55 research outputs found

    Cystatin C: current position and future prospects.

    Full text link
    Abstract Cystatin C is a low-molecular-weight protein which has been proposed as a marker of renal function that could replace creatinine. Indeed, the concentration of cystatin C is mainly determined by glomerular filtration and is particularly of interest in clinical settings where the relationship between creatinine production and muscle mass impairs the clinical performance of creatinine. Since the last decade, numerous studies have evaluated its potential use in measuring renal function in various populations. More recently, other potential developments for its clinical use have emerged. This review summarises current knowledge about the physiology of cystatin C and about its use as a renal marker, either alone or in equations developed to estimate the glomerular filtration rate. This paper also reviews recent data about the other applications of cystatin C, particularly in cardiology, oncology and clinical pharmacology. Clin Chem Lab Med 2008;46:1664-86

    Comparative genomics of the major parasitic worms

    Get PDF
    Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms

    Optimization and Evaluation of a Novel Size Based Circulating Tumor Cell Isolation

    Get PDF
    Isolation of circulating tumor cells (CTCs) from peripheral blood has the potential to provide a far easier "liquid biopsy" than tumor tissue biopsies, to monitor tumor cell populations during disease progression and in response to therapies. Many CTC isolation technologies have been developed. We optimized the Parsortix system, an epitope independent, size and compressibility-based platform for CTCs isolation, making it possible to harvest CTCs at the speed and sample volume comparable to standard CellSearch system. We captured more than half of cancer cells from different cancer cell lines spiked in blood samples from healthy donors using this system. Cell loss during immunostaining of cells transferred and fixed on the slides is a major problem for analyzing rare cell samples. We developed a novel cell transfer and fixation method to retain >90% of cells on the slide after the immunofluorescence process without affecting signal strength and specificity. Using this optimized method, we evaluated the Parsortix system for CTC harvest in prostate cancer patients in comparison to immunobead based CTC isolation systems IsoFlux and CellSearch. We harvested a similar number (p = 0.33) of cytokeratin (CK) positive CTCs using Parsortix and IsoFlux from 7.5 mL blood samples of 10 prostate cancer patients (an average of 33.8 and 37.6 respectively). The purity of the CTCs harvested by Parsortix at 3.1% was significantly higher than IsoFlux at 1.0% (p = 0.02). Parsortix harvested significantly more CK positive CTCs than CellSearch (p = 0.04) in seven prostate cancer patient samples, where both systems were utilized (an average of 32.1 and 10.1 respectively). We also captured CTC clusters using Parsortix. Using four-color immunofluorescence we found that 85.8% of PC3 cells expressed EpCAM, 91.7% expressed CK and 2.5% cells lacked both epithelial markers. Interestingly, 95.6% of PC3 cells expressed Vimentin, including those cells that lacked both epithelial marker expression, indicating epithelial-to-mesenchymal transition. CK-positive/Vimentin-positive/CD45-negative, and CK-negative/Vimentin-positive/CD45-negative cells were also observed in four of five prostate cancer patients but rarely in three healthy controls, indicating that Parsortix harvests CTCs with both epithelial and mesenchymal features. We also demonstrated using PC3 and DU145 spiking experiment that Parsortix harvested cells were viable for cell culture

    Cystatin C modulates cerebral beta-amyloidosis

    No full text
    The CST3 Thr25 allele of CST3, which encodes cystatin C, leads to reduced cystatin C secretion and conveys susceptibility to Alzheimer's disease. Here we show that overexpression of human cystatin C in brains of APP-transgenic mice reduces cerebral amyloid-beta deposition and that cystatin C binds amyloid-beta and inhibits its fibril formation. Our results suggest that cystatin C concentrations modulate cerebral amyloidosis risk and provide an opportunity for genetic risk assessment and therapeutic interventions
    • …
    corecore