56 research outputs found

    Crystal Structure of the Formin mDia1 in Autoinhibited Conformation

    Get PDF
    Formin proteins utilize a conserved formin homology 2 (FH2) domain to nucleate new actin filaments. In mammalian diaphanous-related formins (DRFs) the FH2 domain is inhibited through an unknown mechanism by intramolecular binding of the diaphanous autoinhibitory domain (DAD) and the diaphanous inhibitory domain (DID).Here we report the crystal structure of a complex between DID and FH2-DAD fragments of the mammalian DRF, mDia1 (mammalian diaphanous 1 also called Drf1 or p140mDia). The structure shows a tetrameric configuration (4 FH2 + 4 DID) in which the actin-binding sites on the FH2 domain are sterically occluded. However biochemical data suggest the full-length mDia1 is a dimer in solution (2 FH2 + 2 DID). Based on the crystal structure, we have generated possible dimer models and found that architectures of all of these models are incompatible with binding to actin filament but not to actin monomer. Furthermore, we show that the minimal functional monomeric unit in the FH2 domain, termed the bridge element, can be inhibited by isolated monomeric DID. NMR data on the bridge-DID system revealed that at least one of the two actin-binding sites on the bridge element is accessible to actin monomer in the inhibited state.Our findings suggest that autoinhibition in the native DRF dimer involves steric hindrance with the actin filament. Although the structure of a full-length DRF would be required for clarification of the presented models, our work here provides the first structural insights into the mechanism of the DRF autoinhibition

    To Be or Not to Be a Flatworm: The Acoel Controversy

    Get PDF
    Since first described, acoels were considered members of the flatworms (Platyhelminthes). However, no clear synapomorphies among the three large flatworm taxa - the Catenulida, the Acoelomorpha and the Rhabditophora - have been characterized to date. Molecular phylogenies, on the other hand, commonly positioned acoels separate from other flatworms. Accordingly, our own multi-locus phylogenetic analysis using 43 genes and 23 animal species places the acoel flatworm Isodiametra pulchra at the base of all Bilateria, distant from other flatworms. By contrast, novel data on the distribution and proliferation of stem cells and the specific mode of epidermal replacement constitute a strong synapomorphy for the Acoela plus the major group of flatworms, the Rhabditophora. The expression of a piwi-like gene not only in gonadal, but also in adult somatic stem cells is another unique feature among bilaterians. These two independent stem-cell-related characters put the Acoela into the Platyhelminthes-Lophotrochozoa clade and account for the most parsimonious evolutionary explanation of epidermal cell renewal in the Bilateria. Most available multigene analyses produce conflicting results regarding the position of the acoels in the tree of life. Given these phylogenomic conflicts and the contradiction of developmental and morphological data with phylogenomic results, the monophyly of the phylum Platyhelminthes and the position of the Acoela remain unresolved. By these data, both the inclusion of Acoela within Platyhelminthes, and their separation from flatworms as basal bilaterians are well-supported alternatives

    Biomethanation potential of biological and other wastes

    Get PDF
    Anaerobic technology has been traditionally applied for the treatment of carbon rich wastewater and organic residues. Anaerobic processes can be fully integrated in the biobased economy concept for resource recovery. After a brief introduction about applications of anaerobic processes to industrial wastewater treatment, agriculture feedstock and organic fraction of municipal solid waste, the position of anaerobic processes in biorefinery concepts is presented. Integration of anaerobic digestion with these processes can help in the maximisation of the economic value of the biomass used, while reducing the waste streams produced and mitigating greenhouse gases emissions. Besides the integration of biogas in the existing full-scale bioethanol and biodiesel production processes, the potential applications of biogas in the second generation lignocellulosic, algae and syngas-based biorefinery platforms are discussed.(undefined

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Initial wet web strength of paper

    Full text link
    • 

    corecore