59 research outputs found

    Mechanical, durability and thermal properties of foamed concrete reinforced with synthetic twisted bundle macro-fibers

    Get PDF
    The use of foamed concrete (FC) in the construction sector has been rapidly growing over the past few years as a result of the several advantages it possesses in comparison to traditional high-strength concrete. FC, on the other hand, suffers from a number of deficiencies, such as brittleness, limited ductility, high porosity, excessive drying shrinkage, little resistance to cracking and deformation. To improve the tensile strength and fracture resistance of FC, engineers usually opt for steel fibre or polymer fibre as the reinforcement material of choice. Hence this research aims to investigate the potential utilization of synthetic twisted bundle macro-fibers (SF) in FC to enhance its durability, mechanical and thermal properties. The SF were included in the FC in varied amounts of weight fractions, including 0%, 1%, 2%, 3%, 4%, and 5% respectively. FC was produced at three low densities, precisely 1,000, 1,300, and 1,600 kg/m3, which were all prepared. Compression, flexural, splitting tensile, flow table, porosity, water absorption and thermal conductivity tests were conducted to establish the thermal, mechanical and durability properties of SF-reinforced FC. The findings imply that the integration of SF into FC results in a significant enhancement of the material’s strength and thermal conductivity properties while simultaneously lowering the material’s capacity for water absorption and porosity. For the purpose of improving the material’s mechanical, durability and thermal properties, the weight percentage of SF that was ideal ranged from 3% to 4%. The incorporation of SF into FC resulted in a rise in the material’s ductility, and the specimens maintained their integrity from the loading stage to failure. The SF is able to lessen the cracks that were already present in the FC and prevent the formation of additional cracks in the FC

    Theories of schizophrenia: a genetic-inflammatory-vascular synthesis

    Get PDF
    BACKGROUND: Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. DISCUSSION: A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular and immune/inflammatory systems. SUMMARY: A vascular-inflammatory theory of schizophrenia brings together environmental and genetic factors in a way that can explain the diversity of symptoms and outcomes observed. If these ideas are confirmed, they would lead in new directions for treatments or preventions by avoiding inducers of inflammation or by way of inflammatory modulating agents, thus preventing exaggerated inflammation and consequent triggering of a psychotic episode in genetically predisposed persons

    Intestinal intraepithelial lymphocyte derived angiotensin converting enzyme modulates epithelial cell apoptosis

    Full text link
    Background & Aims : Intestinal adaptation in short bowel syndrome (SBS) consists of increased epithelial cell (EC) proliferation as well as apoptosis. Previous microarray analyses of intraepithelial lymphocytes (IEL) gene expression after SBS showed an increased expression of angiotensin converting enzyme (ACE). Because ACE has been shown to promote alveolar EC apoptosis, we examined if IEL-derived ACE plays a role in intestinal EC apoptosis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44361/1/10495_2005_Article_2138.pd

    Magnetic probe measurements in INTI plasma focus to determine dependence of axial speed with pressure in neon

    Get PDF
    Current sheath dynamics generated in INTI plasma focus device operated with neon gas has been studied. A 3-Turn Rogowski coil design has been used to measure derivative current. A new magnetic probe was designed and used to study of current sheath arrival time, current profile and velocity variation in the axial phase at different experimental conditions. The current sheath's average velocity was found to vary with pressure-0.51 with a R2 value of 0.9 which agrees well with the theoretically expected variation of pressure -0.5

    Aphid-host plant interactions: Does aphid honeydew exactly reflect the host plant amino acid composition?

    Full text link
    peer reviewedPlants provide aphids with unbalanced and low concentrations of amino acids. Likely, intracellular symbionts improve the aphid nutrition by participating to the synthesis of essential amino acids. To compare the aphid amino acid uptakes from the host plant and the aphids amino acid excretion into the honeydew, host plant exudates (phloem + xylem) from infested and uninfested Vicia faba L. plants were compared to the honeydew produced by two aphid species (Acyrthosiphon pisum Harris and Megoura viciae Buckton) feeding on V. faba. Our results show that an aphid infestation modifies the amino acid composition of the infested broad bean plant since the global concentration of amino acids significantly increased into the host plant in response to aphid infestations. Specifically, the concentrations of two amino acids glutamine and asparagine were strongly enhanced. The amino acid profiles from honeydews were similar for the two aphid species, but the concentrations found into the honeydews were generally lower than those measured in the exudates of infested plants (aphids uptakes). This work also highlights that aphids take large amounts of amino acids into the host plant, especially glutamine and asparagine which are converted into glutamic and aspartic acids but also into other essential amino acids. The amino acid profiles differed between the host plant exudates and the aphid excretion product. Finally, this study highlights that the pea aphid - a “specialist” for the V. faba host plant - induced more important modifications into the host plant amino acid composition than the “generalist” aphid M. viciae.Solaphi
    corecore