716 research outputs found

    Quasi-equilibria in one-dimensional self-gravitating many body systems

    Full text link
    The microscopic dynamics of one-dimensional self-gravitating many-body systems is studied. We examine two courses of the evolution which has the isothermal and stationary water-bag distribution as initial conditions. We investigate the evolution of the systems toward thermal equilibrium. It is found that when the number of degrees of freedom of the system is increased, the water-bag distribution becomes a quasi-equilibrium, and also the stochasticity of the system reduces. This results suggest that the phase space of the system is effectively not ergodic and the system with large degreees of freedom approaches to the near-integrable one.Comment: 21pages + 7 figures (available upon request), revtex, submitted to Physical Review

    Relaxation processes in one-dimensional self-gravitating many-body systems

    Get PDF
    Though one dimensional self-gravitating NN-body systems have been studied for three decade, the nature of relaxation was still unclear. There were inconsistent results about relaxation time; some initial state relaxed in the time scale T∌N tcT\sim N\,t_c, but another state did not relax even after T∌N2 tcT\sim N^2\,t_c, where tct_c is the crossing time. The water-bag distribution was believed not to relax after T∌N2 tcT\sim N^2\,t_c. In our previous paper, however, we found there are two different relaxation times in the water-bag distribution;in the faster relaxation ( microscopic relaxation ) the equipartition of energy distribution is attains but the macroscopic distribution turns into the isothermal distribution in the later relaxation (macroscopic relaxation). In this paper, we investigated the properties of the two relaxation. We found that the microscopic relaxation time is T∌N tcT\sim N\,t_c, and the macroscopic relaxation time is proportional to N tcN\,t_c, thus the water-bag does relax. We can see the inconsistency about the relaxation times is resolved as that we see the two different aspect of relaxations. Further, the physical mechanisms of the relaxations are presented.Comment: 11 pages, uuencoded, compressed Postscript, no figure, figures available at ftp://ferio.mtk.nao.ac.jp/pub/tsuchiya/Tsuchiya95.tar.g

    Photometric and dynamic evolution of an isolated disc galaxy simulation

    Full text link
    We present a detailed analysis of the evolution of a simulated isolated disc galaxy. The simulation includes stars, gas, star formation and simple chemical yields. Stellar particles are split in two populations: the old one is present at the beginning of the simulation and is calibrated according to various ages and metallicities; the new population borns in the course of the simulation and inherits the metallicity of the gas particles. The results have been calibrated in four wavebands with the spectro-photometric evolutionary model GISSEL2000 (Bruzual & Charlot 1993). Dust extinction has also been taken into account. A rest-frame morphological and bidimensional photometric analysis has been performed on simulated images, with the same tools as for observations. The effects of the stellar bar formation and the linked star formation episode on the global properties of the galaxy (mass and luminosity distribution, colours, isophotal radii) have been analysed. In particular, we have disentangled the effects of stellar evolution from dynamic evolution to explain the cause of the isophotal radii variations. We show that the dynamic properties (e.g. mass) of the area enclosed by any isophotal radius depends on the waveband and on the level of star formation activity. It is also shown that the bar isophotes remain thinner than mass isodensities a long time (> 0.7 Gyr) after the maximum of star formation rate. We show that bar ellipticity is very wavelength dependent as suggested by real observations. Effects of dust extinction on photometric and morphological measurements are systematically quantified.Comment: 14 pages, 16 figures (13 in eps, 3 in jpg format). Accepted for publication in A&

    Solid molecular hydrogen: The Broken Symmetry Phase

    Full text link
    By performing constant-pressure variable-cell ab initio molecular dynamics simulations we find a quadrupolar orthorhombic structure, of Pca21Pca2_1 symmetry, for the broken symmetry phase (phase II) of solid H2 at T=0 and P =110 - 150 GPa. We present results for the equation of state, lattice parameters and vibronic frequencies, in very good agreement with experimental observations. Anharmonic quantum corrections to the vibrational frequencies are estimated using available data on H2 and D2. We assign the observed modes to specific symmetry representations.Comment: 5 pages (twocolumn), 4 Postscript figures. To appear in Phys. Rev. Let

    Secular Evolution of Galaxy Morphologies

    Get PDF
    Today we have numerous evidences that spirals evolve dynamically through various secular or episodic processes, such as bar formation and destruction, bulge growth and mergers, sometimes over much shorter periods than the standard galaxy age of 10-15 Gyr. This, coupled to the known properties of the Hubble sequence, leads to a unique sense of evolution: from Sm to Sa. Linking this to the known mass components provides new indications on the nature of dark matter in galaxies. The existence of large amounts of yet undetected dark gas appears as the most natural option. Bounds on the amount of dark stars can be given since their formation is mostly irreversible and requires obviously a same amount of gas.Comment: 8 pages, Latex2e, crckapb.sty macros, 1 Postscript figure, replaced with TeX source; To be published in the proceeedings of the "Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer Dordrecht

    Simulation of thermal conductivity and heat transport in solids

    Full text link
    Using molecular dynamics (MD) with classical interaction potentials we present calculations of thermal conductivity and heat transport in crystals and glasses. Inducing shock waves and heat pulses into the systems we study the spreading of energy and temperature over the configurations. Phonon decay is investigated by exciting single modes in the structures and monitoring the time evolution of the amplitude using MD in a microcanonical ensemble. As examples, crystalline and amorphous modifications of Selenium and SiO2\rm{SiO_2} are considered.Comment: Revtex, 8 pages, 11 postscript figures, accepted for publication in PR

    Experimental Evidence of Time Delay Induced Death in Coupled Limit Cycle Oscillators

    Get PDF
    Experimental observations of time delay induced amplitude death in a pair of coupled nonlinear electronic circuits that are individually capable of exhibiting limit cycle oscillations are described. In particular, the existence of multiply connected death islands in the parameter space of the coupling strength and the time delay parameter for coupled identical oscillators is established. The existence of such regions was predicted earlier on theoretical grounds in [Phys. Rev. Lett. 80, 5109 (1998); Physica 129D, 15 (1999)]. The experiments also reveal the occurrence of multiple frequency states, frequency suppression of oscillations with increased time delay and the onset of both in-phase and anti-phase collective oscillations.Comment: 4 aps formatted RevTeX pages; 6 figures; to appear in Phys. Rev. Let

    Structure and relaxations in liquid and amorphous Selenium

    Get PDF
    We report a molecular dynamics simulation of selenium, described by a three-body interaction. The temperatures T_g and T_c and the structural properties are in agreement with experiment. The mean nearest neighbor coordination number is 2.1. A small pre-peak at about 1 AA^-1 can be explained in terms of void correlations. In the intermediate self-scattering function, i.e. the density fluctuation correlation, classical behavior, alpha- and beta-regimes, is found. We also observe the plateau in the beta-regime below T_g. In a second step, we investigated the heterogeneous and/or homogeneous behavior of the relaxations. At both short and long times the relaxations are homogeneous (or weakly heterogeneous). In the intermediate time scale, lowering the temperature increases the heterogeneity. We connect these different domains to the vibrational (ballistic), beta- and alpha-regimes. We have also shown that the increase in heterogeneity can be understood in terms of relaxations

    The Structure, Dynamics and Electronic Structure of Liquid Ag-Se Alloys Investigated by Ab Initio Simulation

    Full text link
    Ab initio molecular-dynamics simulations have been used to investigate the structure, dynamics and electronic properties of the liquid alloy Ag(1-x)Se(x) at 1350 K and at the three compositions x=0.33, 0.42 and 0.65. The calculations are based on density-functional theory in the local density approximation and on the pseudopotential plane-wave method. The reliability of the simulations is confirmed by detailed comparisons with very recent neutron diffraction results for the partial structure factors and radial distribution functions (RDF) of the stoichiometric liquid Ag2Se. The simulations show a dramatic change of the Se-Se RDF with increasing Se content. This change is due to the formation of Se clusters bound by covalent bonds, the Se-Se bond length being almost the same as in pure c-Se and l-Se. The clusters are predominantly chain-like, but for higher x a large fraction of 3-fold coordinated Se atoms is also found. It is shown that the equilibrium fractions of Se present as isolated atoms and in clusters can be understood on a simple charge-balance model based on an ionic interpretation. The Ag and Se diffusion coefficients both increase with Se content, in spite of the Se clustering. An analysis of the Se-Se bond dynamics reveals surprisingly short bond lifetimes of less than 1 ps. The changes in the density of states with composition arise directly from the formation of Se-Se covalent bonds. Results for the electronic conductivity obtained using the Kubo-Greenwood approximation are in adequate agreement with experiment for l-Ag2Se, but not for the high Se contents. Possible reasons for this are discussed.Comment: 14 pages, Revtex, 14 Postscript figures embedded in the tex
    • 

    corecore