8,828 research outputs found
Steroid resistant CD8(+)CD28(null) NKT-like pro-inflammatory cytotoxic cells in chronic obstructive pulmonary disease
This article is part of the Research Topic On the Origin and Function of Human NK-like CD8+ T Cells: Charting New TerritoriesCorticosteroid resistance is a major barrier to effective treatment in chronic obstructive pulmonary disease (COPD), and failure to suppress systemic inflammation in these patients may result in increased comorbidity. Although much of the research to date has focused on the role of macrophages and neutrophils involved in inflammation in the airways in COPD, recent evidence suggests that CD8+ T cells may be central regulators of the inflammatory network in this disease. CD8+ cytotoxic pro-inflammatory T cells have been shown to be increased in the peripheral blood and airways in patients with COPD, whereas smokers that have not progressed to COPD only show an increase in the lungs. Although the mechanisms underlying steroid resistance in these lymphocytes is largely unknown, new research has identified a role for cytotoxic pro-inflammatory CD8+ T-cells and CD8+ natural killer T-like (NKT-like) cells. Increased numbers of these cells and their significant loss of the co-stimulatory molecule CD28 have been shown in COPD, consistent with findings in the elderly and in clinical conditions involving chronic activation of the immune system. In COPD, these senescent cells expressed increased levels of the cytotoxic mediators, perforin and granzyme b, and the pro-inflammatory cytokines, IFNγ and TNFα. They also demonstrated increased cytotoxicity toward lung epithelial cells and importantly were resistant to immunosuppression by corticosteroids compared with their CD28+ counterparts. Further research has shown these cells evade the immunosuppressive effects of steroids via multiple mechanisms. This mini review will focus on cytotoxic pro-inflammatory CD8+CD28(null) NKT-like cells involved in COPD and novel approaches to reverse steroid resistance in these cells.Greg Hodge and Sandra Hodg
The Outer Edges of Dwarf Irregular Galaxies: Stars and Gas
We have in recent years come to view dwarf galaxy evolution in the broader
context of the cosmic evolution of large-scale structure. Dwarf galaxies, as
the putative building blocks of hierarchical galaxy formation, and also as the
most numerous galaxies in the Universe, play a central role in cosmic
evolution. In particular, the interplay of galactic and intergalactic material
around dwarf irregulars must be more extensive than in more massive disk
galaxies because of their lower gravitational potential and lower interstellar
pressures. The outer regions of dwarf irregular galaxies therefore yield vital
clues to the dominant processes in this interaction zone.
The Workshop addressed a number of questions related to the role of the outer
regions in the evolution of dwarf galaxies and broader consequences. On-line
Workshop Proceedings are at http://www.lowell.edu/Workshops/Lowell02/Comment: Summary of the 2002 Lowell Observatory Workshop, to appear in PASP
Conference Highlights; 6 pp, uses aaspp4.sty. On-line Proceedings at
http://www.lowell.edu/Workshops/Lowell02
Corrosion resistant thermal barrier coating
A thermal barrier coating system for protecting metal surfaces at high temperature in normally corrosive environments is described. The thermal barrier coating system includes a metal alloy bond coating, the alloy containing nickel, cobalt, iron, or a combination of these metals. The system further includes a corrosion resistant thermal barrier oxide coating containing at least one alkaline earth silicate. The preferred oxides are calcium silicate, barium silicate, magnesium silicate, or combinations of these silicates
Uranium and Associated Heavy Metals in Ovis aries in a Mining Impacted Area in Northwestern New Mexico.
The objective of this study was to determine uranium (U) and other heavy metal (HM) concentrations (As, Cd, Pb, Mo, and Se) in tissue samples collected from sheep (Ovis aries), the primary meat staple on the Navajo reservation in northwestern New Mexico. The study setting was a prime target of U mining, where more than 1100 unreclaimed abandoned U mines and structures remain. The forage and water sources for the sheep in this study were located within 3.2 km of abandoned U mines and structures. Tissue samples from sheep (n = 3), their local forage grasses (n = 24), soil (n = 24), and drinking water (n = 14) sources were collected. The samples were analyzed using Inductively Coupled Plasma-Mass Spectrometry. Results: In general, HMs concentrated more in the roots of forage compared to the above ground parts. The sheep forage samples fell below the National Research Council maximum tolerable concentration (5 mg/kg). The bioaccumulation factor ratio was >1 in several forage samples, ranging from 1.12 to 16.86 for Mo, Cd, and Se. The study findings showed that the concentrations of HMs were greatest in the liver and kidneys. Of the calculated human intake, Se Reference Dietary Intake and Mo Recommended Dietary Allowance were exceeded, but the tolerable upper limits for both were not exceeded. Food intake recommendations informed by research are needed for individuals especially those that may be more sensitive to HMs. Further study with larger sample sizes is needed to explore other impacted communities across the reservation
Improved AURA k-Nearest Neighbour approach
The k-Nearest Neighbour (kNN) approach is a widely-used technique for pattern classification. Ranked distance measurements to a known sample set determine the classification of unknown samples. Though effective, kNN, like most classification methods does not scale well with increased sample size. This is due to their being a relationship between the unknown query and every other sample in the data space. In order to make this operation scalable, we apply AURA to the kNN problem. AURA is a highly-scalable associative-memory based binary neural-network intended for high-speed approximate search and match operations on large unstructured datasets. Previous work has seen AURA methods applied to this problem as a scalable, but approximate kNN classifier. This paper continues this work by using AURA in conjunction with kernel-based input vectors, in order to create a fast scalable kNN classifier, whilst improving recall accuracy to levels similar to standard kNN implementations
Plant root proliferation in nitrogen-rich patches confers competitive advantage
Plants respond to environmental heterogeneity, particularly below ground, where spectacular root proliferations in nutrient-rich patches may occur. Such 'foraging' responses apparently maximize nutrient uptake and are now prominent in plant ecological theory. Proliferations in nitrogen-rich patches are difficult to explain adaptively, however. The high mobility of soil nitrate should limit the contribution of proliferation to N capture. Many experiments on isolated plants show only a weak relation between proliferation and N uptake. We show that N capture is associated strongly with proliferation during interspecific competition for finite, locally available, mixed N sources, precisely the conditions under which N becomes available to plants on generally infertile soils. This explains why N-induced root proliferation is an important resource-capture mechanism in N-limited plant communities and suggests that increasing proliferation by crop breeding or genetic manipulation will have a limited impact on N capture by well-fertilized monocultures
C32, A Young Star Cluster in IC 1613
The Local Group irregular galaxy IC 1613 has remained an enigma for many
years because of its apparent lack of star clusters. We report the successful
search for clusters among several of the candidate objects identified many
years ago on photographic plates. We have used a single HST WFPC2 pointing and
a series of images obtained with the WIYN telescope under exceptional seeing
conditions, examining a total of 23 of the previously published candidates. All
but six of these objects were found to be either asterisms or background
galaxies. Five of the six remaining candidates possibly are small, sparse
clusters and the sixth, C32, is an obvious cluster. It is a compact, young
object, with an age of less than 10 million years and a total absolute
magnitude of M_V = -5.78+/-0.16 within a radius of 13 pc.Comment: 5 pages, 5 figures, to be published in the May 2000 issue of the PAS
S06RS SGR No. 11 (Marriage)
A RESOLUTION
To urge the United States Congress to reject the amendment to the United States Constitution defining marriage
- …