2,712 research outputs found
Bacterial sex in dental plaque
Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity
Proximal Average Approximated Incremental Gradient Method for Composite Penalty Regularized Empirical Risk Minimization *
Abstract Proximal average (PA) is an approximation technique proposed recently to handle nonsmooth composite regularizer in empirical risk minimization problem. For nonsmooth composite regularizer, it is often difficult to directly derive the corresponding proximal update when solving with popular proximal update. While traditional approaches resort to complex splitting methods like ADMM, proximal average provides an alternative, featuring the tractability of implementation and theoretical analysis. Nevertheless, compared to SDCA-ADMM and SAG-ADMM which are examples of ADMM-based methods achieving faster convergence rate and low per-iteration complexity, existing PA-based approaches either converge slowly (e.g. PA-ASGD) or suffer from high per-iteration cost (e.g. PA-APG). In this paper, we therefore propose a new PA-based algorithm called PA-SAGA, which is optimal in both convergence rate and per-iteration cost, by incorporating into incremental gradient-based framework
Prospective study evaluating the relative sensitivity of 18F-NaF PET/CT for detecting skeletal metastases from renal cell carcinoma in comparison to multidetector CT and 99mTc-MDP bone scintigraphy, using an adaptive trial design.
BACKGROUND: The detection of occult bone metastases is a key factor in determining the management of patients with renal cell carcinoma (RCC), especially when curative surgery is considered. This prospective study assessed the sensitivity of (18)F-labelled sodium fluoride in conjunction with positron emission tomography/computed tomography ((18)F-NaF PET/CT) for detecting RCC bone metastases, compared with conventional imaging by bone scintigraphy or CT. PATIENTS AND METHODS: An adaptive two-stage trial design was utilized, which was stopped after the first stage due to statistical efficacy. Ten patients with stage IV RCC and bone metastases were imaged with (18)F-NaF PET/CT and (99m)Tc-labelled methylene diphosphonate ((99m)Tc-MDP) bone scintigraphy including pelvic single photon emission computed tomography (SPECT). Images were reported independently by experienced radiologists and nuclear medicine physicians using a 5-point scoring system. RESULTS: Seventy-seven lesions were diagnosed as malignant: 100% were identified by (18)F-NaF PET/CT, 46% by CT and 29% by bone scintigraphy/SPECT. Standard-of-care imaging with CT and bone scintigraphy identified 65% of the metastases reported by (18)F-NaF PET/CT. On an individual patient basis, (18)F-NaF PET/CT detected more RCC metastases than (99m)Tc-MDP bone scintigraphy/SPECT or CT alone (P = 0.007). The metabolic volumes, mean and maximum standardized uptake values (SUV mean and SUV max) of the malignant lesions were significantly greater than those of the benign lesions (P < 0.001). CONCLUSIONS: (18)F-NaF PET/CT is significantly more sensitive at detecting RCC skeletal metastases than conventional bone scintigraphy or CT. The detection of occult bone metastases could greatly alter patient management, particularly in the context when standard-of-care imaging is negative for skeletal metastases.This work was supported by Cancer Research UK [grant number C19212/A16628]. The authors also received research support from the National Institute of Health Research Cambridge Biomedical Research Centre, Engineering and Physical Sciences Research Council Imaging Centre in Cambridge and Manchester, and the Cambridge Experimental Cancer Medicine Centre. The research has also been partly funded by a generous donation from the family and friends of a patient.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/annonc/mdv28
Similarities between structural distortions under pressure and chemical doping in superconducting BaFe2As2
The discovery of a new family of high Tc materials, the iron arsenides
(FeAs), has led to a resurgence of interest in superconductivity. Several
important traits of these materials are now apparent, for example, layers of
iron tetrahedrally coordinated by arsenic are crucial structural ingredients.
It is also now well established that the parent non-superconducting phases are
itinerant magnets, and that superconductivity can be induced by either chemical
substitution or application of pressure, in sharp contrast to the cuprate
family of materials. The structure and properties of chemically substituted
samples are known to be intimately linked, however, remarkably little is known
about this relationship when high pressure is used to induce superconductivity
in undoped compounds. Here we show that the key structural features in
BaFe2As2, namely suppression of the tetragonal to orthorhombic phase transition
and reduction in the As-Fe-As bond angle and Fe-Fe distance, show the same
behavior under pressure as found in chemically substituted samples. Using
experimentally derived structural data, we show that the electronic structure
evolves similarly in both cases. These results suggest that modification of the
Fermi surface by structural distortions is more important than charge doping
for inducing superconductivity in BaFe2As2
Water Manganese Exposure and Children’s Intellectual Function in Araihazar, Bangladesh
Exposure to manganese via inhalation has long been known to elicit neurotoxicity in adults, but little is known about possible consequences of exposure via drinking water. In this study, we report results of a cross-sectional investigation of intellectual function in 142 10-year-old children in Araihazar, Bangladesh, who had been consuming tube-well water with an average concentration of 793 μg Mn/L and 3 μg arsenic/L. Children and mothers came to our field clinic, where children received a medical examination in which weight, height, and head circumference were measured. Children’s intellectual function was assessed on tests drawn from the Wechsler Intelligence Scale for Children, version III, by summing weighted items across domains to create Verbal, Performance, and Full-Scale raw scores. Children provided urine specimens for measuring urinary As and creatinine and were asked to provide blood samples for measuring blood lead, As, Mn, and hemoglobin concentrations. After adjustment for sociodemographic covariates, water Mn was associated with reduced Full-Scale, Performance, and Verbal raw scores, in a dose–response fashion; the low level of As in water had no effect. In the United States, roughly 6% of domestic household wells have Mn concentrations that exceed 300 μg Mn/L, the current U.S. Environmental Protection Agency lifetime health advisory level. We conclude that in both Bangladesh and the United States, some children are at risk for Mn-induced neurotoxicity
Neutrophils in cancer: neutral no more
Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets
Transposon Excision from an Atypical Site: A Mechanism of Evolution of Novel Transposable Elements
The role of transposable elements in sculpting the genome is well appreciated but remains poorly understood. Some organisms, such as humans, do not have active transposons; however, transposable elements were presumably active in their ancestral genomes. Of specific interest is whether the DNA surrounding the sites of transposon excision become recombinogenic, thus bringing about homologous recombination. Previous studies in maize and Drosophila have provided conflicting evidence on whether transposon excision is correlated with homologous recombination. Here we take advantage of an atypical Dissociation (Ds) element, a maize transposon that can be mobilized by the Ac transposase gene in Arabidopsis thaliana, to address questions on the mechanism of Ds excision. This atypical Ds element contains an adjacent 598 base pairs (bp) inverted repeat; the element was allowed to excise by the introduction of an unlinked Ac transposase source through mating. Footprints at the excision site suggest a micro-homology mediated non-homologous end joining reminiscent of V(D)J recombination involving the formation of intra-helix 3′ to 5′ trans-esterification as an intermediate, a mechanism consistent with previous observations in maize, Antirrhinum and in certain insects. The proposed mechanism suggests that the broken chromosome at the excision site should not allow recombinational interaction with the homologous chromosome, and that the linked inverted repeat should also be mobilizable. To test the first prediction, we measured recombination of flanking chromosomal arms selected for the excision of Ds. In congruence with the model, Ds excision did not influence crossover recombination. Furthermore, evidence for correlated movement of the adjacent inverted repeat sequence is presented; its origin and movement suggest a novel mechanism for the evolution of repeated elements. Taken together these results suggest that the movement of transposable elements themselves may not directly influence linkage. Possibility remains, however, for novel repeated DNA sequences produced as a consequence of transposon movement to influence crossover in subsequent generations
Production and Characterization of Antifungal Compounds Produced by Lactobacillus plantarum IMAU10014
Lactobacillus plantarum IMAU10014 was isolated from koumiss that produces a broad spectrum of antifungal compounds, all of which were active against plant pathogenic fungi in an agar plate assay. Two major antifungal compounds were extracted from the cell-free supernatant broth of L. plantarum IMAU10014. 3-phenyllactic acid and Benzeneacetic acid, 2-propenyl ester were carried out by HPLC, LC-MS, GC-MS, NMR analysis. It is the first report that lactic acid bacteria produce antifungal Benzeneacetic acid, 2-propenyl ester. Of these, the antifungal products also have a broad spectrum of antifungal activity, namely against Botrytis cinerea, Glomerella cingulate, Phytophthora drechsleri Tucker, Penicillium citrinum, Penicillium digitatum and Fusarium oxysporum, which was identified by the overlay and well-diffusion assay. F. oxysporum, P. citrinum and P. drechsleri Tucker were the most sensitive among molds
Cold atmospheric plasma induces ATP-dependent endocytosis of nanoparticles and synergistic U373MG cancer cell death
Gold nanoparticles (AuNP) have potential as both diagnostic and therapeutic vehicles. However, selective targeting and uptake in cancer cells remains challenging. Cold atmospheric plasma (CAP) can be combined with AuNP to achieve synergistic anti-cancer cytotoxicity. To explore synergistic mechanisms, we demonstrate both rate of AuNP uptake and total amount accumulated in U373MG Glioblastoma multiforme (GBM) cells are significantly increased when exposed to 75 kV CAP generated by dielectric barrier discharge. No significant changes in the physical parameters of AuNP were caused by CAP but active transport mechanisms were stimulated in cells. Unlike many other biological effects of CAP, long-lived reactive species were not involved, and plasma-activated liquids did not replicate the effect. Chemical effects induced by direct and indirect exposure to CAP appears the dominant mediator of enhanced uptake. Transient physical alterations of membrane integrity played a minor role. 3D-reconstruction of deconvoluted confocal images confirmed AuNP accumulation in lysosomes and other acidic vesicles, which will be useful for future drug delivery and diagnostic strategies. Toxicity of AuNP significantly increased by 25-fold when combined with CAP. Our data indicate that direct exposure to CAP activates AuNP-dependent cytotoxicity by increasing AuNP endocytosis and trafficking to lysosomes in U373MG cells
- …