783 research outputs found
Digit-only sauropod pes trackways from China - evidence of swimming or a preservational phenomenon?
For more than 70 years unusual sauropod trackways have played a pivotal role in debates about the swimming ability of sauropods. Most claims that sauropods could swim have been based on manus-only or manus-dominated trackways. However none of these incomplete trackways has been entirely convincing, and most have proved to be taphonomic artifacts, either undertracks or the result of differential depth of penetration of manus and pes tracks, but otherwise showed the typical pattern of normal walking trackways. Here we report an assemblage of unusual sauropod tracks from the Lower Cretaceous Hekou Group of Gansu Province, northern China, characterized by the preservation of only the pes claw traces, that we interpret as having been left by walking, not buoyant or swimming, individuals. They are interpreted as the result of animals moving on a soft mud-silt substrate, projecting their claws deeply to register their traces on an underlying sand layer where they gained more grip during progression. Other sauropod walking trackways on the same surface with both pes and manus traces preserved, were probably left earlier on relatively firm substrates that predated the deposition of soft mud and silt . Presently, there is no convincing evidence of swimming sauropods from their trackways, which is not to say that sauropods did not swim at all
Novel role for the innate immune receptor toll-like receptor 4 (TLR4) in the regulation of the wnt signaling pathway and photoreceptor apoptosis
Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways. © 2012 Yi et al
Homology modeling and molecular dynamics simulations of MUC1-9/H-2Kb complex suggest novel binding interactions
International audienceHuman MUC1 is over-expressed in human adenocarcinomas and has been used as a target for immunotherapy studies. The 9-mer MUC1-9 peptide has been identified as one of the peptides which binds to murine MHC class I H-2K. The structure of MUC1-9 in complex with H-2K has been modeled and simulated with classical molecular dynamics, based on the x-ray structure of the SEV9 peptide/H-2K complex. Two independent trajectories with the solvated complex (10 ns in length) were produced. Approximately 12 hydrogen bonds were identified during both trajectories to contribute to peptide/MHC complex, as well as 1-2 water mediated hydrogen bonds. Stability of the complex was also confirmed by buried surface area analysis, although the corresponding values were about 20% lower than those of the original x-ray structure. Interestingly, a bulged conformation of the peptide's central region, partially characterized as a -turn, was found exposed form the binding groove. In addition, P1 and P9 residues remained bound in the A and F binding pockets, even though there was a suggestion that P9 was more flexible. The complex lacked numerous water mediated hydrogen bonds that were present in the reference peptide x-ray structure. Moreover, local displacements of residues Asp4, Thr5 and Pro9 resulted in loss of some key interactions with the MHC molecule. This might explain the reduced affinity of the MUC1-9 peptide, relatively to SEV9, for the MHC class I H-2K
A Methodological Framework for the Evaluation of Syndromic Surveillance Systems: A Case Study of England
Background: Syndromic surveillance complements traditional public health surveillance by collecting and analysing health indicators in near real time. The rationale of syndromic surveillance is that it may detect health threats faster than traditional surveillance systems permitting more timely, and hence potentially more effective public health action. The effectiveness of syndromic surveillance largely relies on the methods used to detect aberrations. Very few studies have evaluated the performance of syndromic surveillance systems and consequently little is known about the types of events that such systems can and cannot detect. Methods: We introduce a framework for the evaluation of syndromic surveillance systems that can be used in any setting based upon the use of simulated scenarios. For a range of scenarios this allows the time and probability of to be determined and uncertainty is fully incorporated. In addition, we demonstrate how such a framework can model the benefits of increases in the number of centres reporting syndromic data and also determine the minimum size of outbreaks that can or cannot be detected. Here, we demonstrate its utility using simulations of national influenza outbreaks and localised outbreaks of cryptosporidiosis. Results: Influenza outbreaks are consistently detected with larger outbreaks being detected in a more timely manner. Small cryptosporidiosis outbreaks (<1000 symptomatic individuals) are unlikely to be detected. We also demonstrate the advantages of having multiple syndromic data streams (e.g. emergency attendance data, telephone helpline data, general practice consultation data) as different streams are able to detect different types outbreaks with different efficacy (e.g. emergency attendance data are useful for the detection of pandemic influenza but not for outbreaks of cryptosporidiosis). We also highlight that for any one disease, the utility of data streams may vary geographically, and that the detection ability of syndromic surveillance varies seasonally (e.g. an influenza outbreak starting in July is detected sooner than one starting later in the year). We argue that our framework constitutes a useful tool for public health emergency preparedness in multiple settings. Conclusions: The proposed framework allows the exhaustive evaluation of any syndromic surveillance system and constitutes a useful tool for emergency preparedness and response
Numerical analysis of different heating systems for warm sheet metal forming
The main goal of this study is to present an analysis
of different heating methods frequently used in laboratory
scale and in the industrial practice to heat blanks at warm
temperatures. In this context, the blank can be heated inside
the forming tools (internal method) or using a heating system
(external method). In order to perform this analysis, a finite
element model is firstly validated with the simulation of the
direct resistance system used in a Gleeble testing machine.
The predicted temperature was compared with the temperature
distribution recorded experimentally and a good agreement
was found. Afterwards, a finite element model is used to
predict the temperature distribution in the blank during the
heating process, when using different heating methods. The
analysis also includes the evaluation of a cooling phase associated
to the transport phase for the external heating methods.
The results of this analysis show that neglecting the heating
phase and a transport phase could lead to inaccuracies in the
simulation of the forming phase.The authors gratefully acknowledge the financial
support of the Portuguese Foundation for Science and Technology (FCT)
under project PTDC/EMS-TEC/1805/2012 and by FEDER funds
through the program COMPETE—Programa Operacional Factores de
Competitividade, under the project CENTRO-07-0224-FEDER-002001
(MT4MOBI). The authors would like to thank Prof. A. Andrade-Campos
for helpful contributions on the development of the finite element code
presented in this work.info:eu-repo/semantics/publishedVersio
Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay
published_or_final_versio
A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.)
The complex allotetraploid genome is one of major challenges in cotton for repressing gene expression.
Developing site-specific DNA mutation is the long-term dream for cotton breeding scientists. The
clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system is emerging as a robust biotechnology for targeted-DNA mutation. In this study, two sgRNAs, GhMYB25-like-sgRNA1 and GhMYB25-like-sgRNA2, were designed in the identical genomic regions of GhMYB25-like A and GhMYB25-like D, which were encoded by cotton A subgenome and the D subgenome, respectively, was assembled to direct Cas9-mediated allotetraploid cotton genome
editing. High proportion (14.2–21.4%) CRISPR/Cas9-induced specific truncation events, either from GhMYB25-like A DNA site or from GhMYB25-like D DNA site, were detected in 50% examined transgenic cotton through PCR amplification assay and sequencing analyses. Sequencing results also demonstrated that 100% and 98.8% mutation frequency were occurred on GhMYB25-like-sgRNA1
and GhMYB25-like-sgRNA2 target site respectively. The off-target effect was evaluated by sequencing
two putative off-target sites, which have 3 and 1 mismatched nucleotides with GhMYB25-like-sgRNA1
and GhMYB25-like-sgRNA2, respectively; all the examined samples were not detected any off-targetcaused mutation events. Thus, these results demonstrated that CRISPR/Cas9 is qualified for generating DNA level mutations on allotetraploid cotton genome with high-efficiency and high-specificity.ECU Open Access Publishing Support Fun
Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment
published_or_final_versio
- …
