsen and J. Søgaard-Hansen

ISSN		
0106-2840		
0106-407X		
Date		
May 1989		
Project/contract no.		

Pages	Tables	Illustrations	References
142	159	58	38

Abstract (Max. 2000 characters)

Strontium-90, radiocesium, and other radionuclides were determined in samples from all over the country of air, precipitation, stream water, lake water, ground water, drinking water, see water, soil, sediments, dried milk, fresh milk, meat, fish, cheese, eggs, grain, bread, potatocs, vegetables, fruit, grass, moss, lichen, sea plants, total diet, and humans. Estimates are given of the mean contents of radiostrontium and radiocesium in the human diet in Denmark during 1987. Tritium was determined in precipitation, ground water, other fresh waters, and sea water. The γ -background was measured regularly by TLD, ionization chamber, and on site γ -spectroscopy at locations around Riss, at ten of the State experimental farms, along the coasts of the Great Belt and atound Gylling Nas. The marine environments at Barsebäck and Ringhals were monitored for 137Cs and corrosion products (⁵⁸Co, ⁶⁰Co, ⁴⁵Zn, ⁵⁴Mn).

The expanded programme initiated after the Cernobyl accident in 1986 was carried on in 1987 with minor reductions.

Descriptors INIS/EDB

AIR; AMERICIUM 241; ANTIMONY 125; AQUATIC ECO-SYSTEMS; ATMOSPHERIC PRECIPITATIONS; BACKGROUND RADIATION: BARSEBAECK-I REACTOR: BARSEBAECK-2 RE-ACTOR; BONE TISSUES; CERIUM ISOTOPES; CESIUM 134; CESIUM 137; CHERNOBYLSK-4 REACTOR; COBALT ISO-TOPES; CURIUM ISOTOPES; DENMARK; DIET; ENVIRON-MENT; FALLOUT DEPOSITS; FISHES; FOOD; FOOD CHAINS; GLOBAL FALLOUT; GROUND WATER; IODINE 131; LANTHANUM 140; LOCAL FALLOUT; MAN; MANGANESE 54; MILK; NEPTUNIUM 239; NIOBIUM 95; NUMERICAL DATA; PLANTS; PLUTONIUM ISOTOPES; RADIOACTIVITY; REAC-TOR ACCIDENTS; RINGHALS-I REACTOR; RINGHALS-2 RE-ACTOR; RINGHALS-3 REACTOR; RISOE NATIONAL LABOR-ATORY; RUTHENIUM ISOTOPES; SEAWATER; SEAWEEDS; SEDIMENTS; SILVER 110; STRONTIUM 90; TRITIUM; ZINC 65; ZIRCONIUM 95;

Available on request from Risø Library, Risø National Laboratory, (Risø Bibliotek, Forskningscenter Risø), P.O.Box 49, DK-4000 Roskilde, Denmark. Telephone + 45 42 37 12 12, ext. 2268/2269 Telex 43 116. Telefax + 45 46 75 56 27.
۹.

Sales distributors: G.E.C. Gad Strøget Vimmelskaftet 32 DK-1161 Copenhagen K, Denmark

4

Available on exchange from: Risø Library, Risø National Laboratory, P.O. Box 49, DK-4000 Roskilde, Denmark Phone + 45 42 37 12 12 ext. 2268/2269 Telex 43 116, Telefax + 45 46 75 56 27

ISBN 87-550-1532-8 ISSN 0106-2840 ISSN 0106-407X

٠