9 research outputs found
The Head and Neck Anatomy of Sea Turtles (Cryptodira: Chelonioidea) and Skull Shape in Testudines
BACKGROUND: Sea turtles (Chelonoidea) are a charismatic group of marine reptiles that occupy a range of important ecological roles. However, the diversity and evolution of their feeding anatomy remain incompletely known. METHODOLOGY/PRINCIPAL FINDINGS: Using computed tomography and classical comparative anatomy we describe the cranial anatomy in two sea turtles, the loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii), for a better understanding of sea turtle functional anatomy and morphological variation. In both taxa the temporal region of the skull is enclosed by bone and the jaw joint structure and muscle arrangement indicate that palinal jaw movement is possible. The tongue is relatively small, and the hyoid apparatus is not as conspicuous as in some freshwater aquatic turtles. We find several similarities between the muscles of C. caretta and L. kempii, but comparison with other turtles suggests only one of these characters may be derived: connection of the m. adductor mandibulae internus into the Pars intramandibularis via the Zwischensehne. The large fleshy origin of the m. adductor mandibulae externus Pars superficialis from the jugal seems to be a characteristic feature of sea turtles. CONCLUSIONS/SIGNIFICANCE: In C. caretta and L. kempii the ability to suction feed does not seem to be as well developed as that found in some freshwater aquatic turtles. Instead both have skulls suited to forceful biting. This is consistent with the observation that both taxa tend to feed on relatively slow moving but sometimes armoured prey. The broad fleshy origin of the m. adductor mandibulae externus Pars superficialis may be linked to thecheek region being almost fully enclosed in bone but the relationship is complex.Marc E.H. Jones, Ingmar Werneburg, Neil Curtis, Rod Penrose, Paul O'Higgins, Michael J. Fagan and Susan E. Evan
Homology of the reptilian coracoid and a reappraisal of the evolution and development of the amniote pectoral apparatus
As in monotreme mammals, the pectoral apparatus of basal (fossil) amniotes includes two coracoid elements, the procoracoid and metacoracoid. Among extant reptiles the metacoracoid has long been assumed lost; this notion is herein challenged. A comprehensive review of data from numerous sources, including the fossil record, experimental embryology, genetic manipulations and an analysis of morphology at the level cell condensations, supports the conclusion that the metacoracoid gives rise to the majority of the reptilian coracoid. By contrast, the reptilian procoracoid remains as a rudiment that is incorporated as a process of the (meta)coracoid and/or the glenoid region of the scapula early during development, prior to skeletogenesis. Application of this integrated approach corroborates and enhances previous work describing the evolution of the pectoral apparatus in mammals. A revised scenario of amniote coracoid evolution is presented emphasizing the importance of considering cell condensations when evaluating the homology of a skeletal complex