42 research outputs found
The Distinct Conformational Dynamics of K-Ras and H-Ras A59G
Ras proteins regulate signaling cascades crucial for cell proliferation and differentiation by switching between GTP- and GDP-bound conformations. Distinct Ras isoforms have unique physiological functions with individual isoforms associated with different cancers and developmental diseases. Given the small structural differences among isoforms and mutants, it is currently unclear how these functional differences and aberrant properties arise. Here we investigate whether the subtle differences among isoforms and mutants are associated with detectable dynamical differences. Extensive molecular dynamics simulations reveal that wild-type K-Ras and mutant H-Ras A59G are intrinsically more dynamic than wild-type H-Ras. The crucial switch 1 and switch 2 regions along with loop 3, helix 3, and loop 7 contribute to this enhanced flexibility. Removing the gamma-phosphate of the bound GTP from the structure of A59G led to a spontaneous GTP-to-GDP conformational transition in a 20-ns unbiased simulation. The switch 1 and 2 regions exhibit enhanced flexibility and correlated motion when compared to non-transitioning wild-type H-Ras over a similar timeframe. Correlated motions between loop 3 and helix 5 of wild-type H-Ras are absent in the mutant A59G reflecting the enhanced dynamics of the loop 3 region. Taken together with earlier findings, these results suggest the existence of a lower energetic barrier between GTP and GDP states of the mutant. Molecular dynamics simulations combined with principal component analysis of available Ras crystallographic structures can be used to discriminate ligand- and sequence-based dynamic perturbations with potential functional implications. Furthermore, the identification of specific conformations associated with distinct Ras isoforms and mutants provides useful information for efforts that attempt to selectively interfere with the aberrant functions of these species
Climate Change and Trophic Response of the Antarctic Bottom Fauna
BACKGROUND: As Earth warms, temperate and subpolar marine species will increasingly shift their geographic ranges poleward. The endemic shelf fauna of Antarctica is especially vulnerable to climate-mediated biological invasions because cold temperatures currently exclude the durophagous (shell-breaking) predators that structure shallow-benthic communities elsewhere. METHODOLOGY/PRINCIPAL FINDINGS: We used the Eocene fossil record from Seymour Island, Antarctic Peninsula, to project specifically how global warming will reorganize the nearshore benthos of Antarctica. A long-term cooling trend, which began with a sharp temperature drop approximately 41 Ma (million years ago), eliminated durophagous predators-teleosts (modern bony fish), decapod crustaceans (crabs and lobsters) and almost all neoselachian elasmobranchs (modern sharks and rays)-from Antarctic nearshore waters after the Eocene. Even prior to those extinctions, durophagous predators became less active as coastal sea temperatures declined from 41 Ma to the end of the Eocene, approximately 33.5 Ma. In response, dense populations of suspension-feeding ophiuroids and crinoids abruptly appeared. Dense aggregations of brachiopods transcended the cooling event with no apparent change in predation pressure, nor were there changes in the frequency of shell-drilling predation on venerid bivalves. CONCLUSIONS/SIGNIFICANCE: Rapid warming in the Southern Ocean is now removing the physiological barriers to shell-breaking predators, and crabs are returning to the Antarctic Peninsula. Over the coming decades to centuries, we predict a rapid reversal of the Eocene trends. Increasing predation will reduce or eliminate extant dense populations of suspension-feeding echinoderms from nearshore habitats along the Peninsula while brachiopods will continue to form large populations, and the intensity of shell-drilling predation on infaunal bivalves will not change appreciably. In time the ecological effects of global warming could spread to other portions of the Antarctic coast. The differential responses of faunal components will reduce the endemic character of Antarctic subtidal communities, homogenizing them with nearshore communities at lower latitudes
Computational Identification of Uncharacterized Cruzain Binding Sites
Chagas disease, caused by the unicellular parasite Trypanosoma cruzi, claims 50,000 lives annually and is the leading cause of infectious myocarditis in the world. As current antichagastic therapies like nifurtimox and benznidazole are highly toxic, ineffective at parasite eradication, and subject to increasing resistance, novel therapeutics are urgently needed. Cruzain, the major cysteine protease of Trypanosoma cruzi, is one attractive drug target. In the current work, molecular dynamics simulations and a sequence alignment of a non-redundant, unbiased set of peptidase C1 family members are used to identify uncharacterized cruzain binding sites. The two sites identified may serve as targets for future pharmacological intervention
Comprehensive Structural and Substrate Specificity Classification of the Saccharomyces cerevisiae Methyltransferome
Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity). Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity
Revisiting the Myths of Protein Interior: Studying Proteins with Mass-Fractal Hydrophobicity-Fractal and Polarizability-Fractal Dimensions
A robust marker to describe mass, hydrophobicity and polarizability distribution holds the key to deciphering structural and folding constraints within proteins. Since each of these distributions is inhomogeneous in nature, the construct should be sensitive in describing the patterns therein. We show, for the first time, that the hydrophobicity and polarizability distributions in protein interior follow fractal scaling. It is found that (barring βall-Ξ±β) all the major structural classes of proteins have an amount of unused hydrophobicity left in them. This amount of untapped hydrophobicity is observed to be greater in thermophilic proteins, than that in their (structurally aligned) mesophilic counterparts. βAll-Ξ²β(thermophilic, mesophilic alike) proteins are found to have maximum amount of unused hydrophobicity, while βall-Ξ±β proteins have been found to have minimum polarizability. A non-trivial dependency is observed between dielectric constant and hydrophobicity distributions within (Ξ±+Ξ²) and βall-Ξ±β proteins, whereas absolutely no dependency is found between them in the βall-Ξ²β class. This study proves that proteins are not as optimally packed as they are supposed to be. It is also proved that origin of Ξ±-helices are possibly not hydrophobic but electrostatic; whereas Ξ²-sheets are predominantly hydrophobic in nature. Significance of this study lies in protein engineering studies; because it quantifies the extent of packing that ensures protein functionality. It shows that myths regarding protein interior organization might obfuscate our knowledge of actual reality. However, if the later is studied with a robust marker of strong mathematical basis, unknown correlations can still be unearthed; which help us to understand the nature of hydrophobicity, causality behind protein folding, and the importance of anisotropic electrostatics in stabilizing a highly complex structure named βproteinsβ
Genomics in neurodevelopmental disorders: an avenue to personalized medicine
Despite the remarkable number of scientific breakthroughs of the last 100 years, the treatment of neurodevelopmental
disorders (e.g., autism spectrum disorder, intellectual disability) remains a great challenge. Recent advancements in
genomics, such as whole-exome or whole-genome sequencing, have enabled scientists to identify numerous
mutations underlying neurodevelopmental disorders. Given the few hundred risk genes that have been discovered,
the etiological variability and the heterogeneous clinical presentation, the need for genotype β along with phenotype-
based diagnosis of individual patients has become a requisite. In this review we look at recent advancements in
genomic analysis and their translation into clinical practice
Rapid Sampling of Molecular Motions with Prior Information Constraints
Proteins are active, flexible machines that perform a range of different
functions. Innovative experimental approaches may now provide limited partial
information about conformational changes along motion pathways of proteins.
There is therefore a need for computational approaches that can efficiently
incorporate prior information into motion prediction schemes. In this paper, we
present PathRover, a general setup designed for the integration
of prior information into the motion planning algorithm of rapidly exploring
random trees (RRT). Each suggested motion pathway comprises a sequence of
low-energy clash-free conformations that satisfy an arbitrary number of prior
information constraints. These constraints can be derived from experimental data
or from expert intuition about the motion. The incorporation of prior
information is very straightforward and significantly narrows down the vast
search in the typically high-dimensional conformational space, leading to
dramatic reduction in running time. To allow the use of state-of-the-art energy
functions and conformational sampling, we have integrated this framework into
Rosetta, an accurate protocol for diverse types of structural modeling. The
suggested framework can serve as an effective complementary tool for molecular
dynamics, Normal Mode Analysis, and other prevalent techniques for predicting
motion in proteins. We applied our framework to three different model systems.
We show that a limited set of experimentally motivated constraints may
effectively bias the simulations toward diverse predicates in an outright
fashion, from distance constraints to enforcement of loop closure. In
particular, our analysis sheds light on mechanisms of protein domain swapping
and on the role of different residues in the motion
Diffusion, Crowding & Protein Stability in a Dynamic Molecular Model of the Bacterial Cytoplasm
A longstanding question in molecular biology is the extent to which the behavior of macromolecules observed in vitro accurately reflects their behavior in vivo. A number of sophisticated experimental techniques now allow the behavior of individual types of macromolecule to be studied directly in vivo; none, however, allow a wide range of molecule types to be observed simultaneously. In order to tackle this issue we have adopted a computational perspective, and, having selected the model prokaryote Escherichia coli as a test system, have assembled an atomically detailed model of its cytoplasmic environment that includes 50 of the most abundant types of macromolecules at experimentally measured concentrations. Brownian dynamics (BD) simulations of the cytoplasm model have been calibrated to reproduce the translational diffusion coefficients of Green Fluorescent Protein (GFP) observed in vivo, and βsnapshotsβ of the simulation trajectories have been used to compute the cytoplasm's effects on the thermodynamics of protein folding, association and aggregation events. The simulation model successfully describes the relative thermodynamic stabilities of proteins measured in E. coli, and shows that effects additional to the commonly cited βcrowdingβ effect must be included in attempts to understand macromolecular behavior in vivo
Systematic iron isotope variations in mantle rocks and minerals: The effects of partial melting and oxygen fugacity
Iron isotopic compositions potentially provide a powerful new tracer of planetary formation and differentiation processes and of secular and spatial changes in mantle oxidation state. However, the processes governing iron isotope fractionation in igneous rocks remain poorly understood. Here we show that there are significant variations in the iron isotope compositions (Ξ΄57/54Fe) of mantle rocks (0.9β°) and minerals (olivines 0.6β°, clinopyroxenes 0.97permil; and orthopyroxenes 0.8β°), with spinels showing the greatest total variation of 1.7β°. Positive linear functional relationships with slopes that are, within error, equal to unity are found between the Ξ΄57/54Fe values of coexisting orthopyroxene, clinopyroxene and olivine, strongly suggesting that the Ξ΄57/54Fe values of these minerals reflect intra-sample mineral-mineral isotopic equilibrium. Positive correlations between the Ξ΄57/54Fe values of silicate minerals and spinels also exist, although they are more scattered, which could be caused by late disturbance of mineral-spinel isotopic equilibrium. Bulk-rock, clinopyroxene and spinel Ξ΄57/54Fe values correlate with chemical indices of both melt extraction and oxidation. Iron isotope fractionation during spinel-facies partial melting is investigated using simple models, which demonstrate that the maximum expected fractionation between melt and residue will be βΌ0.5β°, with the residue becoming isotopically light relative to the melt and to the initial source region. Hence melt extraction, in combination with significant changes in mantle oxidation state, may be an explanation for Fe isotopic variations in mantle peridotites. Metasomatism of the sub-arc mantle by iron-rich silicate melts originating from the subducting slab may also explain the light bulk-sample Ξ΄57/54Fe values of some arc peridotites (-0.2β° to -0.6β°), but mass-balance calculations require these metasomatic agents to have extreme Ξ΄57/54Fe values (e.g. -3.0β°). The large differences in the Ξ΄57/54Fe values of garnet and spinel facies rocks are likely to be caused by the contrasting behaviour of Fe3+ during melting in the spinel and garnet facies. However, there is little difference in the Ξ΄57/54Fe values of MORB and OIB, despite the fact that OIB are considered, on the basis of incompatible element abundances, to arise dominantly by melting in the garnet stability field. Given that iron is a relatively compatible element, the similarities in the Ξ΄57/54Fe values of MORB and OIB provide strong evidence that MORB and OIB are both dominated by melting in the spinel facies. Β© 2005 Elsevier B.V. All rights reserved
Screening transthyretin amyloid fibril inhibitors: characterization of novel multiprotein, multiligand complexes by mass spectrometry.
Tetrameric transthyretin is involved in transport of thyroxine and, through its interactions with retinol binding protein, vitamin A. Dissociation of these structures is widely accepted as the first step in the formation of transthyretin amyloid fibrils. Using a mass spectrometric approach, we have examined a series of 18 ligands proposed as inhibitors of this process. The ligands were evaluated for their ability to bind to and stabilize the tetrameric structure, their cooperativity in binding, and their ability to compete with the natural ligand thyroxine. The observation of a novel ten-component complex containing six protein subunits, two vitamin molecules, and two synthetic ligands allows us to conclude that ligand binding does not inhibit association of transthyretin with holo retinol binding protein