659 research outputs found

    In vivo biofunctional evaluation of hydrogels for disc regeneration

    Get PDF
    Purpose Regenerative strategies aim to restore the original biofunctionality of the intervertebral disc. Different biomaterials are available, which might support disc regeneration. In the present study, the prospects of success of two hydrogels functionalized with anti-angiogenic peptides and seeded with bone marrow derived mononuclear cells (BMC), respectively, were investigated in an ovine nucleotomy model. Methods In a one-step procedure iliac crest aspirates were harvested and, subsequently, separated BMC were seeded on hydrogels and implanted into the ovine disc. For the cell-seeded approach a hyaluronic acid-based hydrogel was used. The anti-angiogenic potential of newly developed VEGF-blockers was investigated on ionically crosslinked metacrylated gellan gum hydrogels. Untreated discs served as nucleotomy controls. 24 adult merino sheep were used. After 6 weeks histological, after 12 weeks histological and biomechanical analyses were conducted. Results Biomechanical tests revealed no differences between any of the implanted and nucleotomized discs. All implanted discs significantly degenerated compared to intact discs. In contrast, there was no marked difference between implanted and nucleotomized discs. In tendency, albeit not significant, degeneration score and disc height index deteriorated for all but not for the cell-seeded hydrogels from 6 to 12 weeks. Cell-seeded hydrogels slightly decelerated degeneration. Conclusions None of the hydrogel configurations was able to regenerate biofunctionality of the intervertebral disc. This might presumably be caused by hydrogel extrusion. Great importance should be given to the development of annulus sealants, which effectively exploit the potential of (cell-seeded) hydrogels for biological disc regeneration and restoration of intervertebral disc functioningThis work was supported by the EU-project Disc Regeneration (NMP3-LA-2008-213904). Technical assistance of Iris Baum and the whole animal surgery team of the Institute of Orthopaedic Research and Biomechanics, Ulm, are gratefully acknowledged. DDAHA hydrogels were kindly provided by Cristina Longinotti (DDAHA, Anika Therapeutics, Abano Therme, Italy)

    Comparative anatomical dimensions of the complete human and porcine spine

    Get PDF
    New spinal implants and surgical procedures are often tested pre-clinically on human cadaver spines. However, the availability of fresh frozen human cadaver material is very limited and alternative animal spines are more easily available in all desired age groups, and have more uniform geometrical and biomechanical properties. The porcine spine is said to be the most representative model for the human spine but a complete anatomical comparison is lacking. The goal of this descriptive study was to compare the anatomical dimensions of the cervical, thoracic, and lumbar vertebrae of the human and porcine spine in order to determine whether the porcine spine can be a representative model for the human spine. CT scans were made of 6 human and 6 porcine spines, and 16 anatomical dimensions were measured per individual vertebrae. Comparisons were made for the absolute values of the dimensions, for the patterns of the dimensions within four spinal regions, and normalised values of the dimensions within each individual vertebra. Similarities were found in vertebral body height, shape of the end-plates, shape of the spinal canal, and pedicle size. Furthermore, regional trends were comparable for all dimensions, except for spinal canal depth and spinous processus angle. The size of the end-plates increased more caudally in the human spine. Relating the dimensions to the size of the vertebral body, similarities were found in the size of the spinal canal, the transverse processus length, and size of the pedicles. Taking scaling differences into account, it is believed that the porcine spine can be a representative anatomical model for the human spine in specific research questions

    Evolution favors protein mutational robustness in sufficiently large populations

    Get PDF
    BACKGROUND: An important question is whether evolution favors properties such as mutational robustness or evolvability that do not directly benefit any individual, but can influence the course of future evolution. Functionally similar proteins can differ substantially in their robustness to mutations and capacity to evolve new functions, but it has remained unclear whether any of these differences might be due to evolutionary selection for these properties. RESULTS: Here we use laboratory experiments to demonstrate that evolution favors protein mutational robustness if the evolving population is sufficiently large. We neutrally evolve cytochrome P450 proteins under identical selection pressures and mutation rates in populations of different sizes, and show that proteins from the larger and thus more polymorphic population tend towards higher mutational robustness. Proteins from the larger population also evolve greater stability, a biophysical property that is known to enhance both mutational robustness and evolvability. The excess mutational robustness and stability is well described by existing mathematical theories, and can be quantitatively related to the way that the proteins occupy their neutral network. CONCLUSIONS: Our work is the first experimental demonstration of the general tendency of evolution to favor mutational robustness and protein stability in highly polymorphic populations. We suggest that this phenomenon may contribute to the mutational robustness and evolvability of viruses and bacteria that exist in large populations

    Percutaneous vertebral compression fracture management with polyethylene mesh-contained morcelized allograft bone

    Get PDF
    Study design    A comprehensive systematic review of the literature. Objectives To assess the modern literature on the use of polyethylene mesh-contained morcelized allograft (PMCMA) bone for spinal fusion and vertebral compression fracture management. Summary of background data    There are presently no systematic reviews of PMCMA. Methods    A systematic literature review was performed within three databases (OVID, PubMed, and Google Scholar) using the following keyword search terms: vertebroplasty, kyphoplasty, vertebral compression fracture, percutaneous, polyethylene mesh, and osteoporosis. Results    The initial search identified 764 items, from which two pertinent technique-based articles were identified. There were no published scientific peer-reviewed or case series reporting the clinical results of this technique. The use of PMCMA in the management of vertebral compression fractures (VCFs) is similar to vertebroplasty and kyphoplasty. This novel, percutaneous system uses the properties of granular mechanics to establish a conforming, semirigid graft that is purportedly capable of withstanding physiologic loads. Discussion    PMCMA is a novel percutaneous technology for the management of VCF and possibly for use as a conforming interbody graft. The available published literature lacks outcome data of the use of PMCMA. Careful, independent research is needed to assess the viability of this technology and its long-term results

    Direction of the formation of anterior lumbar vertebral osteophytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>X-ray images of lumbar degenerative diseases often show not only claw osteophytes, but also pairs of osteophytes that form in a direction away from the adjacent disc. We have investigated the direction of the formation of anterior lumbar vertebral osteophytes across the lumbar vertebrae using a sufficient number of lumbar radiographs, because osteophytes images can provide essential information that will contribute to the understanding of the pathology and progress of lumbar spine degeneration.</p> <p>Methods</p> <p>The direction of the formation of 14,250 pairs of anterior lumbar vertebral osteophytes across the adjacent intervertebral discs in 2,850 patients who were all over 60 years old was investigated. Anterior lumbar vertebral osteophytes were distributed into six groups based on the direction of extension of each pair of osteophytes across the intervertebral disc space.</p> <p>Results</p> <p>In L1–L2 and L2–L3, the number of patients classified into groups B (the pair of osteophytes extended in the direction of the adjacent disc) and C (almost complete bone bridge formation by a pair of osteophytes across the intervertebral disc space) was larger than that classified into group D (the pair of osteophytes extended in a direction away from the adjacent disc). In L3–L4, L4–L5 and L5-S1, the number of patients in group D was greater than that of patients belonging to groups B and C.</p> <p>Conclusion</p> <p>Our study showed that pairs of osteophytes frequently formed in the direction of the adjacent disc in the upper lumbar vertebrae (L1–L2 and L2–L3) and in the direction away from the adjacent disc in middle or lower lumbar vertebrae (L3–L4, L4–L5, and L5-S1).</p

    Attainment rate as a surrogate indicator of the intervertebral neutral zone length in lateral bending: An in vitro proof of concept study

    Get PDF
    Background Lumbar segmental instability is often considered to be a cause of chronic low back pain. However, defining its measurement has been largely limited to laboratory studies. These have characterised segmental stability as the intrinsic resistance of spine specimens to initial bending moments by quantifying the dynamic neutral zone. However these measurements have been impossible to obtain in vivo without invasive procedures, preventing the assessment of intervertebral stability in patients. Quantitative fluoroscopy (QF), measures the initial velocity of the attainment of intervertebral rotational motion in patients, which may to some extent be representative of the dynamic neutral zone. This study sought to explore the possible relationship between the dynamic neutral zone and intervertebral rotational attainment rate as measured with (QF) in an in vitro preparation. The purpose was to find out if further work into this concept is worth pursuing. Method This study used passive recumbent QF in a multi-segmental porcine model. This assessed the intrinsic intervertebral responses to a minimal coronal plane bending moment as measured with a digital force guage. Bending moments about each intervertebral joint were calculated and correlated with the rate at which global motion was attained at each intervertebral segment in the first 10° of global motion where the intervertebral joint was rotating. Results Unlike previous studies of single segment specimens, a neutral zone was found to exist during lateral bending. The initial attainment rates for left and right lateral flexion were comparable to previously published in vivo values for healthy controls. Substantial and highly significant levels of correlation between initial attainment rate and neutral zone were found for left (Rho = 0.75, P = 0.0002) and combined left-right bending (Rho = 0.72, P = 0.0001) and moderate ones for right alone (Rho = 0.55, P = 0.0012). Conclusions This study found good correlation between the initial intervertebral attainment rate and the dynamic neutral zone, thereby opening the possibility to detect segmental instability from clinical studies. However the results must be treated with caution. Further studies with multiple specimens and adding sagittal plane motion are warranted

    On the experimental intradiscal pressure measurement techniques : a review

    Get PDF
    Series : Mechanisms and machine science, ISSN 2211-0984, vol. 24The intradiscal pressure has been essential for prevent the spinal complaints by forming a basis for clinical advice to promote the correct sitting postures. As a consequence, it is evident the need of an accurate method for measure the intradiscal pressure, to better understand the disc response to hydorstatic pressure fluctuations. Numerous reviews regarding disc mechanics are available, including intradiscal pressure benchmarks; however, an analysis on the techniques of intradiscal pressure measurement is needed. Therefore, this review will remain focused on the methodologies adopted for measure the intradiscal pressure in several conditions: for different daily activities, under external loads and for values where occurs annulus fibrosus disruption. The importance of the intradiscal pressure on disc function will be discussed as well as the some guidelines for design new measurement techniques will be defined

    Biomechanical and in vivo evaluation of experimental closure devices of the annulus fibrosus designed for a goat nucleus replacement model

    Get PDF
    Promising strategies are being developed to replace or regenerate the herniated nucleus pulposus. However, clinical efficacy of these methods has still to be addressed, and the lack of appropriate annulus closure techniques is increasingly being recognised as a major limiting factor. In the current study, in vitro and in vivo evaluation of novel annulus closure devices (ACDs) was performed. These devices are intended to be used in adjunct to nucleus replacement therapies in an experimental goat study. After a standardised discectomy had been performed, different ACDs were implanted solely or in addition to a collagen nucleus replacement implant. Biomechanical effects and axial failure load were assessed in vitro and followed by in vivo evaluation in a goat model. On axial compression, the average axial failure load for ACDs with four barb rings was significantly higher compared to the implants with five barb rings. The increased range of flexion-extension and latero-flexion observed after discectomy were restored to the normal range after implantation of the implants. Positive findings with the four-ring ACD were confirmed in goats after a follow-up of 2 weeks in vivo. However, after 6 weeks most implants (n = 16) showed signs of destruction and displacement. Although there seemed to be a tendency towards better results when ACDs were placed in addition to the nucleus replacements, these differences were not statistically significant. Moreover, two endplate reactions extending into the subchondral bone were observed, most likely due to continuous friction between the ACD and the vertebrae. Although current results are encouraging first steps towards the development of an efficient ACD for animal models, further optimisation is necessary. Current results also show that one cannot rely on in vitro biomechanical studies with annulus closure techniques, and these should always be confirmed in vivo in a large animal mode

    Relationship between health-related quality of life and respiratory health status among coal-based sponge iron plant workers in Barjora, India

    Get PDF
    Background: Many coal-based sponge iron plant workers have poor health-related quality of life in general, and specifically a poor respiratory health status. However, the relationship between their health-related quality of life and respiratory health status is unknown. Aim: This study investigated the relationship between health related quality of life, measured using the EuroQol- 5D (EQ5D), and respiratory health status, measured using the St. George’s Respiratory Questionnaire (SGRQ), among coal-based sponge iron plant workers in Barjora, India. Method: A cross-sectional study was conducted among coalbased sponge iron plant workers in Barjora, and complete data were available on 252 participants. Spearman’s rank correlation coefficients were reported to show the strength of relationship between health-related quality of life and respiratory health status. Results and conclusion: Significant correlations were found between all EQ5D dimensions/visual analogue scale (VAS) and all SGRQ scores except between EQ5D-VAS and SGRQ-activity. A range of correlations was found. They were moderate between EQ5D-anxiety/depression and SGRQ-symptom, EQ5D-VAS and SGRQ-symptom, and EQ5D-anxiety/depression and SGRQ-total, but weak between all the other factors

    Vertebral body stenting: a new method for vertebral augmentation versus kyphoplasty

    Get PDF
    Vertebroplasty and kyphoplasty are well-established minimally invasive treatment options for compression fractures of osteoporotic vertebral bodies. Possible procedural disadvantages, however, include incomplete fracture reduction or a significant loss of reduction after balloon tamp deflation, prior to cement injection. A new procedure called “vertebral body stenting” (VBS) was tested in vitro and compared to kyphoplasty. VBS uses a specially designed catheter-mounted stent which can be implanted and expanded inside the vertebral body. As much as 24 fresh frozen human cadaveric vertebral bodies (T11-L5) were utilized. After creating typical compression fractures, the vertebral bodies were reduced by kyphoplasty (n = 12) or by VBS (n = 12) and then stabilized with PMMA bone cement. Each step of the procedure was performed under fluoroscopic control and analysed quantitatively. Finally, static and dynamic biomechanical tests were performed. A complete initial reduction of the fractured vertebral body height was achieved by both systems. There was a significant loss of reduction after balloon deflation in kyphoplasty compared to VBS, and a significant total height gain by VBS (mean ± SD in %, p < 0.05, demonstrated by: anterior height loss after deflation in relation to preoperative height [kyphoplasty: 11.7 ± 6.2; VBS: 3.7 ± 3.8], and total anterior height gain [kyphoplasty: 8.0 ± 9.4; VBS: 13.3 ± 7.6]). Biomechanical tests showed no significant stiffness and failure load differences between systems. VBS is an innovative technique which allows for the possibly complete reduction of vertebral compression fractures and helps maintain the restored height by means of a stent. The height loss after balloon deflation is significantly decreased by using VBS compared to kyphoplasty, thus offering a new promising option for vertebral augmentation
    corecore