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Abstract Air pollution models are often used to support de-
cisions in air quality management. Due to the complexity of
the forecasting system and difficulty in acquiring precise
enough input data, an environmental prognosis of air quality
with an analytical model of the air pollution dispersion is
burdened with a substantial share of uncertainty, especially
as regards urban areas. To ignore the uncertainty in the model-
ing would lead to incorrect policy decisions, with further neg-
ative environmental and health consequences. This paper pre-
sents a case study which shows how emission uncertainty of
air pollutants generated by the industry, traffic, and the mu-
nicipal sector relates to concentrations measured at receptor
points. The computational experiment was implemented in the
Warsaw metropolitan area, Poland. The main source of this
adverse environmental impact is the transportation system,
including the transit traffic. The Monte Carlo technique was
used for assessing the key uncertainty factors. Several types of
pollution species that are characteristic for the urban atmo-
spheric environment (e.g., PM10, PM2.5, NOx, SO2, Pb) were
included in the analysis. The results show significant spatial
variability of the modeled uncertainty. The reason of this var-
iability is discussed in detail. It depends not only on the cate-
gory of the emission source but also on the contributing emis-
sion sources and their quantity.
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1 Introduction: Air Pollution Transport Modeling

The strategies which are aimed at reducing the pollution to the
required air quality standards are usually based on air pollution
dispersionmodels. A decision support system, intended to help in
preparation of abatement plans, often takes a form of an integrat-
ed assessment model (IAM) that combines the classical pollution
transport model with certain economic, ecological, technological,
and other constraints and standards [1–5]. The model provides a
tool for conducting a comprehensive analysis of a given environ-
mental policy in order to explore potential strategies to reduce
emissions, eliminate violations of air quality limits, and reduce
the population exposure. Implementation of such policy often
involves a cost-effective approach or optimization [4, 6]. Irrespec-
tive of how complex such a systemmight be, its main component
is usually the air pollution dispersion model, with its other com-
ponents including certain constraints and limits.

Efficient control strategies cannot be elaborated well without
clear understanding of imprecisions and uncertainties of the
modeling process. To quantify possible ecological, economic,
or health benefits of the emission abatement process, the incre-
mental contribution of the respective groups of emission sources
to ambient concentrations must be estimated with a reasonable
accuracy. Due to a very complex and multidisciplinary structure
of such systems, there are many causes leading to imprecision
and uncertainty, which include (a) the input data (mainly emis-
sions, meteorological data, boundary conditions), (b) the struc-
ture of the mathematical model (simplifications and parameteri-
zations of physical and chemical processes), (c) the numerical
scheme, and (d) the uncertainties present across all stages of
modeling process and in the interactions with policymakers [7].
All simplifications and uncertainties in the modeling process
impact the robustness of the final results [4]. Most of uncertainty
studies focus on those arising from the input data and the model
parameterizations [8, 9, Warchałowski 2012, Personal commu-
nication, Warsaw University of Technology].
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Simplifying assumptions or parameterizations becomes a
source of certain conceptual uncertainty which is also trans-
posed onto the final results [1, 5]. In particular, such uncer-
tainty is present in the process of deriving trajectories based on
the Lagrangian approach or in the sub-grid effects of the
Eulerian models [10, 11]. Moreover, due to certain model
performance constraints, some atmospheric processes are pa-
rameterized or described in a rather simplified way. For exam-
ple, the height of the mixing layer and atmospheric stability
are usually evaluated using imprecise heuristic procedures, yet
another source impacting the level of the output uncertainty.
However, numerous studies have already revealed that the
biggest uncertainty (measurement or estimation errors) is
caused by emission inventory and meteorological data (see 4
in [10]).

The main sources of variability (temporal, spatial, or inter-
individual differences of input data) and uncertainty (impre-
cise information or lack of information about unknown quan-
tities) must be identified and assessed [12, 13] to compliment
modeling studies. This information is needed for investigating
effective strategies of emission abatement and improving air
quality. First of all, uncertainty assessment gives an opportu-
nity to check the quality of the modeling results and improves
the precision of the modeling. It can also increase
policymaker’s confidence in robustness of results and recom-
mendations. Finally, such a complex analysis can improve a
general stakeholder and public confidence in scientific re-
search [4, 7].

The problem related to air pollution in urbanized areas is
ranked high on the list of priority environmental concerns [4,
6, 14]. Urban-scale pollution estimations are a sophisticated
modeling issue for computational reasons because of com-
plexity of emission field, the complicated building orography,
and wind-field effects. Also, the uncertainty analysis of emis-
sion data is challenging especially in the case of urbanized or
industrial areas [2, 8, 15]. Emission inventory of such areas
usually includes different emission source categories, each
with specific emission parameters. Here, the emission field
means the spatial concentrations of a large number of emis-
sion sources with different technological characteristics, fuel
type (and related fuel parameters), composition of polluting
chemicals, and emission intensities, with the consequence be-
ing the varying range of emission uncertainty. The available
emission data are not accurate because of inventory level un-
certainties. The emissions of major power plants can be treat-
ed as relatively accurate because of the well-described param-
eters of the combustion process and the fuels used. On the
other hand, the emission data for residential areas or the urban
transport system are usually based on some aggregated and
averaged information related to fuel consumption, and then to
disaggregation parameters. These categories of data neither
reflect precisely the real temporal variability nor chemical
constitution of polluting chemicals, and as such are very

uncertain. In complex uncertainty analysis, the correlation be-
tween the various pollutants generated by a source must be
taken into account [16, 17]. Moreover, the variety of the pri-
mary pollutants generates secondary compounds through
chemical transformation processes, often even more danger-
ous for the environment. Due to the excessive population den-
sity, the exposure to the urban air pollution is a crucial factor
associated with numerous adverse health effects. In particular,
many research results indicate that a considerable harm of
public health is caused by traffic emissions of fine particulate
matter, for example PM10 or PM2.5 [2, 4, 8, 12, 15, 16].

The analysis presented in this study concentrates on the
impact which the major traffic emissions have on the uncer-
tainty of the resulting concentrations. The Monte Carlo algo-
rithm was used as the key tool to assess the level of uncertain-
ty. The discussed issues include the spatial distribution of the
output level of uncertainty, its correlation with road structure,
and the intensity of traffic. The key factors determining the
output level of uncertainty are elaborated in detail.

The main point of this paper, as presented in the next sec-
tions, is the assessment of uncertainty in the modeled forecasts
in relation to the input uncertainty of the emission data set.
This analysis is based on certain historic air quality forecasts
for Warsaw, as shown in [18]. This section shortly recalls the
basic facts concerning the model, the emission data, compu-
tational parameters, and the air quality results. Also, we added
information on the model performance and a comparison of
results with observations. These outcomes form a basis for the
complex uncertainty analysis which is presented in Section 3.
The computations performed within the framework of this
study relate to the analysis of air quality in the Warsaw met-
ropolitan area.

2 Air Pollution Simulation: Selected Results

The regional scale Gaussian puff dispersion model CALPUFF
[19] was used to simulate the air pollution movement and
transformations within the domain. The forecasting model is
integrated with the meteorological module CALMET which
includes a diagnostic wind field generator.

CALPUFF/CALMETsystem has been used in a number of
studies to investigate gas [20, 21] and particulate matter
[22–24] dispersion, also in urban areas. Validation studies
showed good correlation with the observations, especially
for annual mean concentrations [25, 26]. This fact has been
confirmed also within this study by the model performance
estimates presented below (see Table 2 and Fig. 2).

In this study, the aggregate emission field was divided into
four basic categories, mainly based on technological parame-
ters and the intrinsic uncertainty. The distinguished emission
categories, including the quantity of the individual sources in
each category, are (i) 16 high-point sources (the energy sector
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mainly)—the level of uncertainty is relatively low since both
the combustion process and the fuel parameters are precisely
defined and stable; because of the high stacks, the modeling
procedure must include the initial plume development near the
source; (ii) 1002 other point sources (other industrial
sources)—a higher level of uncertainty because the technolog-
ical parameters and fuel parameters are not described so pre-
cisely; (iii) 872 area sources (the residential sector and distrib-
uted industrial sources)—high level of uncertainty; the emis-
sion data is usually only an estimate calculated based on the
fuel type and the fuel consumption; and (iv) 1157 linear
sources (urban transport)—high level of uncertainty; the emis-
sion data is estimated based on several traffic parameters, traf-
fic types and intensity, the fuel used (its quality and consump-
tion), the age of vehicles, and their technological parameters.

The analysis covers a rectangular domain, approximately
30 km×40 km of Warsaw metropolitan area (about 520 km2

within the administrative borders of Warsaw) as shown in
Fig. 1. For computational purposes, the domain is divided
using a homogeneous grid with the step size of h=1 km.
The locations of all spot sources are defined based on their
geographical coordinates, while the area and linear sources are
characterized by the respective spatial mesh elements 1 km×
1 km that coincide with the domain grid. The time resolution
step size is τ=1 h and is assumed to include temporal variabil-
ity of the input set of meteorological and emission data. The
input dataset for 2005 was selected for the analysis mainly
because of its representative nature in terms of the meteoro-
logical conditions and the comprehensiveness of the emission
data inventory. Moreover, the air quality estimates for 2005
can be used as the reference data for assessing environmental
effects of economic and technological changes which oc-
curred in the later years (e.g., economic crisis, modernization
of energy/industry, development of the urban transport). The
results discussed below relate to the annual mean concen-
trations of the main urban pollutants, which are record-
ed at 563 fictitious receptors (the central points of the
mesh elements).

The emission field includes sources which are located with-
in the administrative borders of Warsaw and, in some cases of
major sources, also outside Warsaw but within the computa-
tional domain, as shown in Fig. 1. The transboundary inflow is
the background for the pollutants generated by the local
sources. The key inflowing pollutants (sulfur and nitrogen
oxides, particulate matter, aerosols) adopted as the boundary
conditions for CALPUFF simulations are taken from the Eu-
ropean scale EMEP model forecasts, spatial resolution 50×
50 km. The results enclosed in [18] show some preliminary
accuracy and uncertainty estimates. The analysis refers to the
annual mean concentrations of the polluting components
which are listed in Table 1 and recorded at the receptor points
shown in Fig. 1. The paper also presents some of the results of
the simulation.

To assess accuracy of CALPUFF model simulations, the
calculated annual mean concentrations of the main pollutants
are compared with the data from monitoring stations which
are located as shown in Fig. 1. The air quality measurements
were conducted by several monitoring stations (automatic or
manual) where only selected pollutants (very limited in some
cases) were observed. Table 2 presents comparison of the
measured and calculated annual mean concentrations of the
main gaseous pollutants: NOx, PM10, and SO2, as well as
heavy metals: Pb, Cd, and Ni at the measurement points.

Moreover, Fig. 2 uses graphics to show the calculated an-
nual mean concentrations versus measurements in the case of
the gaseous pollutants (where data feedback was sufficient).
The values for particulate matter, PM10, nitrogen oxides, NOx

(adopted from [18]), and sulfur dioxide, SO2 are demonstrat-
ed. The dotted lines in Fig. 2 represent the limits of the stan-
dard domain where the model performance quality (FAC2
[27]) was met.

The calculated PM10 and SO2 concentrations match the
measured values well enough, while some NOx forecasts are
underestimated. It results from the fact that nitrogen oxide
pollution is generated mainly by moving traffic sources (com-
pare Section 3 for details). The calculated values of concen-
tration are averaged per mesh element (1×1 km), while some
measurements were taken at the monitoring stations which
were located near the road axis where concentrations have
maximal values.

3 Uncertainty Analysis

Monte Carlo algorithm was applied to assess the resulting un-
certainty of the concentration forecasts in relation to the uncer-
tainty of the input emission data, similarly as in [9, 13]. For all
the sources and pollutants, 2000 random sets of emission data
were generated within the assumed ranges of uncertainty. To
avoid generating unrealistic emission episodes, a correlation
between emission intensities of key individual pollutants from
each emission source was used (compare [17, 18]).

The key factors in this approach are the ranges of uncer-
tainty in the input emission data. Table 3 presents the ranges,
for 95 % confidence interval and four categories of emission
sources. The uncertainty ranges were applied as they have
been recognized in expert opinions (Warchałowski 2012, Per-
sonal communication, Warsaw University of Technology).
Recently, levels of sectorial emission uncertainty in Poland
have been assessed in [28]. Although this report does not
consider the specific urban emissions in Warsaw, the results
are close to those presented in Table 3. The normal distribu-
tions of the input emission data were assumed.

Selected results were demonstrated in the previous study
[18]. Below, a more comprehensive uncertainty analysis is
presented for five main pollutants which are specific to air
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quality in urban areas, namely NOx, PM10, PM2.5, Pb, and
SO2. The level of uncertainty is related very directly to the
aggregate influence of the linear sources (urban transport sys-
tem) and the local point and area sources. Next, the discussion
focuses on the spatial variability of the resulting uncertainty,
depending on the resulting concentrations of the above pollut-
ants and certain other factors.

Figure 3 presents the distributions of the standard deviation
(left) and the relative uncertainty range (right) versus the an-
nual mean concentrations calculated at 563 receptor points (as
shown in Fig. 1) for NOx, PM10, SO2, and Pb, respectively. In
all cases, the values of standard deviation increase faster

(compared to the linear pace) as a function of the mean con-
centration. The relative uncertainty range at a receptor point is
calculated as a ratio (C97.5 – C2.5)/CM, where C2.5 is the 2.5
and C97.5 is the 97.5 percentile concentration value, and CM is
the mean value. Strongly dispersed points in uncertainty
graphs (Fig. 3 right) suggest the impact of some other factors
(besides the mean concentration) which determine the
resulting uncertainty.

A more cluster-shaped distribution of SO2 standard devia-
tion is a result of a relatively homogeneous spread of SO2

concentration over the Warsaw domain, with the mean values
much below the admissible levels. This results from the

Fig. 1 Computational domain and locations of the receptor points (according to [18])
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predominant share of the point sources in the heating system;
the high stacks of plants in the district central heating system
affect mainly the very distant receptors (often outside the do-
main), while the small point sources of individual heating
systems are mainly active in suburban districts. Moreover,
external inflow of sulfur dioxide is a substantial part of the
aggregate SO2 pollution.

Other details related to the issue of uncertainty are ex-
plained further in Fig. 4 which contains pairs of maps showing

spatial distribution of the mean concentration (left) and the
relative uncertainty level (right), for NOx, PM10, Pb, PM2.5,
and SO2, respectively. As can be observed, the typical traffic-
related pollutants, like NOx, PM10, and Pb, show high uncer-
tainty in the vicinity of the main roads, with local peaks near
intersections. These local uncertainty peaks are predetermined
by the share of emission sources affecting a given receptor.

The general similarity observed in the respective map types
(Fig. 4) is related mainly to the movement of the induced

Table 2 Comparison of modeled and measured air pollution concentrations

No. Monitoring station PM10 [μg/m
3] NOx [μg/m

3] SO2 [μg/m
3]

Modeled Measured Error [%] Modeled Measured Error [%] Modeled Measured Error [%]

1 Białobrzeska 33 29.5 11.9 – – – – – –

2 Bednarska 42 34.1 23.2 46.7 56.8 −17.8 – – –

3 Komunikacyjna 40 51.7 −22.6 51.2 76.2 −32.8 13.9 9.8 41.8

4 Żelazna 34 32.9 3.3 45.6 36.3 25.6 15.6 9 73.3

5 Krucza 43.2 41.7 3.6 31.3 35.7 −12.3 9.8 9.3 5.4

6 Ursynów 32 32.8 −2.4 27.5 19.2 43.2 9.3 8.8 5.7

7 Nowoursynowska 33.5 42.2 −20.6 23.1 25.6 −9.8 9.5 10.5 −9.5
8 Tołstoja 22 37.2 −40.9 35.2 43.1 −18.3 12.1 11.8 2.5

9 Targówek 31.6 31.9 −0.9 – – – – – –

10 Anieli Krzywoń 24 31.3 −23.3 – – – – – –

11 Bernardyńska 33 21.2 55.7 – – – 10.4 8.7 19.5

12 Bora-Komorowskiego 40.5 34.9 16.0 – – – – – –

13 Żegańska 27 39.2 −31.1 – – – – – –

14 Puszczy Solskiej – – – 26.4 34.1 −22.6 10.6 12.9 −17.8
15 Porajów – – – 19.6 24.1 −18.7 – – –

16 Lazurowa – – – – – – 10.1 11.2 −9.8
No. Monitoring station Pb [ng/m3] Ni [ng/m3] Cd [ng/m3]

Modeled Measured Error [%] Modeled Measured Error [%] Modeled Measured Error [%]

1 Bernardyńska 22.7 12 89.2 2.3 6.1 −62.3 0.73 0.45 62.2

2 Żelazna 24.5 34 −27.9 1.8 1.5 20.0 0.65 0.7 −7.1
3 Żegańska 20.2 41 −50.7 3.2 2.8 14.3 1.10 0.9 22.2

4 Anieli Krzywoń 18.3 47 −61.1 – – – – – –

Table 1 The polluting
components included in the study
(according to [18])

Emission/primary pollution Secondary pollution

SO2 (sulfur dioxide) SO 4
= (sulfate aerosol)

NOx (nitrogen oxides) NO 3
− (nitrate aerosol)

HNO3 (nitric acid)

PPM10 (primary PM, diameter ≤10 μm)

PPM10_R (PPM10 re-suspended by road traffic—
secondary emission)

PM10=PPM10+PPM10_R+SO 4
= + NO 3

−

PPM2.5 (primary PM, diameter ≤2.5 μm)

PPM2.5_R (PPM2.5 resuspended by road traffic—
secondary emission)

PM2.5 = PPM2.5 + PPM2.5_R +
SO 4

= + NO 3
−

BaP (benzo[a]pyrene)

Ni (nickel)

Cd (cadmium)

Pb (lead)
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Fig. 2 Calculated versus
measured concentrations [μg/m3]:
a PM10, b NOx, and c SO2. The
dotted lines represent factor 2
uncertainty ranges
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pollution, such as particular matter (PM10), nitrogen oxides,
and lead. Their high spatial diversification, with local peaks in
the city center zones and near the main traffic arteries, can be
observed in Fig. 4 (left). The spatial diversity is much more
apparent on uncertainty maps (Fig. 4 right) where the high
values reflect well the structure of the road network and the
main intersections. This effect can be observed mainly for
NOx, PM10, and Pb. In these cases, high uncertainties are
correlated to some extent with the concentration values, but
in fact, they depend also on the location of the receptors. Such
location determines the relative share of the contributing emis-
sion categories and the quantity of the individual emission
sources which affect a given receptor point. A specific coin-
cidence of these factors leads to extreme values of the overall
uncertainties at some receptor locations.

On the other hand, the pollutants which are not under the
predominant impact of the transport sources (such as SO2) are
more distributed across the domain in a more uniform manner
and their uncertainty levels are relatively low. In this case, the
high levels of uncertainty as reported at some receptor points
do not coincide with the high concentration values and rather
are caused by certain other factors as further explained below.

To better illustrate this issue, the concentrations and the cor-
responding levels of uncertainty are analyzed for two selected
receptors, 136 and 156 (compare Fig. 1). The first one is a char-
acteristic for a typical traffic-affected spot (intersection of main
roads), while the other one is affected mainly by the local area
sources. As can be observed (again refer to Fig. 4, right), the level
of uncertainty for the typical urban transport pollutants, like NOx,
PM10, and Pb, and to some extent PM2.5, is high near the inter-
section (receptor 136). According to Fig. 5, the linear sources
contribute in a predominant way. However, in addition to the
emission categories, another important factor influencing the fi-
nal level of uncertainty is the quantity of individual sources
which substantially contribute to the pollutant concentration at
this spot. Generally, due to the averaging effect, the rising

number of such emission sources leads to lower aggregate level
of the relative uncertainty (the standard deviation for n equally
contributing sources is reduced proportionally to 1=

ffiffiffi

n
p

). So, the
fewer sources contribute to the pollution level, the higher level of
the relative uncertainty may be expected. At the same time, an
unbalanced contribution of the individual sources (for example, a
very predominant and uncertain emission source) generally in-
creases the aggregate level uncertainty for the forecasted
pollution.

The last property can be quantified, as well. It is assessed
below and illustrated qualitatively using sample results taken
from Fig. 5 which lists the predominant individual sources
accounting for approximately 60 % of the overall pollution
(concentration) assigned to receptor 136. As can be observed,
for the highly uncertain pollutants, NOx (~35 %), Pb (~42 %),
and PM2.5 (~25 %), there are only four contributing sources
that have approximately equal level of input uncertainty, with
one of them accountable for the predominant share. Similarly,
for PM10 (~30 %), the number of contributing sources is
higher but the predominant share is clear with respect to only
one of them. The level uncertainty resulting from the above is
at the level of the input uncertainty related to the pollutant
emissions. On the other hand, in the case of SO2 (Fig. 5,
bottom), a more balanced contribution between the four emis-
sion categories can be observed, with about 15 individual
emission sources in total and most of them having a meaning-
ful influence on the final pollution. The aggregate level of
relative uncertainty for SO2 forecast is considerably lower
for the receptor considered (~12 %).

The situation of receptor 156 (compare its location in
Fig. 1) is very different. As can be observed in Fig. 4 (right),
the levels of uncertainty related to the typical traffic-related
pollutants (NOx, PM10, Pb) are relatively low in the case of
receptor 156, while the peak values (across the entire domain)
are connected with SO2 and PM2.5. This again can be ex-
plained by reference to Fig. 6 which shows the relative share
of emission categories as well as the quantity of the individual
sources which are the main contributors to the aggregate con-
centration level as measured at this receptor. Here, the area
sources predominate (with the exception of NOx) because this
zone comprises residential areas with a number of small hous-
es equipped with local coal-based heating/cooking systems.
On the other hand, a substantial share of the linear emission
sources can be observed in the case of all NOx, PM10, and Pb.
This contribution is low for sulfur dioxide and medium for
PM2.5 because resuspended fraction (secondary PM2.5 emis-
sion) has a much lower impact than that of PM10. It can be
observed in Fig. 6 (right) that only five individual
sources contribute to SO2 and PM2.5 pollution, includ-
ing two cases of the highest values of relative uncer-
tainty reported. The level of uncertainty for Pb is also
noticeably high because of the relatively small quantity
of the contributing sources.

Table 3 Assumed input uncertainty range depending on emission
category (according to [18])

Pollutant Emission sources

High point (%) Other point (%) Area (%) Linear (%)

SO2 ±15 ±20 ±30 ±30

NOx ±20 ±30 ±40 ±40

PPM10 ±25 ±40 ±40 ±40

PPM2.5 ±25 ±40 ±40 ±40

PPM10_R – – – ±40

PPM2.5_R – – – ±40

BaP ±30 ±40 ±50 ±50

Ni ±30 ±40 ±50 ±50

Cd ±30 ±40 ±50 ±50

Pb ±30 ±40 ±50 ±50
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Meanwhile, NOx and PM10 concentrations in receptor 156
result from superposition of a large quantity of the contribut-
ing sources, which are mostly area sources, but also the neigh-
boring linear sources. This again implies relatively low levels
of uncertainty for both pollutants due to the averaging effect as
mentioned above.

4 Discussion

This study presents the results of the computational modeling
and uncertainty analysis of air pollution dispersion in theWar-
saw metropolitan area. The analysis deals with the main types
of urban pollutants and relies on the real meteorological data
and emission field inventory for 2005. For computational pur-
pose and the detailed uncertainty assessment, the emission
field has been split down into four categories: (a) high point
sources (power plants), (b) other point sources (industry), (c)
area sources (residential sector), and (d) linear sources
(transportation).

The main forecasting tool used in the air pollution disper-
sion simulations is the regional scale transport model
CALPUFF [19]. All benefits of the model’s linear structure
were leveraged in order to calculate the concentration values
of the pollutants and implement parallel computation forMon-
te Carlo method and the uncertainty analysis. One of the cru-
cial steps in quantifying the level of uncertainty is the deter-
mination of source contributions to the concentrations in re-
ceptor sites (compare Figs. 5 and 6). Here again, thanks to the
linearity of CALPUFF structure, the unit emission-
concentration transfer matrix can be preprocessed for any in-
dividual emission source. Next, the exhaustive computations
allow calculating the probability distributions for annual con-
centrations of the pollutants, both primary and secondary,
which are characteristic for the atmospheric environment in
urban areas.

The results discussed in the paper cover mainly the sulfur
and nitrogen oxide pollutants, lead, and particulate matter,
PM10 and PM2.5. Secondary pollutants of SO 4

= and NO 3
−were

taken into account in the process of forming sulfate and nitrate
aerosols, which are then integrated in particulate matters, as
stated in Table 1. Also, the annual mean concentrations of Ni,
Cd, and BaP were calculated, including their uncertainty,
however this study skips their analysis because of the missing
representative set of reference data for the period considered.

The annual mean concentrations of sulfur dioxide in the
urban domain are relatively low and do not exceed air quality
limits (critical level [29] 20 μg/m3). The four main categories
of emission sources contribute to this type of pollution, with a

noticeable share of power/heating plants which are equipped
with very high stacks (pollutants are released mainly outside
the urban area) and desulfurization installations. On the other
hand, concentrations of particulate matter and nitrogen oxides
are substantial and have a negative impact on the urban envi-
ronment. NOx and PM10 concentrations are strongly diversi-
fied in spatial terms and can reach very high values locally
(especially in the city center zones and near the traffic arter-
ies), often above the limits (the critical levels [29] are 30 and
40 μg/m3 for NOx and PM10, respectively). The main source
of such adverse environmental impact is the transport system
(including the transit traffic). New ring roads (beltlines),
which are now under construction, and the anticipated dis-
placement of the transit and truck transport out of the city
center zones, should improve the situation.

Validation of the model (Table 2 and Fig. 2) shows satis-
factory accuracy of the forecasted concentrations. The ratio of
the modeled versus observed concentrations of the main pol-
lutants meet the standard accuracy index0.5≤FAC2≤2 [27].
These results confirm the general opinion [20, 25, 26] about
the reliable properties of the CALMET/CALPUFF system,
especially in relation to the annual mean concentrations.

The sample results shown in Figs. 4, 5 and 6 show that the
main factor determining the final level of uncertainty in the
model forecast at any receptor point is the share of the pre-
dominant emission sources, including the quantity of the main
contributing sources. This effect is apparent mainly in the case
of a single source that predominates strongly. This general
conclusion is illustrated in the two selected receptor points,
namely receptor 136: the intersection where the high level of
uncertainty occurs for traffic-related pollutants (NOx, Pb) and
receptor 156: the residential area in a peripheral district where
SO2 and fine particulates PM2.5 predominate in the emission
field and, respectively, the high level of uncertainty is related
to the concentrations of both pollutants. On the other hand, in
such cases, the impact of the uncertainty related to the input
emission as assumed in Table 3 becomes less important.

The main assumptions used in the uncertainty analysis
need an elaboration. The first issue is the choice of the typical
year (2005) from the meteorological point of view. The year
2005 was analyzed as providing a representative set of mete-
orological data. The typical year method is often used in at-
mospheric modeling because it greatly reduces the load of
computational work, and that issue has been very important
in this case where Monte Carlo simulation was utilized. Al-
though the use of a typical year requires some approximations,
any changes in the importance of the point sources contribut-
ing to specific receptors in other years are not extremely dif-
ferent and stay in a range of ±5–10 %.

Uncertainty estimates are necessary for carrying out risk
analysis in decision-making. The Monte Carlo simulation is
considered to be the best method of assessing uncertainty
distributions of the pollution concentrations and therefore

�Fig. 3 Standard deviation (left) and relative uncertainty range (right)
versus concentration level in 563 receptors. From top to bottom: NOx,
PM10, SO2, and Pb, respectively
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Fig. 4 Concentration (left) and relative uncertainty (right) for NOx, PM10, and Pb. Concentration (left) and relative uncertainty (right) for PM2.5 and SO2
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often used for this purpose [30, 31]. Error propagation method
is another way to approach this issue. It is computationally
more efficient and gives similar results for the Gaussian dis-
tributions. However, it is less accurate for non-Gaussian
distributions.

The second issue pertains to the assumed ranges of uncer-
tainty as stated in Table 3. Those ranges were adopted from an
expert opinion (Warchałowski 2012, Personal communication,
Warsaw University of Technology), as no better sources were
available at that time. The ranges apply to the conditions in

Poland in the recent years. Other ranges assessment can be
found in the literature [17]. Quite recently, this issue was ad-
dressed in a report prepared by a Polish agency (Warchałowski
2012, Personal communication, Warsaw University of Tech-
nology), where many factors were adopted as international
default values. In spite of this, similar uncertainty ranges have
been obtained.

It should be stressed that the assumptions related to the
input emission uncertainty do not influence the main conclu-
sion of these investigations: the range of uncertainty in

Fig. 4 (continued)
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pollutant concentrations is lower whenmany emission sources
of similar influence contribute to the concentration. It results
from the averaging effect and happens particularly often in the
urban environment with many concentrated emission sources.
It causes a highly varying rate of uncertainty in air pollutant
concentration, as shown in Fig. 4. This effect is important for
analyses in which the level of uncertainty in air pollution
concentration in cities may have a considerable impact on
the final results, for example in the population health risk
analysis. If a fixed percentage level of uncertainty was as-
sumed for an entire city, it would cause higher discrepancies
in the estimated uncertainty of the final indices being
calculated.

5 Conclusions

The main problem of the paper is to analyze the spatial distri-
bution of the uncertainty present in air quality forecasts as
caused by the uncertainty present in the input emission data
set. It is observed that the accuracy and the uncertainty of the
air pollution forecast measured at any receptor point is directly
related to the following three factors: (a) the type of pollutant
analyzed, (b) the contributing and the predominant categories
of emission sources and the assigned levels of their input
uncertainty, and (c) the quantity of the individual emission
sources having a substantial share in the aggregate pollution.
The resulting level of uncertainty assigned to a given receptor
point decreases as the quantity of the contributing emission
sources increases (the averaging effect).

For the specific air pollutants analyzed in this paper, rela-
tively homogeneous distribution and low uncertainty applies
to the concentrations of SO2, which depend mainly on rela-
tively precise input emission from the point sources and also
on the high number of the contributing sources (one exception
is receptor 156 where high uncertainty is a result of the strong
domination one area source—the local heating of a residential
area). On the other hand, there is a very substantial level of
uncertainty in NOx, PM10, and Pb forecasts which strongly
depend on the structure of contributing sources, with the pre-
dominant impact of the urban transport system. Also, the pa-
per discusses the very high spatial variability depending on the
distribution of uncertainty, which is related to traffic-
dependent pollutants. Besides the practical value of the above
findings, the general objectives of the presented uncertainty
results can be attributed to applications of air pollution models
as the decision support tools in the air quality management. A
complex analysis of the model performance, including uncer-
tainty assessment, improves the credibility of the final policy
decisions that allows obtaining confident measurable environ-
mental gains. Moreover, a general aim of such an analysis is,
as stated in [7], to bring scientific predictions closer to reality,

increase decision-maker’s confidence of scientific results, and
improve the quality of decisions.
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