125 research outputs found

    Calcified Plaques in Patients With Acute Coronary Syndromes

    Get PDF
    OBJECTIVES: This study conducted detailed analysis of calcified culprit plaques in patients with acute coronary syndromes (ACS). BACKGROUND: Calcified plaques as an underlying pathology in patients with ACS have not been systematically studied. METHODS: From 1,241 patients presenting with ACS who had undergone pre-intervention optical coherence tomography imaging, 157 (12.7%) patients were found to have a calcified plaque at the culprit lesion. Calcified plaque was defined as a plaque with superficial calcification at the culprit site without evidence of ruptured lipid plaque. RESULTS: Three distinct types were identified: eruptive calcified nodules, superficial calcific sheet, and calcified protrusion (prevalence of 25.5%, 67.4%, and 7.1%, respectively). Eruptive calcified nodules were frequently located in the right coronary arteries (44.4%), whereas superficial calcific sheet was most frequently found in the left anterior descending coronary arteries (68.4%) (p = 0.012). Calcification index (mean calcification arc × calcification length) was greatest in eruptive calcified nodules, followed by superficial calcific sheet, and smallest in calcified protrusion (median 3,284.9 [interquartile range (IQR): 2,113.3 to 5,385.3] vs. 1,644.3 [IQR: 1,012.4 to 3,058.7] vs. 472.5 [IQR: 176.7 to 865.2]; p < 0.001). The superficial calcific sheet group had the highest peak post-intervention creatine kinase values among the groups (eruptive calcified nodules vs. superficial calcific sheet vs. calcified protrusion: 241 [IQR: 116 to 612] IU/l vs. 834 [IQR: 141 to 3,394] IU/l vs. 745 [IQR: 69 to 1,984] IU/l; p = 0.032). CONCLUSIONS: Three distinct types of calcified culprit plaques are identified in patients with ACS. Superficial calcific sheet, which is frequently located in the left anterior descending coronary artery, is the most prevalent type and is also associated with greatest post-intervention myocardial damage. (Identification of Predictors for Coronary Plaque Erosion in Patients With Acute Coronary Syndrome; NCT03479723).status: publishe

    Clinicopathological characteristics and treatment strategies in early gastric cancer: a retrospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both endoscopic and surgical approaches are employed in the treatment of early gastric cancer (EGC). The aim of this study was to establish appropriate treatment strategies for early gastric cancer.</p> <p>Methods</p> <p>We retrospectively examined clinicopathological data of EGC patients who had undergone surgery.</p> <p>Results</p> <p>A total of 327 patients (204 males and 123 females, mean age 63.2 years) were eligible for inclusion in the study. The median follow-up period was 31 months. Of 161 mucosal (pT1a) tumors, 87 were mainly undifferentiated and 110 had an undifferentiated component. Four patients with pT1a tumors had lymph node metastases; all these tumors were signet-ring cell carcinomas and were macroscopic type 0-IIc with ulceration, and only one of them had lymphatic invasion. Among patients with submucosal tumors, four of 43 patients with pT1b1 tumors and 37 of 123 patients with pT1b2 tumors had nodal metastases. Lymph node metastases were significantly higher in mixed undifferentiated type group than differentiated type group for both groups, pT1a-pT1b1 (p = 0.0251) and pT1b2 (p = 0.0430) subgroups. Only four of 45 patients with nodal metastases were diagnosed preoperatively by computed tomography (sensitivity 8.9%, specificity 96.2%). Nine patients with pT1b tumors had recurrence after surgery, and died. The sites of initial recurrence were liver, bone, peritoneum, distant nodes, and the surgical anastomosis.</p> <p>Conclusions</p> <p>The incidence of nodal metastases was approximately 5% in undifferentiated type mucosal (pT1a) tumors, and higher in submucosal (pT1b) tumors. The sensitivity of preoperative diagnosis of nodal metastases in EGC using computed tomography was relatively low in this study. Therefore at present surgery with adequate lymphadenectomy should be performed as curative treatment for undifferentiated type EGC.</p

    Mitochondrial Morphogenesis, Dendrite Development, and Synapse Formation in Cerebellum Require both Bcl-w and the Glutamate Receptor δ2

    Get PDF
    Bcl-w belongs to the prosurvival group of the Bcl-2 family, while the glutamate receptor δ2 (Grid2) is an excitatory receptor that is specifically expressed in Purkinje cells, and required for Purkinje cell synapse formation. A recently published result as well as our own findings have shown that Bcl-w can physically interact with an autophagy protein, Beclin1, which in turn has been shown previously to form a protein complex with the intracellular domain of Grid2 and an adaptor protein, nPIST. This suggests that Bcl-w and Grid2 might interact genetically to regulate mitochondria, autophagy, and neuronal function. In this study, we investigated this genetic interaction of Bcl-w and Grid2 through analysis of single and double mutant mice of these two proteins using a combination of histological and behavior tests. It was found that Bcl-w does not control the cell number in mouse brain, but promotes what is likely to be the mitochondrial fission in Purkinje cell dendrites, and is required for synapse formation and motor learning in cerebellum, and that Grid2 has similar phenotypes. Mice carrying the double mutations of these two genes had synergistic effects including extremely long mitochondria in Purkinje cell dendrites, and strongly aberrant Purkinje cell dendrites, spines, and synapses, and severely ataxic behavior. Bcl-w and Grid2 mutations were not found to influence the basal autophagy that is required for Purkinje cell survival, thus resulting in these phenotypes. Our results demonstrate that Bcl-w and Grid2 are two critical proteins acting in distinct pathways to regulate mitochondrial morphogenesis and control Purkinje cell dendrite development and synapse formation. We propose that the mitochondrial fission occurring during neuronal growth might be critically important for dendrite development and synapse formation, and that it can be regulated coordinately by multiple pathways including Bcl-2 and glutamate receptor family members

    Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines

    Get PDF
    Background: The mechanisms by which tumor-specific T cells induce regression of established metastases are not fully characterized. In using the poorly immunogenic B16BL6-D5 (D5) melanoma model we reported that T cell-mediated tumor regression can occur independently of perforin, IFN-gamma or the combination of both. Characterization of regressing pulmonary metastases identified macrophages as a major component of the cells infiltrating the tumor after adoptive transfer of effector T cells. This led us to hypothesize that macrophages played a central role in tumor regression following T-cell transfer. Here, we sought to determine the factors responsible for the infiltration of macrophages at the tumor site. Methods: These studies used the poorly immunogenic D5 melanoma model. Tumor-specific effector T cells, generated from tumor vaccine-draining lymph nodes (TVDLN), were used for adoptive immunotherapy and in vitro analysis of chemokine expression. Cellular infiltrates into pulmonary metastases were determined by immunohistochemistry. Chemokine expression by the D5 melanoma following co-culture with T cells, IFN-gamma or TNF-alpha was determined by RT-PCR and ELISA. Functional activity of chemokines was confirmed using a macrophage migration assay. T cell activation of macrophages to release nitric oxide (NO) was determined using GRIES reagent. Results: We observed that tumor-specific T cells with a type 1 cytokine profile also expressed message for and secreted RANTES, MIP-1 alpha and MIP-1 beta following stimulation with specific tumor. Unexpectedly, D5 melanoma cells cultured with IFN-gamma or TNF-alpha, two type 1 cytokines expressed by therapeutic T cells, secreted Keratinocyte Chemoattractant (KC), MCP-1, IP-10 and RANTES and expressed mRNA for MIG. The chemokines released by T cells and cytokine-stimulated tumor cells were functional and induced migration of the DJ2PM macrophage cell line. Additionally, tumor-specific stimulation of wt or perforin-deficient (PKO) effector T cells induced macrophages to secrete nitric oxide (NO), providing an additional effector mechanism for T cell-mediated tumor regression. Conclusion: These data suggest two possible sources for chemokine secretion that stimulates macrophage recruitment to the site of tumor metastases. Both appear to be initiated by T cell recognition of specific antigen, but one is dependent on the tumor cells to produce the chemokines that recruit macrophages

    Effects of Elevated Temperature and Carbon Dioxide on the Growth and Survival of Larvae and Juveniles of Three Species of Northwest Atlantic Bivalves

    Get PDF
    Rising CO2 concentrations and water temperatures this century are likely to have transformative effects on many coastal marine organisms. Here, we compared the responses of two life history stages (larval, juvenile) of three species of calcifying bivalves (Mercenaria mercenaria, Crassostrea virginica, and Argopecten irradians) to temperatures (24 and 28°C) and CO2 concentrations (∼250, 390, and 750 ppm) representative of past, present, and future summer conditions in temperate estuaries. Results demonstrated that increases in temperature and CO2 each significantly depressed survival, development, growth, and lipid synthesis of M. mercenaria and A. irradians larvae and that the effects were additive. Juvenile M. mercenaria and A. irradians were negatively impacted by higher temperatures while C. virginica juveniles were not. C. virginica and A. irradians juveniles were negatively affected by higher CO2 concentrations, while M. mercenaria was not. Larvae were substantially more vulnerable to elevated CO2 than juvenile stages. These findings suggest that current and future increases in temperature and CO2 are likely to have negative consequences for coastal bivalve populations

    Porphyromonas gingivalis Participates in Pathogenesis of Human Abdominal Aortic Aneurysm by Neutrophil Activation. Proof of Concept in Rats

    Get PDF
    International audienceBACKGROUND: Abdominal Aortic Aneurysms (AAAs) represent a particular form of atherothrombosis where neutrophil proteolytic activity plays a major role. We postulated that neutrophil recruitment and activation participating in AAA growth may originate in part from repeated episodes of periodontal bacteremia. METHODS AND FINDINGS: Our results show that neutrophil activation in human AAA was associated with Neutrophil Extracellular Trap (NET) formation in the IntraLuminal Thrombus, leading to the release of cell-free DNA. Human AAA samples were shown to contain bacterial DNA with high frequency (11/16), and in particular that of Porphyromonas gingivalis (Pg), the most prevalent pathogen involved in chronic periodontitis, a common form of periodontal disease. Both DNA reflecting the presence of NETs and antibodies to Pg were found to be increased in plasma of patients with AAA. Using a rat model of AAA, we demonstrated that repeated injection of Pg fostered aneurysm development, associated with pathological characteristics similar to those observed in humans, such as the persistence of a neutrophil-rich luminal thrombus, not observed in saline-injected rats in which a healing process was observed. CONCLUSIONS: Thus, the control of periodontal disease may represent a therapeutic target to limit human AAA progression

    GluRδ2 Expression in the Mature Cerebellum of Hotfoot Mice Promotes Parallel Fiber Synaptogenesis and Axonal Competition

    Get PDF
    Glutamate receptor delta 2 (GluRdelta2) is selectively expressed in the cerebellum, exclusively in the spines of the Purkinje cells (PCs) that are in contact with parallel fibers (PFs). Although its structure is similar to ionotropic glutamate receptors, it has no channel function and its ligand is unknown. The GluRdelta2-null mice, such as knockout and hotfoot have profoundly altered cerebellar circuitry, which causes ataxia and impaired motor learning. Notably, GluRdelta2 in PC-PF synapses regulates their maturation and strengthening and induces long term depression (LTD). In addition, GluRdelta2 participates in the highly territorial competition between the two excitatory inputs to the PC; the climbing fiber (CF), which innervates the proximal dendritic compartment, and the PF, which is connected to spiny distal branchlets. Recently, studies have suggested that GluRdelta2 acts as an adhesion molecule in PF synaptogenesis. Here, we provide in vivo and in vitro evidence that supports this hypothesis. Through lentiviral rescue in hotfoot mice, we noted a recovery of PC-PF contacts in the distal dendritic domain. In the proximal domain, we observed the formation of new spines that were innervated by PFs and a reduction in contact with the CF; ie, the pattern of innervation in the PC shifted to favor the PF input. Moreover, ectopic expression of GluRdelta2 in HEK293 cells that were cocultured with granule cells or in cerebellar Golgi cells in the mature brain induced the formation of new PF contacts. Collectively, our observations show that GluRdelta2 is an adhesion molecule that induces the formation of PF contacts independently of its cellular localization and promotes heterosynaptic competition in the PC proximal dendritic domain

    An optimized clearing protocol for the quantitative assessment of sub-epidermal ovule tissues within whole cereal pistils

    Get PDF
    Background: Seed development in the angiosperms requires the production of a female gametophyte (embryo sac) within the ovule. Many aspects of female reproductive development in cereal crops are yet to be described, largely due to the technical difficulty in obtaining phenotypic information at the cellular or sub-cellular level. Hoyer’s solution is currently well established as a solution for clearing thin tissues samples, such as sections or whole tissues of bryophytes, mycorrhizal fungi, and small model organisms (e.g. Arabidopsis thaliana). Results: Here we report a Hoyer’s solution-based clearing method to facilitate clearing of the whole barley pistil, with high reproducibility. The clearing process takes 10 days from fixation to visualisation, whereupon tissue is sufficiently clear to obtain multiple phenotypic measurements from sub-epidermal tissues and cells within the ovule. Conclusion: Visualisation of cereal ovules that have not been dissected from the pistil allows an unprecedented capability to collect quantitative morphological information from the developing ovule, integument, nucellus and embryo sac. This will enable comparisons with genetic data to reveal the contribution of pre-fertilisation ovule tissues towards downstream seed development.Laura G. Wilkinson and Matthew R. Tucke
    • …
    corecore