36 research outputs found

    Real world CO2 and NOx emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars.

    Get PDF
    In this study CO2 and NOx emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars were compared using a Portable Emissions Measurement System (PEMS). The models sampled accounted for 56% of all passenger cars sold in Europe in 2016. We found gasoline vehicles had CO2 emissions 13-66% higher than diesel. During urban driving, the average CO2 emission factor was 210.5 (sd. 47) gkm-1 for gasoline and 170.2 (sd. 34) gkm-1 for diesel. Half the gasoline vehicles tested were Gasoline Direct Injection (GDI). Euro 6 GDI engines <1.4ℓ delivered ~17% CO2 reduction compared to Port Fuel Injection (PFI). Gasoline vehicles delivered an 86-96% reduction in NOx emissions compared to diesel cars. The average urban NOx emission from Euro 6 diesel vehicles 0.44 (sd. 0.44) gkm-1 was 11 times higher than for gasoline 0.04 (sd. 0.04) gkm-1. We also analysed two gasoline-electric hybrids which out-performed both gasoline and diesel for NOx and CO2. We conclude action is required to mitigate the public health risk created by excessive NOx emissions from modern diesel vehicles. Replacing diesel with gasoline would incur a substantial CO2 penalty, however greater uptake of hybrid vehicles would likely reduce both CO2 and NOx emissions. Discrimination of vehicles on the basis of Euro standard is arbitrary and incentives should promote vehicles with the lowest real-world emissions of both NOx and CO2

    Reduced-form and complex Actm modelling for air quality policy development: a model inter-comparison

    Get PDF
    Simulation models can be valuable tools in supporting development of air pollution policy. However, exploration of future scenarios depends on reliable and robust modelling to provide confidence in outcomes which cannot be tested against measurements. Here we focus on the UK Integrated Assessment Model, a fast reduced-form model with a purpose to support policy development with modelling of multiple alternative future scenarios, and the EMEP4UK model which is a complex Eulerian Atmospheric Chemistry Transport Model requiring significant computing resources. The EMEP4UK model has been used to model selected core scenarios to compare with UKIAM, and to investigate sensitivity studies such as the interannual variability in response to meteorological differences between years. This model intercomparison addresses total PM2.5, primary PM2.5 and Secondary Inorganic Aerosol concentrations for a baseline of 2018 and selected scenarios for projections to 2040. This work has confirmed the robustness of the UK Integrated Assessment Model for assessing alternative futures through a direct comparison with EMEP4UK. Both models have shown good agreement with measurements, and EMEP4UK shows an ability to replicate past trends. These comparisons highlight how a combination of reduced-form modelling (UKIAM) and complex chemical transport modelling (EMEP4UK) can be effectively used in support of air pollution policy development, informing understanding of projected futures in the context of emerging evidence and uncertainties

    Plutonium in Soils from Northeast China and Its Potential Application for Evaluation of Soil Erosion

    Get PDF
    Surface and soil core samples from northeast China were analyzed for Pu isotopes. The measured Pu-240/Pu-239 atomic ratios and Pu239 + 240/Cs-137 activity ratios revealed that the global fallout is the dominant source of Pu and Cs-137 at these sites. Migration behavior of Pu varying with land type and human activities resulted in different distribution of Pu in surface soils. A sub-surface maximum followed by exponential decline of Pu239 + 240 concentrations was observed in an undisturbed soil core, with a total Pu239 + 240 inventory of 86.9 Bq/m(2) and more than 85% accumulated in 0 similar to 20 cm layers. While only half inventory of Pu was obtained in another soil core and no sub-surface maximum value occurred. Erosion of topsoil in the site should be the most possible reason for the significantly lower Pu inventory, which is also supported by the reported Cs-137 profiles. These results demonstrated that Pu could be applied as an ideal substitute of Cs-137 for soil erosion study in the future.</p
    corecore