3,132 research outputs found

    Membrane scaling and flux decline during fertiliser-drawn forward osmosis desalination of brackish groundwater

    Full text link
    Fertiliser-drawn forward osmosis (FDFO) desalination has been recently studied as one feasible application of forward osmosis (FO) for irrigation. In this study, the potential of membrane scaling in the FDFO process has been investigated during the desalination of brackish groundwater (BGW). While most fertilisers containing monovalent ions did not result in any scaling when used as an FO draw solution (DS), diammonium phosphate (DAP or (NH4)2HPO4) resulted in significant scaling, which contributed to severe flux decline. Membrane autopsy using scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD) analysis indicated that the reverse diffusion of DAP from the DS to the feed solution was primarily responsible for scale formation during the FDFO process. Physical cleaning of the membrane with deionised water at varying crossflow velocities was employed to evaluate the reversibility of membrane scaling and the extent of flux recovery. For the membrane scaled using DAP as DS, 80-90% of the original flux was recovered when the crossflow velocity for physical cleaning was the same as the crossflow velocity during FDFO desalination. However, when a higher crossflow velocity or Reynolds number was used, the flux was recovered almost completely, irrespective of the DS concentration used. This study underscores the importance of selecting a suitable fertiliser for FDFO desalination of brackish groundwater to avoid membrane scaling and severe flux decline. © 2014 Elsevier Ltd

    Membrane capacitive deionisation as an alternative to the 2nd pass for seawater reverse osmosis desalination plant for bromide removal

    Full text link
    © 2018 Elsevier B.V. Most Australian surface and ground waters have relatively high concentration of bromide between 400 and 8000 μg/L and even higher concentration in seawater between 60,000–78,000 μg/L. Although bromide is not regulated, even at low concentrations of 50–100 μg/L, it can lead to the formation of several types of harmful disinfection by-products (DBPs) during the disinfection process. One of the major concerns with brominated DBPs is the formation of bromate (BrO3−), a serious carcinogen that is formed when water containing a high concentration of bromide is disinfected. As a result, bromate is highly regulated in Australian water standards with the maximum concentration of 20 μg/L in the drinking water. Since seawater reverse osmosis (SWRO) desalination plays an important role in augmenting fresh water supplies in Australia, SWRO plants in Australia usually adopt 2nd pass brackish water reverse osmosis (BWRO) for effective bromide removal, which is not only energy-intensive to operate but also has higher capital cost. In this study, we evaluated the feasibility of membrane capacitive deionisation (MCDI) as one of the alternatives to the 2nd pass BWRO for effective bromide removal in a more energy efficient way

    First report of Perkinsus honshuensis in the variegated carpet shell clam Ruditapes variegatus in Korea

    Get PDF
    The recent discovery of Perkinsus honshuensis, a new Perkinsus species infecting Manila clams Ruditapes philippinarum (Sowerby, 1852), in Japan, suggested that, based on proximity, P. honshuensis could also be in Korean waters, where to date, P. olseni was believed to be the only Perkinsus species present. Perkinsus sp. infections consistently occurred among Ruditapes variegatus clams on a pebble beach on Jeju Island, off the south coast of Korea. The typical \u27signet ring\u27 morphology of the parasite was observed in the connective tissue of the digestive gland, and infection intensity was comparatively low (3.3 x 10(3) +/- 1.2 x 10(4) to 1.3 x 10(4) +/- 6.1 x 10(4) cells g(-1) gill weight). Further DNA analyses of internal transcribed spacer (ITS-1, 5.8S and ITS-2) and non-transcribed spacer (NTS) regions of the parasite showed 98.9-99.8 and 98.5-99.5% similarity to those of P. honshuensis from Japan, respectively. Phylogenetic analyses using ITS and NTS sequences indicated that Perkinsus sp. from Jeju formed a highly supported clade with P. honshuensis. This is the first report of P. honshuensis infections in clams in Korean waters and the first report of R. variegatus as a host for that parasite

    Environmental and economic impacts of fertilizer drawn forward osmosis and nanofiltration hybrid system

    Full text link
    © 2017 Environmental and economic impacts of the fertilizer drawn forward osmosis (FDFO) and nanofiltration (NF) hybrid system were conducted and compared with conventional reverse osmosis (RO) hybrid scenarios using microfiltration (MF) or ultrafiltration (UF) as a pre-treatment process. The results showed that the FDFO-NF hybrid system using thin film composite forward osmosis (TFC) FO membrane has less environmental impact than conventional RO hybrid systems due to lower consumption of energy and cleaning chemicals. The energy requirement for the treatment of mine impaired water by the FDFO-NF hybrid system was 1.08 kWh/m3, which is 13.6% less energy than an MF-RO and 21% less than UF-RO under similar initial feed solution. In a closed-loop system, the FDFO-NF hybrid system using a TFC FO membrane with an optimum NF recovery rate of 84% had the lowest unit operating expenditure of AUD $0.41/m3. Besides, given the current relatively high price and low flux performance of the cellulose triacetate and TFC FO membranes, the FDFO-NF hybrid system still holds opportunities to reduce operating expenditure further. Optimizing NF recovery rates and improving the water flux of the membrane would decrease the unit OPEX costs, although the TFC FO membrane would be less sensitive to this effect

    Blended fertilizers as draw solutions for fertilizer-drawn forward osmosis desalination

    Full text link
    In fertilizer-drawn forward osmosis (FDFO) desalination, the final nutrient concentration (nitrogen, phosphorus, potassium (NPK)) in the product water is essential for direct fertigation and to avoid over fertilization. Our study with 11 selected fertilizers indicate that blending of two or more single fertilizers as draw solution (DS) can achieve significantly lower nutrient concentration in the FDFO product water rather than using single fertilizer alone. For example, blending KCl and NH 4H 2PO 4 as DS can result in 0.61/1.35/1.70 g/L of N/P/K, which is comparatively lower than using them individually as DS. The nutrient composition and concentration in the final FDFO product water can also be adjusted by selecting low nutrient fertilizers containing complementary nutrients and in different ratios to produce prescription mixtures. However, blending fertilizers generally resulted in slightly reduced bulk osmotic pressure and water flux in comparison to the sum of the osmotic pressures and water fluxes of the two individual DSs as used alone. The performance ratio or PR (ratio of actual water flux to theoretical water flux) of blended fertilizer DS was observed to be between the PR of the two fertilizer solutions tested individually. In some cases, such as urea, blending also resulted in significant reduction in N nutrient loss by reverse diffusion in presence of other fertilizer species. © 2012 American Chemical Society

    A comprehensive review of hybrid forward osmosis systems: Performance, applications and future prospects

    Get PDF
    © 2015 Elsevier B.V. Forward osmosis (FO) has been increasingly studied in the past decade for its potential as an emerging low-energy water and wastewater treatment process. However, the term "low-energy" may only be suitable for those applications in where no further treatment of the draw solution (DS) is required either in the form of pretreatment or post-treatment to the FO process (e.g. where the diluted DS is the targeted final product which can be used directly or simply discarded). In most applications, FO has to be coupled with another separation process in a so-called hybrid FO system to either separate the DS from the final product water or to be used as an advanced pre-treatment process to conventional desalination technologies. The additional process increases the capital cost as well as the energy demand of the overall system which is one of the several challenges that hybrid FO systems need to overcome to compete with other separation technologies. Yet, there are some applications where hybrid FO systems can outperform conventional processes and this study aims to provide a comprehensive review on the current state of hybrid FO systems. The recent development and performance of hybrid FO systems in different applications have been reported. This review also highlights the future research directions for the current hybrid FO systems to achieve successful implementation

    Primary sclerosing lipogranuloma: an unusual scrotal mass

    Get PDF
    Sclerosing lipogranuloma (SLG) of the male external genitalia is a rare benign condition presenting as subcutaneous masses. The underlying pathological process is a granulomatous reaction of fatty tissue in this area. The cause of this is unclear but hypothesis stems around the pathogenesis of exogenous lipid degeneration from injection of foreign bodies such as paraffin for penile augmentation. However, endogenous lipid degeneration from other various causes such as infection, trauma, and allergic mechanisms has also been reported. We present the case of a 40-year-old man with primary SLG of the external genitalia. Literature review on the treatment strategies are addressed and discussed

    Effect of sulphonated polyethersulfone substrate for thin film composite forward osmosis membrane

    Full text link
    © 2015 Elsevier B.V. Sulphonated polyethersulfone (SPES) has been synthesized for developing high performance thin film composite (TFC) forward osmosis (FO) membranes with enhanced hydrophilic support layer. Sulphonated substrate not only affects the membrane performance but also changes the membrane morphology from finger-like structure to a sponge-like morphology at higher degree of sulphonation thereby affecting the mechanical strength of the FO membrane. Non-sulphonated TFC-FO membrane with 12 wt.% polymer concentration shows a faint finger-like structure while sulphonated samples at a similar polymer concentration show a fully sponge-like structure with a much higher performance. For example, a water flux of 35 Lm-2 h-1 and 0.28 g L-1 specific reverse solute flux was achieved with sulphonated TFC-FO membrane sample (50 wt.% SPES) under the FO mode using 2 M NaCl as the draw solution and deionized water as feed. Substrate sulphonation also considerably decreased the membrane structural parameter from 1096 μm without sulphonation to 245 μm at 50 wt.% sulphonation. This study therefore shows that, besides surface morphology, the water flux of the FO membrane can also be enhanced by improving its substrate hydrophilic property

    Fertiliser drawn forward osmosis process: Pilot-scale desalination of mine impaired water for fertigation

    Full text link
    © 2016 Elsevier B.V. The pilot-scale fertiliser driven forward osmosis (FDFO) and nanofiltration (NF) system was operated in the field for about six months for the desalination of saline groundwater from the coal mining activities. Long-term operation of the FDFO-NF system indicates that simple hydraulic cleaning could effectively restore the water flux with minimal chemical cleaning frequency. No fouling/scaling issues were encountered with the NF post-treatment process. The study indicates that, FDFO-NF desalination system can produce water quality that meets fertigation standard. This study also however shows that, the diffusion of solutes (both feed and draw) through the cellulose triacetate (CTA) FO membrane could be one of the major issues. The FO feed brine failed to meet the effluent discharge standard for NH4+ and SO42+ (reverse diffusion) and their concentrations are expected to further increase at higher feed recovery rates. Low rejection of feed salts (Na+, Cl-) by FO membrane may result in their gradual build-up in the fertiliser draw solution (DS) in a closed FDFO-NF system eventually affecting the final water quality unless it is balanced by adequate bleeding from the system through NF and re-reverse diffusion towards the FO feed brine. Therefore, FO membrane with higher reverse flux selectivity than the CTA-FO membrane used in this study is necessary for the application of the FDFO desalination process

    Tackling tuberculosis: insights from an international TB Summit in London

    Get PDF
    Tuberculosis (TB) poses a grave predicament to the world as it is not merely a scientific challenge but a socio-economic burden as well. A prime cause of mortality in human due to an infectious disease; the malady and its cause, Mycobacterium tuberculosis have remained an enigma with many questions that remain unanswered. The ability of the pathogen to survive and switch between varied physiological states necessitates a protracted therapeutic regimen that exerts an excessive strain on low-resource countries. To complicate things further, there has been a significant rise of antimicrobial resistance. Existing control measures, including treatment regimens have remained fairly uniform globally for at least half a century and require reinvention. Overcoming the societal and scientific challenges requires an increase in dialog to identify key regions that need attention and effective partners with whom successful collaborations can be fostered. In this report, we explore the discussions held at the International TB Summit 2015 hosted by EuroSciCon, which served as an excellent platform for researchers to share their recent findings. Ground-breaking results require outreach to affect policy design, governance and control of the disease. Hence, we feel it is important that meetings such as these reach a wider, global audience
    corecore