3,790 research outputs found

    Determination and Distribution Study of Pogostone in Rat Tissues by Ultra-Fast Liquid Chromatography

    Get PDF
    Purpose: To develop and validate a rapid, sensitive and reliable ultra-fast liquid chromatography (UFLC) method with photodiode array (PDA) detection for the determination of pogostone (PO) in rat tissues using honokiol as internal standard (IS).Methods: Rats were randomly divided into two groups (intravenous administration group and oral administration group) and given of a single dose of 10 mg/kg PO by intravenous administration and oral administration, respectively. After intravenous injection, the rats were sacrificed at 15, 60 and 360 min, while rats, after oral administration, were euthanasized at 30, 90 and 360 min, respectively. For the analysis of the preparation, optimal chromatographic conditions were determined using Acquity UPLC BEH C18 column with acetonitrile-water containing 0.1 % formic acid (55:45, v/v) as the mobile phase, at a flow rate of 400 μL/min. UV detection wavelength was set at 310 nm with temperature maintained at 30 °C.Results: Good linear relationship of calibration curve (r > 0.9984) was achieved over the range of 0.1 - 40 μg/mL for all the tissue samples. The limit of quantification (LOQ) and limit of detection (LOD) were 0.1 and 0.05 μg/mL, respectively. This method proved to have good precision, accuracy, stability, extraction recovery and matrix effect for tissue distribution studies of PO in rats.Conclusion: The developed method is suitable for tissue distribution studies in rats following intravenous and oral administration of PO at a dose of 10 mg/kg.Keywords: Ultra-fast liquid chromatography, Tissue distribution, Pogostone, Honokiol, Rat

    FLORA: a novel method to predict protein function from structure in diverse superfamilies

    Get PDF
    Predicting protein function from structure remains an active area of interest, particularly for the structural genomics initiatives where a substantial number of structures are initially solved with little or no functional characterisation. Although global structure comparison methods can be used to transfer functional annotations, the relationship between fold and function is complex, particularly in functionally diverse superfamilies that have evolved through different secondary structure embellishments to a common structural core. The majority of prediction algorithms employ local templates built on known or predicted functional residues. Here, we present a novel method (FLORA) that automatically generates structural motifs associated with different functional sub-families (FSGs) within functionally diverse domain superfamilies. Templates are created purely on the basis of their specificity for a given FSG, and the method makes no prior prediction of functional sites, nor assumes specific physico-chemical properties of residues. FLORA is able to accurately discriminate between homologous domains with different functions and substantially outperforms (a 2–3 fold increase in coverage at low error rates) popular structure comparison methods and a leading function prediction method. We benchmark FLORA on a large data set of enzyme superfamilies from all three major protein classes (α, β, αβ) and demonstrate the functional relevance of the motifs it identifies. We also provide novel predictions of enzymatic activity for a large number of structures solved by the Protein Structure Initiative. Overall, we show that FLORA is able to effectively detect functionally similar protein domain structures by purely using patterns of structural conservation of all residues

    Fast synthesis of platinum nanopetals and nanospheres for highly-sensitive non-enzymatic detection of glucose and selective sensing of ions

    Get PDF
    Novel methods to obtain Pt nanostructured electrodes have raised particular interest due to their high performance in electrochemistry. Several nanostructuration methods proposed in the literature use costly and bulky equipment or are time-consuming due to the numerous steps they involve. Here, Pt nanostructures were produced for the first time by one-step template-free electrodeposition on Pt bare electrodes. The change in size and shape of the nanostructures is proven to be dependent on the deposition parameters and on the ratio between sulphuric acid and chloride-complexes (i.e., hexachloroplatinate or tetrachloroplatinate). To further improve the electrochemical properties of electrodes, depositions of Pt nanostructures on previously synthesised Pt nanostructures are also performed. The electroactive surface areas exhibit a two order of magnitude improvement when Pt nanostructures with the smallest size are used. All the biosensors based on Pt nanostructures and immobilised glucose oxidase display higher sensitivity as compared to bare Pt electrodes. Pt nanostructures retained an excellent electrocatalytic activity towards the direct oxidation of glucose. Finally, the nanodeposits were proven to be an excellent solid contact for ion measurements, significantly improving the time-stability of the potential. The use of these new nanostructured coatings in electrochemical sensors opens new perspectives for multipanel monitoring of human metabolism

    Study of the surface structure of butterfly wings using the scanning electron microscopic moire method

    Get PDF
    Scanning electron microscopic (SEM) moire method was used to study the surface structure of three kinds of butterfly wings: Papilio maackii Menetries, Euploea midamus (Linnaeus), and Stichophthalma how-qua (Westwood). Gratings composed of curves with different orientations were found on scales. The planar characteristics of gratings and some other planar features of the surface structure of these wings were revealed, respectively, in terms of virtual strain. Experimental results demonstrate that SEM moire method is a simple, nonlocal, economical, effective technique for determining which grating exists on one whole scale, measuring the dimension and the whole planar structural character of the grating on each scale, as well as characterizing the relationship between gratings on different scales of each butterfly wing. Thus, the SEM moire method is a useful tool to assist with characterizing the structure of butterfly wings and explaining their excellent properties. (c) 2007 Optical Society of America

    Impact of Community-Based Larviciding on the Prevalence of Malaria Infection in Dar es Salaam, Tanzania.

    Get PDF
    The use of larval source management is not prioritized by contemporary malaria control programs in sub-Saharan Africa despite historical success. Larviciding, in particular, could be effective in urban areas where transmission is focal and accessibility to Anopheles breeding habitats is generally easier than in rural settings. The objective of this study is to assess the effectiveness of a community-based microbial larviciding intervention to reduce the prevalence of malaria infection in Dar es Salaam, United Republic of Tanzania. Larviciding was implemented in 3 out of 15 targeted wards of Dar es Salaam in 2006 after two years of baseline data collection. This intervention was subsequently scaled up to 9 wards a year later, and to all 15 targeted wards in 2008. Continuous randomized cluster sampling of malaria prevalence and socio-demographic characteristics was carried out during 6 survey rounds (2004-2008), which included both cross-sectional and longitudinal data (N = 64,537). Bayesian random effects logistic regression models were used to quantify the effect of the intervention on malaria prevalence at the individual level. Effect size estimates suggest a significant protective effect of the larviciding intervention. After adjustment for confounders, the odds of individuals living in areas treated with larviciding being infected with malaria were 21% lower (Odds Ratio = 0.79; 95% Credible Intervals: 0.66-0.93) than those who lived in areas not treated. The larviciding intervention was most effective during dry seasons and had synergistic effects with other protective measures such as use of insecticide-treated bed nets and house proofing (i.e., complete ceiling or window screens). A large-scale community-based larviciding intervention significantly reduced the prevalence of malaria infection in urban Dar es Salaam

    Role of defects and disorder in the half-metallic full-Heusler compounds

    Full text link
    Half-metallic ferromagnets and especially the full-Heusler alloys containing Co are at the center of scientific research due to their potential applications in spintronics. For realistic devices it is important to control accurately the creation of defects in these alloys. We review some of our late results on the role of defects and impurities in these compounds. More precisely we present results for the following cases (i) doping and disorder in Co2_2Cr(Mn)Al(Si) alloys, (ii) half-metallic ferrimagnetism appeared due to the creation of Cr(Mn) antisites in these alloys, (iii) Co-doping in Mn2_2VAl(Si) alloys leading to half-metallic antiferromagnetism, and finally (iv) the occurrence of vacancies in the full-Heusler alloys containing Co and Mn. These results are susceptible of encouraging further theoretical and experimental research in the properties of these compounds.Comment: Chapter intended for a book with contributions of the invited speakers of the International Conference on Nanoscale Magnetism 2007. Revised version contains new figure

    The state-of-the-art determination of urinary nucleosides using chromatographic techniques “hyphenated” with advanced bioinformatic methods

    Get PDF
    Over the last decade metabolomics has gained increasing popularity and significance in life sciences. Together with genomics, transcriptomics and proteomics, metabolomics provides additional information on specific reactions occurring in humans, allowing us to understand some of the metabolic pathways in pathological processes. Abnormal levels of such metabolites as nucleosides in the urine of cancer patients (abnormal in relation to the levels observed in healthy volunteers) seem to be an original potential diagnostic marker of carcinogenesis. However, the expectations regarding the diagnostic value of nucleosides may only be justified once an appropriate analytical procedure has been applied for their determination. The achievement of good specificity, sensitivity and reproducibility of the analysis depends on the right choice of the phases (e.g. sample pretreatment procedure), the analytical technique and the bioinformatic approach. Improving the techniques and methods applied implies greater interest in exploration of reliable diagnostic markers. This review covers the last 11 years of determination of urinary nucleosides conducted with the use of high-performance liquid chromatography in conjunction with various types of detection, sample pretreatment methods as well as bioinformatic data processing procedures
    corecore