777 research outputs found

    Mesenchymal stem cell as salvage treatment for refractory chronic GVHD

    Get PDF
    Refractory chronic GVHD (cGVHD) is an important complication after allogeneic hematopoietic SCT and is prognostic of poor outcome. MSCs are involved in tissue repair and modulating immune responses in vitro and in vivo. From April 2005 to October 2008, 19 patients with refractory cGVHD were treated with MSCs derived from the BM of volunteers. The median dose of MSCs was 0.6 × 106 cells per kg body weight. Fourteen of 19 patients (73.7%) responded well to MSCs, achieving a CR (n=4) or a PR (n=10). The immunosuppressive agent could be tapered to less than 50% of the starting dose in 5 of 14 surviving patients, and five patients could discontinue immunosuppressive agents. The median duration between MSC administration and immunosuppressive therapy discontinuation was 324 days (range, 200–550 days). No patients experienced adverse events during or immediately after MSC infusion. The 2-year survival rate was 77.7% in this study. Clinical improvement was accompanied by the increasing ratio of CD5+CD19+/CD5−CD19+ B cells and CD8+CD28−/CD8+CD28+ T cells. In conclusion, transfusion of MSCs expanded in vitro, irrespective of the donor, might be a safe and effective salvage therapy for patients with steroid-resistant, cGVHD

    Mycoplasma Contamination Revisited: Mesenchymal Stromal Cells Harboring Mycoplasma hyorhinis Potently Inhibit Lymphocyte Proliferation In Vitro

    Get PDF
    Mesenchymal stromal cells (MSC) have important immunomodulatory effects that can be exploited in the clinical setting, e.g. in patients suffering from graft-versus-host disease after allogeneic stem cell transplantation. In an experimental animal model, cultures of rat T lymphocytes were stimulated in vitro either with the mitogen Concanavalin A or with irradiated allogeneic cells in mixed lymphocyte reactions, the latter to simulate allo-immunogenic activation of transplanted T cells in vivo. This study investigated the inhibitory effects of rat bone marrow-derived MSC subsequently found to be infected with a common mycoplasma species (Mycoplasma hyorhinis) on T cell activation in vitro and experimental graft-versus-host disease in vivo.We found that M. hyorhinis infection increased the anti-proliferative effect of MSC dramatically, as measured by both radiometric and fluorimetric methods. Inhibition could not be explained solely by the well-known ability of mycoplasmas to degrade tritiated thymidine, but likely was the result of rapid dissemination of M. hyorhinis in the lymphocyte culture.This study demonstrates the potent inhibitory effect exerted by M. hyorhinis in standard lymphocyte proliferation assays in vitro. MSC are efficient vectors of mycoplasma infection, emphasizing the importance of monitoring cell cultures for contamination

    Mesenchymal stem cell therapy and acute graft-versus-host disease: a review

    Get PDF

    Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids

    Get PDF
    Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design

    Effect of yeast culture on milk production and metabolic and reproductive performance of early lactation dairy cows

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main objective of this study was to estimate the effect of supplementation with <it>Saccaromyces cerevisiae (SC</it>) (Yea-Sacc<sup>® </sup>1026) on milk production, metabolic parameters and the resumption of ovarian activity in early lactation dairy cows.</p> <p>Methods</p> <p>The experiment was conducted during 2005/2006 in a commercial tied-house farm with an average of 200 milking Estonian Holstein Friesian cows. The late pregnant multiparous cows (n = 46) were randomly divided into two groups; one group received 10 g yeast culture from two weeks before to 14 weeks after calving. The groups were fed a total mixed ration with silages and concentrates. Milk recording data and blood samples for plasma metabolites were taken. Resumption of luteal activity was determined using milk progesterone (P<sub>4</sub>) measurements. Uterine bacteriology and ovarian ultrasonography (US) were performed and body condition scores (BCS) and clinical disease occurrences were recorded. For analysis, the statistical software Stata 9.2 and R were used to compute Cox proportional hazard and linear mixed models.</p> <p>Results</p> <p>The average milk production per cow did not differ between the groups (32.7 ± 6.4 vs 30.7 ± 5.3 kg/day in the SC and control groups respectively), but the production of milk fat (<it>P </it>< 0.001) and milk protein (<it>P </it>< 0.001) were higher in the SC group. There was no effect of treatment on BCS. The analysis of energy-related metabolites in early lactation showed no significant differences between the groups. In both groups higher levels of β-hydroxybutyrate (BHB) appeared from days 14 to 28 after parturition and the concentration of non-esterfied fatty acid (NEFA) was higher from days 1–7 post partum (PP). According to US and P<sub>4 </sub>results, all cows in both groups ovulated during the experimental period. The resumption of ovarian activity (first ovulations) and time required for elimination of bacteria from the uterus did not differ between the groups.</p> <p>Conclusion</p> <p>Supplementation with SC had an effect on milk protein and fat production, but did not influence the milk yield. No effects on PP metabolic status, bacterial elimination from the uterus nor the resumption of ovarian activity were found.</p

    Study of Bc+B_c^+ decays to the K+Kπ+K^+K^-\pi^+ final state and evidence for the decay Bc+χc0π+B_c^+\to\chi_{c0}\pi^+

    Get PDF
    A study of Bc+K+Kπ+B_c^+\to K^+K^-\pi^+ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 fb1\mathrm{fb}^{-1} collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 77 and 88 TeV. Evidence for the decay Bc+χc0(K+K)π+B_c^+\to\chi_{c0}(\to K^+K^-)\pi^+ is reported with a significance of 4.0 standard deviations, resulting in the measurement of σ(Bc+)σ(B+)×B(Bc+χc0π+)\frac{\sigma(B_c^+)}{\sigma(B^+)}\times\mathcal{B}(B_c^+\to\chi_{c0}\pi^+) to be (9.83.0+3.4(stat)±0.8(syst))×106(9.8^{+3.4}_{-3.0}(\mathrm{stat})\pm 0.8(\mathrm{syst}))\times 10^{-6}. Here B\mathcal{B} denotes a branching fraction while σ(Bc+)\sigma(B_c^+) and σ(B+)\sigma(B^+) are the production cross-sections for Bc+B_c^+ and B+B^+ mesons. An indication of bˉc\bar b c weak annihilation is found for the region m(Kπ+)<1.834GeV ⁣/c2m(K^-\pi^+)<1.834\mathrm{\,Ge\kern -0.1em V\!/}c^2, with a significance of 2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html, link to supplemental material inserted in the reference

    IFITM3 Inhibits Influenza A Virus Infection by Preventing Cytosolic Entry

    Get PDF
    To replicate, viruses must gain access to the host cell's resources. Interferon (IFN) regulates the actions of a large complement of interferon effector genes (IEGs) that prevent viral replication. The interferon inducible transmembrane protein family members, IFITM1, 2 and 3, are IEGs required for inhibition of influenza A virus, dengue virus, and West Nile virus replication in vitro. Here we report that IFN prevents emergence of viral genomes from the endosomal pathway, and that IFITM3 is both necessary and sufficient for this function. Notably, viral pseudoparticles were inhibited from transferring their contents into the host cell cytosol by IFN, and IFITM3 was required and sufficient for this action. We further demonstrate that IFN expands Rab7 and LAMP1-containing structures, and that IFITM3 overexpression is sufficient for this phenotype. Moreover, IFITM3 partially resides in late endosomal and lysosomal structures, placing it in the path of invading viruses. Collectively our data are consistent with the prediction that viruses that fuse in the late endosomes or lysosomes are vulnerable to IFITM3's actions, while viruses that enter at the cell surface or in the early endosomes may avoid inhibition. Multiple viruses enter host cells through the late endocytic pathway, and many of these invaders are attenuated by IFN. Therefore these findings are likely to have significance for the intrinsic immune system's neutralization of a diverse array of threats

    Dietary tuna hydrolysate modulates growth performance, immune response, intestinal morphology and resistance to Streptococcus iniae in juvenile barramundi, Lates calcarifer

    Get PDF
    This study investigated the effects of tuna hydrolysate (TH) inclusion in fishmeal (FM) based diets on the growth performance, innate immune response, intestinal health and resistance to Streptococcus iniae infection in juvenile barramundi, Lates calcarifer. Five isonitrogenous and isoenergetic experimental diets were prepared with TH, replacing FM at levels of 0% (control) 5%, 10%, 15% and 20%, and fed fish to apparent satiation three times daily for 8 weeks. The results showed that fish fed diets containing 5% and 10% TH had significantly higher final body weight and specific growth rate than the control. A significant reduction in blood glucose was found in fish fed 10%, 15% and 20% TH compared to those in the control whereas none of the other measured blood and serum indices were influenced by TH inclusion. Histological observation revealed a significant enhancement in goblet cell numbers in distal intestine of fish fed 5 to 10% TH in the diet. Moreover, fish fed 10% TH exhibited the highest resistance against Streptococcus iniae infection during a bacterial challenge trial. These findings therefore demonstrate that the replacement of 5 to 10% FM with TH improves growth, immune response, intestinal health and disease resistance in juvenile barramundi

    Visualization of Gli Activity in Craniofacial Tissues of Hedgehog-Pathway Reporter Transgenic Zebrafish

    Get PDF
    The Hedgehog (Hh)-signaling pathway plays a crucial role in the development and maintenance of multiple vertebrate and invertebrate organ systems. Gli transcription factors are regulated by Hh-signaling and act as downstream effectors of the pathway to activate Hh-target genes. Understanding the requirements for Hh-signaling in organisms can be gained by assessing Gli activity in a spatial and temporal fashion.We have generated a Gli-dependent (Gli-d) transgenic line, Tg(Gli-d:mCherry), that allows for rapid and simple detection of Hh-responding cell populations in both live and fixed zebrafish. This transgenic line expresses a mCherry reporter under the control of a Gli responsive promoter, which can be followed by using fluorescent microscopy and in situ hybridization. Expression of the mCherry transgene reporter during embryogenesis and early larval development faithfully replicated known expression domains of Hh-signaling in zebrafish, and abrogating Hh-signaling in transgenic fish resulted in the suppression of reporter expression. Moreover, ectopic shh expression in Tg(Glid:mCherry) fish led to increased transgene production. Using this transgenic line we investigated the nature of Hh-pathway response during early craniofacial development and determined that the neural crest skeletal precursors do not directly respond to Hh-signaling prior to 48 hours post fertilization, suggesting that earlier requirements for pathway activation in this population of facial skeleton precursors are indirect.We have determined that early Hh-signaling requirements in craniofacial development are indirect. We further demonstrate the Tg(Gli-d:mCherry) fish are a highly useful tool for studying Hh-signaling dependent processes during embryogenesis and larval stages
    corecore