143 research outputs found

    From nodal liquid to nodal Mottness in a frustrated Hubbard model

    Full text link
    We investigate the physics of frustrated 3-leg Hubbard ladders in the band limit, when hopping across the ladder's rungs (t_{\perp}) is of the same order as hopping along them (t) much greater than the onsite Coulomb repulsion (U). We show that this model exhibits a striking electron-hole asymmetry close to half-filling: the hole-doped system at low temperatures develops a Resonating Valence Bond (RVB)-like d-wave gap (pseudogap close to (π\pi,0)) coinciding with gapless nodal excitations (nodal liquid); in contrast, the electron-doped system is seen to develop a Mott gap at the nodes, whilst retaining a metallic character of its majority Fermi surface. At lower temperatures in the electron-doped case, d-wave superconducting correlations -- here, coexisting with gapped nodal excitations -- are already seen to arise. Upon further doping the hole-doped case, the RVB-like state yields to d-wave superconductivity. Such physics is reminiscent of that exhibited by the high temperature cuprate superconductors--notably electron-hole asymmetry as noted by Angle Resolved PhotoEmission Spectroscopy (ARPES) and the resistivity exponents observed. This toy model also reinforces the importance of a more thorough experimental investigation of the known 3-leg ladder cuprate systems, and may have some bearing on low dimensional organic superconductors.Comment: 26 pages, 16 figure

    Is the water footprint an appropriate tool for forestry and forest products: The Fennoscandian case

    Get PDF
    The water footprint by the Water Footprint Network (WF) is an ambitious tool for measuring human appropriation and promoting sustainable use of fresh water. Using recent case studies and examples from water-abundant Fennoscandia, we consider whether it is an appropriate tool for evaluating the water use of forestry and forest-based products. We show that aggregating catchment level water consumption over a product life cycle does not consider fresh water as a renewable resource and is inconsistent with the principles of the hydrologic cycle. Currently, the WF assumes that all evapotranspiration (ET) from forests is a human appropriation of water although ET from managed forests in Fennoscandia is indistinguishable from that of unmanaged forests. We suggest that ET should not be included in the water footprint of rain-fed forestry and forest-based products. Tools for sustainable water management should always contextualize water use and water impacts with local water availability and environmental sensitivity

    Comparative expression pattern of Matrix-Metalloproteinases in human glioblastoma cell-lines and primary cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastomas (GBM), the most frequent malignant brain tumors in adults, are characterized by an aggressive local growth pattern and highly invasive tumor cells. This invasion is facilitated by expression of matrix metalloproteinases (MMPs), a family of zinc-dependent endopeptidases. They mediate the degradation of protein components of the extracellular matrix. Twenty-three family members are known. Elevated levels of several of them have been reported in GBM. GBM cell-lines are used for <it>in vitro </it>studies of cell migration and invasion. Therefore, it is essential to know their MMP expression patterns. Only limited data for some of the cell-lines are published, yet. To fill the gaps in our knowledge would help to choose suitable model systems for analysis of regulation and function of MMPs during GBM tumorigenesis, cell migration and invasion.</p> <p>Findings</p> <p>We analysed MMP-1, -8, -9, -10, -11, -13, -17, -19, -20, -21, -23, -24, -26, -27, and MMP-28 expression in seven GBM cell-lines (SNB-19, GaMG, U251, U87, U373, U343, U138) and in four primary cell cultures by semiquantitative RT-PCR, followed changes in the MMP expression pattern with increasing passages of cell culture and examined the influence of TNF-α and TGF-β1 stimulation on the expression of selected MMPs in U251 and U373 cells.</p> <p>MMP-13, -17, -19 and -24 were expressed by all analyzed cell-lines, whereas MMP-20 and MMP-21 were not expressed by any of them. The other MMPs showed variable expression, which was dependent on passage number. Primary cells displayed a similar MMP-expression pattern as the cell-lines. In U251 and U373 cells expression of MMP-9 and MMP-19 was stimulated by TNF-α. MMP-1 mRNA expression was significantly increased in U373 cells, but not in U251 cells by this cytokine. Whereas TGF-β1 had no impact on MMP expression in U251 cells, it significantly induced MMP-11 and MMP-24 expression in U373 cells.</p> <p>Conclusions</p> <p>Literature-data and our own results suggest that the expression pattern of MMPs is highly variable, dependent on the cell-line and the cell-culture conditions used and that also regulation of MMP expression by cytokines is cell-line dependent. This is of high impact for the transfer of cell-culture experiments to clinical implementation.</p

    The Impact of Multifunctional Genes on "Guilt by Association" Analysis

    Get PDF
    Many previous studies have shown that by using variants of “guilt-by-association”, gene function predictions can be made with very high statistical confidence. In these studies, it is assumed that the “associations” in the data (e.g., protein interaction partners) of a gene are necessary in establishing “guilt”. In this paper we show that multifunctionality, rather than association, is a primary driver of gene function prediction. We first show that knowledge of the degree of multifunctionality alone can produce astonishingly strong performance when used as a predictor of gene function. We then demonstrate how multifunctionality is encoded in gene interaction data (such as protein interactions and coexpression networks) and how this can feed forward into gene function prediction algorithms. We find that high-quality gene function predictions can be made using data that possesses no information on which gene interacts with which. By examining a wide range of networks from mouse, human and yeast, as well as multiple prediction methods and evaluation metrics, we provide evidence that this problem is pervasive and does not reflect the failings of any particular algorithm or data type. We propose computational controls that can be used to provide more meaningful control when estimating gene function prediction performance. We suggest that this source of bias due to multifunctionality is important to control for, with widespread implications for the interpretation of genomics studies

    Genetic contributions to self-reported tiredness

    Get PDF
    Self-reported tiredness and low energy, often called fatigue, are associated with poorer physical and mental health. Twin studies have indicated that this has a heritability between 6 and 50%. In the UK Biobank sample (N=108 976), we carried out a genome-wide association study (GWAS) of responses to the question, ‘Over the last two weeks, how often have you felt tired or had little energy?’ Univariate GCTA-GREML found that the proportion of variance explained by all common single-nucleotide polymorphisms for this tiredness question was 8.4% (s.e.=0.6%). GWAS identified one genome-wide significant hit (Affymetrix id 1:64178756_C_T; P=1.36 × 10−11). Linkage disequilibrium score regression and polygenic profile score analyses were used to test for shared genetic aetiology between tiredness and up to 29 physical and mental health traits from GWAS consortia. Significant genetic correlations were identified between tiredness and body mass index (BMI), C-reactive protein, high-density lipoprotein (HDL) cholesterol, forced expiratory volume, grip strength, HbA1c, longevity, obesity, self-rated health, smoking status, triglycerides, type 2 diabetes, waist–hip ratio, attention deficit hyperactivity disorder, bipolar disorder, major depressive disorder, neuroticism, schizophrenia and verbal-numerical reasoning (absolute rg effect sizes between 0.02 and 0.78). Significant associations were identified between tiredness phenotypic scores and polygenic profile scores for BMI, HDL cholesterol, low-density lipoprotein cholesterol, coronary artery disease, C-reactive protein, HbA1c, height, obesity, smoking status, triglycerides, type 2 diabetes, waist–hip ratio, childhood cognitive ability, neuroticism, bipolar disorder, major depressive disorder and schizophrenia (standardised β’s had absolute values<0.03). These results suggest that tiredness is a partly heritable, heterogeneous and complex phenomenon that is phenotypically and genetically associated with affective, cognitive, personality and physiological processes

    Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts

    Get PDF
    We thank the Peggy and Charles Stephenson Cancer Center at the University of Oklahoma, Oklahoma City, OK, for funding, who received an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20 GM103639 for the use of the Histology and Immunohistochemistry Core for providing immunohistochemistry and photographic services. This work was also supported by Oklahoma State University, Center of Veterinary Health Science (Support Grant AE-1-50060 to P.C.S.), the Musella Foundation (R.A.T.), and the Childhood Brain Tumor Foundation (R.A.T.).Pediatric glioblastomas (pGBM), although rare, are one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. Here, we describe the use of conventional and advanced in vivo magnetic resonance imaging (MRI) techniques to assess a novel orthotopic xenograft pGBM mouse (IC-3752GBM patient-derived culture) model, and to monitor the effects of the anti-cancer agent OKN-007 as an inhibitor of pGBM tumor growth. Immunohistochemistry support data is also presented for cell proliferation and tumor growth signaling. OKN-007 was found to significantly decrease tumor volumes (p<0.05) and increase animal survival (p<0.05) in all OKN-007-treated mice compared to untreated animals. In a responsive cohort of treated animals, OKN-007 was able to significantly decrease tumor volumes (p<0.0001), increase survival (p<0.001), and increase diffusion (p<0.01) and perfusion rates (p<0.05). OKN-007 also significantly reduced lipid tumor metabolism in responsive animals (Lip1.3 and Lip0.9)-to-creatine ratio (p<0.05), as well as significantly decrease tumor cell proliferation (p<0.05) and microvessel density (p<0.05). Furthermore, in relationship to the PDGFRα pathway, OKN-007 was able to significantly decrease SULF2 (p<0.05) and PDGFR-α (platelet-derived growth factor receptor-α) (p<0.05) immunoexpression, and significantly increase decorin expression (p<0.05) in responsive mice. This study indicates that OKN-007 may be an effective anti-cancer agent for some patients with pGBMs by inhibiting cell proliferation and angiogenesis, possibly via the PDGFRα pathway, and could be considered as an additional therapy for pediatric brain tumor patients.Yeshttp://www.plosone.org/static/editorial#pee
    corecore